A REACTION MECHANISM FOR VIBRATIONALLY COLD CO₂ PLASMAS

A. F. SILVA^{1,2,3}, A. S. MORILLO-CANDÁS², O. GUAITELLA² and V. GUERRA³

¹DIFFER, Eindhoven, the Netherlands ²LPP, École Polytechnique, Sorbonne Université, France ³IPFN, Instituto Superior Técnico, Universidade de Lisboa, Portugal E-mail a.f.sovelasdasilva@differ.nl

Abstract. The use of plasmas for CO_2 utilization has been under investigation in recent years following a wave of environmental awareness. In this work we research this topic using a bottom-up strategy to study fundamental CO_2 plasma processes. For this we rely on modelling and on dedicated experiments with which a reaction mechanism for vibrationally cold CO_2 plasmas can be validated in a relatively large range of experimental conditions. The simulation tool we use, LoKI (see Tejero-del-Caz *et al.* 2019), couples a Boltzmann and a chemistry solver. The simulated results obtained with the mechanisms proposed are validated against CO_2 glow discharge measurements at pressures lower than 5 Torr, reduced electric fields ranging from 50 to 100 Td and flowing at few sccm (see Morillo-Candás *et al.* 2019). The model can reproduce the measured values of product formation as well as discharge power and electric field. Although vibrational populations are low, we show them to have a significant effect on the electron properties. The shape of the EEDF is also significantly dependent on the dissociation degree. Moreover, we discuss the role of electronically excited states on CO_2 dissociation, showing that the first electronic excited state of CO can have beneficial effect in further producing CO and O in the discharge.

This work was partially funded by Portuguese FCT - Fundação para a Ciência e a Tecnologia, under projects UIDB/50010/2020 and UIDP/50010/2020, by NWO, in the framework of the CO2-to-products program, and by the french national funding agency under the project number ANR-16-CE06-0005.

References

- Morillo-Candás, A. S., Drag, C., Booth, J. P., Dias, T., Guerra, V. Guaitella, O.: 2019, *Plasma Sources Sci. Technol.*, 28.
- Tejero-del-Caz, A., Guerra, V., Gonçalves, D., Lino da Silva, M., Marques, L., Pinhão, N., Pintassilgo, C.D., Alves, L. L.:2019, *Plasma Sources Sci. Technol.*, **28**.