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Abstract. We give a short report on a recent work which shows how some effects usually
attributed to the gravitational action of local dark matter may be explained in a conservative
way as due to the gravitational action of far away galaxies, dealt with according to the
standard prescriptions of general relativity. We also mention some new perspectives.

1. INTRODUCTION

The conception that a large amount of dark matter be spread in the Universe, with
a density even five times that of the visible one, was enforced by the realization that
the gravitational action of local visible matter is not sufficient to account for some
fundamental qualitative features of cosmology, such as the flattening of the rotation
curves at the edges of galaxies, and the excess of velocity of galaxies in clusters.
The gravitational action exceeding that attributable to local visible mass was thus
attributed to local unobserved mass (see for example Peebles 1993).

The conception that the additional gravitational action may instead be attributed
to far away galaxies, was advanced and discussed in the paper Carati, Cacciatori
& Galgani 2008a. Such an apparently new idea found its inspiration in some results
recently obtained in classical electrodynamics of point particles (see Carati & Galgani
2003; Marino, Carati & Galgani 2007), where it was pointed out that the retarded
electromagnetic action of far away charges produces at any place a very relevant local
effect, inasmuch as it accounts for the radiation reaction of an accelerated charge,
as first proposed by Wheeler and Feynman (see Wheeler & Feynman 1945; Carati,
Cacciatori & Galgani 2008b).

In this paper, which was presented at the Conference held on the occasion of the
seventieth anniversary of John D. Hadjidemetriou, we give a short review of the
available results, and also mention some new perspectives.

2. THE MODEL

According to the main principle of general relativity, the whole information about
the gravitational action on a test particle at a point of spacetime is assumed to be
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contained in the form of the metric tensor gµν , inasmuch as it determines the geodesics
governing the particle motion. In turn, the metric tensor is assumed to be a solution
of Einstein’s equations having as a source the energy momentum tensor due to the
whole matter present in the Universe.

The first point in which our approach differs from the most common ones is that,
in describing the contribution of the far away matter to the energy momentum tensor,
the matter is thought of as a finite system of N point particles (each particle corre-
sponding typically to one galaxy), and not as a continuum. Then, following literally
the treatment given by Einstein in his Princeton lectures in connection with Mach’s
principle (see Einstein 1922), we perform a perturbation treatment. The metric tensor
gµν is written as a perturbation of the Minkowskian one ηµν , i.e., as gµν = ηµν +hµν ,
and the perturbation hµν is estimated in the linear (or weak field) approximation.
This leads for hµν to an equation which is essentially the wave equation, and this
in turn is solved “by the method. familiar in electrodynamics, of retarded potentials“
through a formula (formula (101), page 87 of Einstein 1922), which involves the po-
sitions qj and the velocities q̇j of the source particles. The formula reads

hµν =
−2G

c4

N∑

j=1

Mj

γj

2q̇
(j)
µ q̇

(j)
ν − c2ηµν

|x− qj |

∣∣∣∣∣
t=tret

(1)

(with q(j) ≡ qj), the dot denoting derivative with respect to proper time, where Mj

and γj are the mass and the Lorentz factor of the j–th source particle.
The problem is then how to deal with the velocities and the positions of the sources.

Concerning velocities, Einstein points out (page 88) that “The previous developments
are valid however rapidly the masses which generate the field may move relatively to
our chosen system of quasi–Galilean coordinates”. Having however in mind the appli-
cation to astronomy, he added: “ But in astronomy we have to do with masses whose
velocities, relatively to the coordinate system employed, are always small compared
to the velocity of light, . . . . We therefore get an approximation which is sufficient
for nearly all practical purposes if in (101) we replace the retarded potential by the
ordinary (non–retarded) potential ...”. This is the way in which the restriction to the
Newtonian, fast decaying, potential was introduced, and consequently only the near
matter, and not the far away one, appeared to play a role in connection with Mach’s
principle (see page 100 of Einstein 1922). Notice that Hubble’s law had not yet been
discovered at that time.

On the other hand, in our approach which has a cosmological character, with the
source particles corresponding to single galaxies, the motion of galaxies has to be
taken into account. To this end we introduced the simplest model we could conceive,
namely, the one in which all peculiar velocities are altogether neglected, and the single
galaxies are assumed to follow Hubble’s law. So we assume that a galaxy, having a
position vector qj , correspondingly has a velocity

q̇j = H0qj , j = 1, . . . , N , (2)

where H0 is the Hubble constant which, in our extremely simplified model, we take
fixed at its present value.
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For what concerns the position vectors qj , following the approach introduced by
Chandrasekhar and von Neumann in the context of stellar dynamics (see the review
Chandrasekhar 1943), and taken also by Davis and Peebles in the context of galactic
dynamics (see Davis & Peebles 1977), we assume them to be random variables. We
now describe the results which are obtained by introducing further assumptions on
the probability distribution of the positions of the galaxies.

3. FIRST RESULT: THE EFFECTIVE DENSITY

The most natural assumption one is led to introduce concerning the probability dis-
tribution of the positions of galaxies, is that of the one-particle probability distri-
bution be isotropic, just in analogy with the corresponding isotropy assumption for
the matter density in the standard continuum model for the source matter. From
this assumption one easily deduces the form of the mean metric corresponding to the
metric gµν defined by (1), and this mean metric turns out to be just a flat Friedmann–
Robertson–Walker one. This then leads to the first result. This is obtained by requir-
ing a consistency condition, namely, that the expansion rate corresponding to such a
mean metric should coincide with the expansion rate that had been introduced into
the model through Hubble’s law (2). Now, the formula giving the expansion rate
corresponding to the mean metric, happens to contain certain sums involving the
positions of the source galaxies, in which the dominant contribution just comes from
the extremely far away ones. On the other hand, the estimate of such sums naturally
leads to introducing a certain effective density ρeff, and the compatibility condition
then leads to the result that such an effective density has to be about five times the
observed one ρ0:

ρeff ' 5ρ0 . (3)

In other words, through their contribution to the metric tensor (and thus to the
expansion rate), the extremely far away galaxies turn out to produce at each point a
local effect which can be described by saying that everything goes as if there existed
an effective density which is about five times the locally observed one. This is the
first instance in which, through their gravitational action, the far away galaxies were
found to play a role usually attributed to local dark matter.

4. SECOND RESULT: cH0 AS A TYPICAL VALUE
OF THE ACCELERATION

Then our attention was addressed to the force per unit mass acting on a test particle
(in the approximation of velocities small compared to that of light). From the formula
(1) for the metric tensor, combined with Hubble’s law (2), one finds out that the force
contains a term decreasing as 1/r2 (near–field), which is proportional to the velocity
of the source, and also a term decreasing as 1/r (far–field), which is proportional to
the acceleration of the source. Thus, as Hubble’s law with a time–independent H0

implies that also the acceleration of the source is proportional to distance, the force
due to the far field actually doesn’t depend on distance at all. This is the main reason
why the far away matter may give the dominant contribution to the gravitational field
of force (leaving aside the Newtonian contribution from the local observable mass).
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The force per unit mass corresponding to such a dominant term (which we denote
by f) turns out to have the form

f =
4GH2

0 M

c2
u (4)

where we have introduced the vector u, depending on the number N of source galaxies,
defined by

u(N) =
N∑

j=1

qj

|qj |

∣∣∣∣
t=tret

. (5)

So, everything depends on the sum of the unit vectors pointing to each galaxy, at
the position where we see it, a formula in which the dependence on distance did
completely disappear. In formula (5), the masses of the sources were all put equal to
a common value M , and the Lorentz factors γj were approximated by 1, because in
practice this theoretical formula was actually estimated through an extrapolation from
partial sums restricted to non extremely large distances (see later). Our attention was
actually addressed to one component of the force f per unit mass, say its projection
along a given direction, which we denote by f .

In order to estimate f , the force per unit mass acting on a test particle along a given
direction, further assumptions on the distribution of matter have to be introduced.
Obviously, the force vanishes if matter were approximated by an isotropic continuum,
and the same is easily seen to occur for the mean value of the force in our discrete
stochastic model, just due to the isotropy assumption for the one–particle probability
distribution of position. An estimate of the “typical” value of the modulus |f | of the
force is then provided by the standard deviation σf . One has then to provide an
estimate for the variance σ2

f .
It is immediately seen that the variance σ2

f vanishes in the limit of a large number
N of galaxies, if their positions are assumed to be independent random variables.
This is a simple consequence of the law of large numbers, just because in such a case
the sum defining σ2

f increases as N , whereas a nonvanishing result can be obtained
only if it increases as N2, as is shown by the formula given below. In turn, the
sum can increase as N2 if the positions of the galaxies are assumed to be correlated.
Nature comes to our help in this case, because it is actually well known that the
positions of the galaxies do present some correlations (see Mandelbrot 1977), the
only open observational problem being that of establishing up to which scale does
this occur (see e.g. Peebles 1993; Sylos Labini, Montuori & Pietronero 1998; Ruffini,
Song & Taraglio 1998; Joyce, Anderson, Montuori, Pietronero & Sylos Labini 2000).
Without entering discussions of such a type, we just limit ourselves to investigate
which consequences follow from a correlation assumption for the positions.

Being unable at the moment to perform analytical estimates, we limited ourselves
to numerical ones, by building up samples of N particles (with N ranging from 1000
to 512,000) presenting a spatial correlation. Concretely, we took a distribution having
a fractal dimension, and actually chose the fractal dimension to be 2, just because
in such a case the constructions of the samples are particularly manageable (see
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Mandelbrot 1977). The result turns out to be σ2
u ' 0.2 N2, which leads to

σf '
√

0.2
4GH2

0

c2
MN . (6)

Notice that this formula involves the product MN , i.e., the total mass of the sample of
galaxies considered, just because the variances increase as N2. With the independence
hypothesis, the variances would instead increase as N , and this would produce in σf

a factor M
√

N , which would not do the job.
Indeed, we took formula (6), which was obtained for small values of N (limited

by the available computation power), and extrapolated it up to the present horizon
R0 = c/H0, i.e., we inserted in formula (6) the actual value of N , so that the quantity
MN could be identified with the total visible mass of the Universe. Inserting also

MN =
4
3
π ρeff R3

0 ,

in terms of the previously determined effective density ρeff, one gets σf ' 0.2 cH0.
So, for the typical value of the modulus |f | of a component of the force per unit mass,
one gets

|f | ' 0.2 cH0 . (7)

This constitutes the second result. Namely, on the assumption that the positions of the
galaxies do present a correlation (and, specifically, according to a fractal distribution
with fractal dimension 2), the component of the force per unit mass along a given
direction has a typical value whose modulus is of the order of cH0.

This seems not to be trivial at all, because it is well known that dark matter
usually appears to be a necessary ingredient, in providing a gravitational contribution
additional to the Newtonian one due to local visible mass, just when the corresponding
acceleration is of the order of cH0 (see Milgrom 1983). Now, the fact that local dark
matter has something to do with cosmology, as witnessed by such a connection with
Hubble’s constant, might appear as a curious coincidence, whereas it appears somehow
as “explained” in the present approach.

5. THIRD RESULT: VELOCITY DISPERSION IN CLUSTERS

So our main result is that, in our model with spatially correlated galaxies, the far
away galaxies produce at any point a gravitational acceleration, which we may call
“cosmic acceleration”, of the order cH0. The only application made in the paper
Carati, Cacciatori & Galgani 2008a concerns the velocity dispersion in clusters of
galaxies. Let us recall that the problem with clusters of galaxies essentially amounts
to the fact that the single galaxies of a cluster do present velocities (with respect
to the center of mass) which exceed the escape velocity determined by the visible
matter, so that more mass is needed to keep them there. We showed that our model
explains the observations, provided a further assumption of a quite general character
be introduced, namely, that the forces acting on two different galaxies of a cluster be
uncorrelated.

That such a decorrelation property may well be plausible in our model, will be
discussed in a moment. Here, let us previously explain why such a property is nec-
essary in order to fit the observations. The first point in this connection is that the
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gravitational action of the far away galaxies should have on the internal galaxies of
a cluster an effect analogous to that of the pressure exerted by the external walls
on the particles of a gas in a box. Now, this can occur only if the field of cosmic
acceleration does form, in the region of the cluster, patterns which are of central–like
type. We are thinking of the field of cosmic acceleration as a random one, which in
some regions might present a pattern convergent towards a center, because only in
such a case could the external acceleration play the role of a pressure, and thus could
a cluster exist. On the other hand, central–like fields can exist only if one has spatial
decorrelation, because otherwise the acceleration at a generic point inside the cluster
would be essentially parallel to the acceleration at the center of mass.

The second reason why a spatial decorrelation property, and thus some nonsmooth-
ness property, is required, is that otherwise the field at a generic point inside the
cluster could be well approximated by the corresponding linear term in a Taylor ex-
pansion about the center of mass, and this would lead, for the velocity dispersion, to a
dependence on the linear dimension L of the cluster which doesn’t fit the observations.
This is seen as follows. For a cluster composed of n galaxies, the “typical” velocity of
a galaxy is estimated by the corresponding dispersion σv, with σ2

v = (1/n)
∑

i v2
i . On

the other hand, in the virial theorem one considers the virial of the tidal forces per
unit mass V =

∑
i (fi − f∗) · xi where fi is the force per unit mass acting on the i–th

galaxy, and f∗ is the force at the center of mass. According to the virial theorem,
for a confined system one has σ2

v = −V/n, where overline denotes time average. So,
with a smooth field, expanded at first order about the center of mass, one would find
fi− f∗ of the order of L, the linear dimension of the cluster, and correspondingly one
would have V/n ' H2

0L2, whereas the observations seem to give σ2
v proportional to

L (see e.g. Kazanas & Manhein 1991). On the other hand, with the decorrelation
assumption one gets that the variance of f − f∗ is independent of L, being just just
given by

√
2 the variance of f . So, inserting the previously estimated value of f , one

immediately gets
σ2

v ' 0.07 cH0L . (8)

Thus with the decorrelation assumption one gets a velocity variance proportional to
L, as seems to be required by the observations. Moreover, in the paradigmatic case of
the Coma cluster from (8) one gets a value 8 · 105 km2/sec2, which quantitatively fits
rather well the value 5 · 105 km2/sec2 reported by Zwicky already in the year 1933.

So, how could such a spatial decorrelation property for the cosmic acceleration be
made plausible in our model? One rather qualitative argument is the following one. It
was already pointed out that the dominant contribution to the acceleration at a given
point comes from the extremely far away galaxies, or, more properly, from the galaxies
near the corresponding horizon. Now, horizons corresponding to different galaxies do
not coincide, and on the other hand the distributions of matter about two different
horizons, being non causally connected, should be considered as independent. This
seems to imply decorrelation.

6. FURTHER PERSPECTIVES

So we have illustrated, in a rather colloquial way, the results obtained in the paper
Carati, Cacciatori & Galgani 2008a, where it was first proposed that the far away
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galaxies may be a substitute for the local dark matter, in providing the observed
acceleration which is not accounted for by the Newtonian attraction due to local
visible mass. This was obtained through a completely conservative approach, in
which the gravitational action of the galaxies is estimated according to the standard
prescriptions of general relativity in the weak field approximation, with the source
galaxies described as point particles, instead than as a continuum. The positions of
the galaxies are considered as random variables, and their velocities are assumed to
follow Hubble’s law.

Further assumptions had then to be introduced concerning the positions as random
variables: isotropy of the one–particle distribution, and a correlation for the two–
particle distribution. Such assumptions already allow one to get two results, namely:
i) in connection with the expansion rate, the gravitational action of the far away
galaxies has the same effect as if there existed a distributed matter having a density
five times that of the observed one, and ii) at any point there exists a force per unit
mass acting on a test particle, a kind of cosmic acceleration, a typical value of which
can be estimated to be 0.2cH0. Finally, this fact appears to explain the observed
velocity dispersion in clusters of galaxies, if the further assumption is introduced that
the cosmic acceleration due to the far away galaxies be spatially uncorrelated (at least
at the scale of galaxy distances).

We are now working at two more problems. The first one is of a technical char-
acter, and concerns the estimate of the variance of the force per unit mass due to N
point particles. In the mentioned paper the estimate was obtained through numerical
methods, and was restricted to the particular case of a fractal dimension of dimension
2. In the meantime, the numerical estimates were extended to other values of the
fractal dimensions. The preliminary indications are that the results be essentially
independent of the dimension. Furthermore, a rather simple method was devised in
order to perform the estimates analytically; in the case of fractal dimension 2, the
estimate σ2

u ' 0.2 N2 was in particular confirmed.
The main problem that remains open is to establish whether the gravitational

influence of the far away galaxies may prove able to explain also the second main
phenomenon that enforced the introduction of dark matter, namely, the flattening of
the rotation curves in galaxies. We are now working in this direction, and are very
confident that a positive answer may be provided rather soon, and in quite a simple
and elegant way.
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