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Abstract. Authors of this paper recently applied the theory of regularly varying functions
in asymptotic analysis of cosmological parameters for the expanding universe. According to
this theory, all cosmological parameters depend on a a 0-function ε(t) which is ”hidden” in
the integral representation of regularly varying functions. We derived a differential equation
for ε(t) and discussed possible solutions.

1. INTRODUCTION

In our paper [Mijajlović et al., 2012], we applied the theory of regularly varying func-
tions in asymptotic analysis of cosmological parameters for the expanding universe.
For this analysis we used Friedman equations [see Friedman, 1924], which are derived
from the Einstein field equations:
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Cosmological parameters appearing in these equations are:

a = a(t), the scale factor,
ρ = ρ(t), the energy density, and
p = p(t), the pressure of the material in the universe.

It appears that these parameters, including Hubble parameter, H(t), and decelera-
tion parameter, q(t), are regularly varying functions. According to the representation
theory for regularly varying functions, all these parameters depend on a 0-function
ε(t) which is ”hidden” in the integral representation of regularly varying functions.
Parameters a(t), ρ(t) and H(t) uniformly depend only on ε(t), but the parameters
p(t) and q(t) depend on ε̇ as well. While ε(t) → 0 as t →∞, this is not necessary for
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ε̇, what may lead to various evolutions of these parameters. We derive a differential
equation for ε(t) and discuss possible solutions.

2. REGULAR VARIATION

We shall review briefly basic notions related to regular variation. We shall need
particularly properties of regularly varying solutions of the following second order
differential equation

ÿ + f(t)y = 0, f(t) is continuous on [α,∞]. (1)

Observe that the acceleration equation has the form (1). In short, the notion of a
regular variation is a form of the power law distribution, described by the following
relationship between quantities F and t:

F (t) = tr(α + o(1)), α, r ∈ R. (2)

Obviously, the most simple form of the power law is given by the equation y = tk.
It is said that two quantities y and tr satisfy the power law if they are related by a
proportion, i.e. there is a constant α so that y = αtr. This definition of power law
can be naturally extended by use of the notion of slowly varying function introduced
by J. Karamata, (1930).

A real positive continuous function L(t) defined for x > x0 which satisfies

L(λt)
L(t)

→ 1 as t →∞, for each real λ > 0. (3)

is called a slowly varying function. A physical quantity F(t) is said to satisfy the
generalized power law if

F (t) = trL(t) (4)

where L(t) is a slowly varying function and r is a real constant. So to say that
F (t) is regularly varying is the same as F (t) to satisfy the generalized power law.
The simplest example of slowly varying functions are ln(x) and iterated logarithmic
functions ln(. . . ln(x) . . .).

Regularly varying function have the following representation. Namely, a function
L is slowly varying if and only if there are measurable functions h(x) and a zero
function ε and b ∈ R so that

L(x) = h(x)e
∫ x

b
ε(t)

t dt, x ≥ b, (5)

and h(x) → h0 as x →∞, h0 is a positive constant. For further properties of regularly
varying functions, one may consult Bingham et al., 1987.

As we are dealing with solutions L of differential equations which model mechanical
phenomena, it is quite safe to assume that L is a twice differentiable function. The
function ε(t) is not uniquely determined and in our context we shall call it a hidden
parameter. We shall also assume that L(t) is normalized, i.e. that h(x) is a constant
function. The class of normalized slowly varying functions will be denoted by N .
We shall see that the fundamental cosmological parameters depend essentially on the
hidden parameter ε(t).
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For our study of Friedman equations we need several results on solutions of equa-
tion (1). There are various conditions for f(t) that ensure that regularly varying
solutions of ÿ + f(t)y = 0 exist. We shall particularly use the following result, due to
Howard and Marić, see Marić, 2000 and Kusano-Marić, 2010:

Theorem Let −∞ < Γ < 1/4, and let α1 < α2 be two roots of the equation

x2 − x + Γ = 0. (6)

Further let Li, i=1,2 denote two normalized slowly varying functions. Then there are
two linearly independent regularly varying solutions of ÿ + f(t)y = 0 of the form

yi(t) = tαiLi(t), i = 1, 2, (7)

if and only if M(f) = lim
x→∞

x

∫ ∞

x

f(t)dt = Γ. Moreover, L2(t) ∼ 1
(1− 2α1)L1(t)

.

The limit of the integral in the theorem is crucial in our analysis and it is not
always easy to compute.

As lim
t→∞

t2f(t) = Γ implies lim
x→∞

x

∫ ∞

x

f(t)dt = Γ, we see that

lim
t→∞

t2f(t) = Γ (8)

gives a useful sufficient condition for the existence of regularly varying solutions of
the equation ÿ + f(t)y = 0 as described in the previous theorem. By r.v. we shall
denote the term ”regularly varying”.

3. R. V. SOLUTIONS OF FRIEDMAN EQUATIONS

As noted, the acceleration equation obviously has the form (1) so under appropri-
ate assumptions, i.e. that the functions we encounter are continuously differentiable
as many times as necessary, the analysis of the previous section, in particular the
Howard-Marić theorem, can be applied to it. For this reason, we shall write from now
on the acceleration equation in the form

ä +
µ(t)
t2

a = 0, (9)

where

µ(t) =
4πG

3
t2

(
ρ +

3p

c2

)
. (10)

We found in [Mijajlovic et al. 2012] r.v. solutions of Friedman equations and
determined cosmological parameters:
Scale factor a(t): a(t) = tαL(t), where α 6= 0 with L having the ε-representation as
in Karamata Representation theorem.
Hubble parameter H(t):

H(t) =
α

t
+

ε

t
. (11)

Deceleration parameter q(t):

q(t) =
µ(t)
α2

(1 + η) =
1− α

α
− tε̇

α2
(1 + η) + τ, (12)

271
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where η and τ are zero functions.
Now we introduce a new constant w related to the scale factor a(t) which satisfy

the generalized power law. It appears that w is in fact the equation of state parameter.
So assume a(t) = tαL(t), L ∈ N and α 6= 0. We define w by

w ≡ wα =
2
3α

− 1 (equation of state parameter). (13)

Then cosmological parameters can be put in a more standard form, widely found in
the cosmology literature.

α =
2

3(1 + w)
, a(t) = a0L(t)t

2
3(1+w)

H(t) ∼ 2
3(1 + w)t

, M(q) =
1 + 3w

2

(14)

By the representation theorem for regularly varying functions we see that the scale
factor a(t) and the deceleration parameter q(t) depend on a hidden parameter ε and
its derivative ε̇. For the universe having the flat curvature one can infer the following
relation between pressure and density parameters:

There are 0-functions ξ, ζ such that p = ŵρc2, where ŵ(t) = w − tξ̇ + ζ.
We see that the deceleration parameter q(t), the equation of state and the pressure

p(t) contain not only the ”hidden” parameter ε(t), but ε̇(t) and tε̇(t) as well.
While ε(t) is a 0-function, ε̇(t) and tε̇(t) need not to be. In fact they can be

unbounded and oscillatory as well. Examples of this kind are:

ε(t) = cos(t2)/t, ε(t) = sin(t3)/t.

It means that q(t) and p(t) can be unbounded and oscillatory as well. It seems
that this fact is overlooked in the classical cosmology, mainly due to the absence of
”microscopic” analysis which give us the theory of regularly varying functions.

Therefore, it is of interest to describe in more detail the hidden parameter ε. We
found that ε is a solution of the Riccati differential equation:

tε̇(t) = (1− 2α)ε− ε2 + α(1− α)− µ(t). (15)

where M(µ) = α(1− α) and ε is a 0-function. If limt→∞ µ(t) = α(1 − α), then tε̇ is
a 0-function, hence ε̇ and tε̇ can be neglected in the representation of cosmological
parameters. In this case q(t) and equation of state reduce to their standard form in
classical cosmology:

q(t) =
1 + 3w

2
, p(t) = wc2ρ(t)

where w is a constant (c is the the speed of light). Hence, the only interesting
case would be when M(q) = α(1 − α) and limt→∞ µ(t) does not exist. Then the
”hidden” parameter ε, in fact its derivative ε̇, might have the strong influence in the
asymptotical behavior of the parameters q(t) and p(t).

We note that J. Barrow (see, for example, J. Barrow, D. Shaw, 2008) also discussed
the asymptotic behavior of cosmological parameters based on the theory of Hardy
fields. We note that this theory precedes Karamata’s theory of regular variation.
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Several physical models can be proposed taking into account the ”hidden” param-
eter ε(t):

1. Dark matter and dark energy are in the equilibrium but small fluctuation in
this state produce variation of q(t) and p(t).

2. Variations of q(t) and p(t) are the consequences of the echo effect which ap-
peared in the inflationary epoch which lasted from 10−36 seconds after the Big Bang
until 10−32 seconds (Alan Guth and Andrei Linde, 1981).

3. Variations of q(t) and p(t) are the consequences of the existence and the influ-
ence of the dual universe.
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