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Abstract. In this article we investigate Dp-brane noncommutativity using Hamiltonian
approach. We consider separately open bosonic string and type IIB superstring which end-
points are attached to the Dp-brane. From requirement that Hamiltonian, as the time
translation generator, has well defined derivatives in the coordinates and momenta, we ob-
tain boundary conditions directly in the canonical form. Boundary conditions are treated
as canonical constraints. Solving them we obtain initial coordinates in terms of the effective
ones as well as effective momenta. Presence of momenta implies noncommutativity of the
initial coordinates. Effective theory, defined as initial one on the solution of boundary con-
ditions, is its Ω even projection, where Ω is world-sheet parity transformation Ω : σ → −σ.
The effective background fields are expressed in terms of Ω even and squares of the Ω odd
initial background fields.

1. INTRODUCTION

Quantization of the open bosonic string ending on the Dp-brane, with constant metric
Gµν and antisymmetric Neveu-Schwarz field Bµν , leads to the noncommutativity
of the Dp-brane manifold (reference starting with Connes, A.). Inclusion of the
dilaton field Φ linear in xµ was studied in the second, sixth and ninth reference.
In the second one, the Dirichlet boundary conditions were constructed, while in the
sixth and ninth reference, the noncommutativity structure was analyzed. The ninth
reference considers the conformal part of the world-sheet metric F as a dynamical
variable, introducing an additional boundary condition corresponding to F . Dp-
brane is introduced by choosing Neumann boundary conditions for xi (i = 0, 1, . . . , p)
and Dirichlet ones for the rest ones xa (a = p + 1, . . . , D− 1), where D is the number
of the space-time dimensions.

We consider the cases when squares of the dilaton gradient ai, either with respect
to the closed string metric Gij , a2 = Gijaiaj , or with respect to the effective one
Geff

ij , ã2 = (G−1
eff )ijaiaj , take some particular values. As a consequence of these

conditions, the first class constraints and local gauge symmetries appear. Some of
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the initial Dp-brane coordinates change the corresponding boundary conditions from
Neumann to Dirichlet and decrease the number of the Dp-brane dimensions. Also,
one commutative coordinate appears (see references of Nikolic, B. and Sazdovic, B.
from Phys. Rev. D).

Beside described bosonic string, we consider the non(anti)commutativity for the
type IIB superstring theory. We are going to investigate pure spinor formulation
of type IIB superstring theory (see group of references starting with Berkovits). In
particular, we use the form introduced by de Boer, J., which corresponds to constant
graviton Gµν , antisymmetric field Bµν , two gravitinos ψα

µ and ψ̄α
µ , and R-R field

strength Fαβ . In this approach dilaton Φ and two dilatinos, λα and λ̄α, are set to
zero.

It occurs that effective theory, even under world-sheet parity transformation Ω,
is just type I closed superstring theory defined on orientifold projection. One of the
main results of the article, beside examined noncommutativity structure, contains
generalized expressions of type I superstring background fields in terms of type IIB
ones (Nikolić, B. and Sazdović, B., Phys. Lett. B666 (2008) 400).

In both mentioned cases we use Hamiltonian approach. We obtain the boundary
conditions purely canonically, from the requirement that Hamiltonian is differentiable
in its canonical variables. This is more natural approach because we intend to treat
these conditions as canonical constraints. Then we perform consistency procedure for
the constraints and, using Taylor expansion, obtain compact, σ dependent form of
the boundary conditions.

Solving boundary conditions we find the initial coordinates in terms of the effective
coordinates and effective momenta, which have strictly defined Ω parity. Presence of
the momenta causes the nonzero value of Poisson brackets of the initial coordinates.
Effective theory, defined as initial one on the solution of boundary conditions, is its
Ω even projection.

At the end we give some concluding remarks.

2. BOUNDARY CONDITIONS AS CANONICAL CONSTRAINTS

2. 1. HAMILTONIAN DERIVATION OF BOUNDARY CONDITIONS

Because we intend to treat the open string boundary conditions as canonical con-
straints, we will derive them directly in Hamiltonian form.

The Hamiltonian H is a generator of the time translation, so it must be differen-
tiable in coordinates xµ and their canonically conjugated momenta πµ. Varying the
Hamiltonian depending on the x′µ, we obtain

δH = δH(R) − γ(0)
µ δxµ

∣∣∣
π

0
, (1)

where index R denotes the regular term of the form

δH(R) =
∫

dσ(Aµδxµ + Bµδπµ) . (2)

The Hamiltonian is properly defined, when the boundary term γ
(0)
µ δxµ

∣∣∣
π

0
in equa-

tion (1) vanishes. That is automatically fulfilled for closed strings, because they do
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not have endpoints. Assuming that the variations δxµ are arbitrary at the open
string endpoints, we obtain the Neumann boundary conditions in the canonical form,
γ

(0)
µ

∣∣∣
π

0
= 0. On the other hand, if we suppose that the string endpoints are fixed,

δxµ
∣∣∣
π

0
= 0, the boundary conditions are known as Dirichlet boundary conditions.

This method can be generalized directly to the case of superstring.

2. 2. CONSISTENCY OF THE CONSTRAINTS

Checking the consistency of the constraints, we obtain an infinite set of constraints

γ(n)
µ ≡

{
H , γ(n−1)

µ

}
. (n = 1, 2, . . .) (3)

Using Taylor expansion, we rewrite all the constraints at σ = 0 and σ = π in a more
compact, σ-dependent form

Γµ(σ) =
∑

n≥0

σn

n!
γ(n)

µ (σ = 0) , Γ̃µ(σ) =
∑

n≥0

(σ − π)n

n!
γ(n)

µ (σ = π) . (4)

Both in the case of open bosonic string in the presence of gravitational Gµν , anti-
symmetric Neveu-Schwarz Bµν and dilaton field Φ, and in the case of pure spinor
formulation of type IIB superstring, boundary conditions at σ = π are solved by 2π
periodicity of canonical variables.

We complete the consistency procedure finding the Poisson bracket

{H , Γµ} = Γ′µ . (5)

This means there are no more constraints in the theory.
The next step is separating the constraints to the first and second class. The first

class constraints generate some gauge symmetry and decrease the dimension of Dp-
brane. Presence of symmetry enables us to fix gauge conditions. Solving second class
constraints, first class constraints and gauge conditions we obtain the initial variables
in terms of effective ones.

3. BOSONIC STRING

In this section we will consider the open bosonic string in the presence of background
fields: gravitational Gµν , antisymmetric Neveu-Schwarz Bµν and dilaton field Φ.

3. 1. ACTION AND SPACE-TIME FIELD EQUATIONS

We will consider the action (see textbooks of Green, Scwarz, Witten; Polchinski)

S = κ

∫

Σ

d2ξ
√−g

{[
1
2
gαβGµν(x) +

εαβ

√−g
Bµν(x)

]
∂αxµ∂βxν + Φ(x)R(2)

}
. (6)

The quantum conformal invariance is determined by β functions

βG
µν ≡ Rµν − 1

4
BµρσBν

ρσ + 2Dµaν , (7)
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βB
µν ≡ DρB

ρ
µν − 2aρB

ρ
µν , (8)

βΦ ≡ 4πκ
D − 26

3
−R +

1
12

BµρσBµρσ − 4Dµaµ + 4a2 , (9)

where Rµν , R and Dµ are the space-time Ricci tensor, scalar curvature and covariant
derivative, respectively, Bµρσ is field strength of the field Bµν and the vector aµ is
the gradient of the dilaton field. Vanishing of βG

µν and βB
µν implies ∂µβΦ = 0, which

means that βΦ can be arbitrary constant.
We choose particular solution of the Eqs.(7) and (8)

Gµν(x) = Gµν = const , Bµν(x) = Bµν = const , Φ(x) = Φ0+aµxµ . (aµ = const)
(10)

Then Eq.(9) produces the condition

βΦ = 2πκ
D − 26

6
+ 4a2 ≡ c , (11)

under which the above solution is consistent with all equations of motion. On these
conditions, the non-linear sigma model (6) becomes conformal field theory. There
exists a Virasoro algebra with central charge c.

The remaining anomaly can be cancelled by introducing corresponding Wess-
Zumino term, which in the case of the conformal anomaly takes the form of the
Liouville action

SL = − βΦ

2(4π)2κ

∫

Σ

d2ξ
√−gR(2) 1

∆
R(2) , ∆ = gαβ∇α∂β , (12)

where ∇α is the covariant derivative with respect to the intrinsic metric gαβ . Ap-
propriate choice of the coefficient in front of Liouville action makes the theory fully
conformally invariant and the complete action takes the form

S = S(G+B+Φ) + SL . (13)

We choose a particular background, decomposing the space-time coordinates xµ(ξ)
in Dp-brane coordinates denoted by xi(ξ) (i = 0, 1, ..., p) and the orthogonal ones
xa(ξ) (a = p+1, p+2, ..., D− 1), in such a way that Gµν = 0, (µ = i , ν = a). For the
other two background fields we choose: Bµν → Bij , aµ → ai. The part of the action
describing the string oscillation in xa directions decouples from the rest. Imposing
the conformal gauge gαβ = e2F ηαβ , we obtain R(2) = −2∆F and the action (13) takes
the form

S = κ

∫

Σ

d2ξ

[(
1
2
ηαβ ?Gij + εαβBij

)
∂αxi∂βxj +

2
α

ηαβ∂α
?F∂β

?F

]
, (14)

where we introduce

?Gij = Gij − αaiaj ,
1
α

=
βΦ

(4πκ)2
, ?F = F +

α

2
aix

i . (15)

For ?F we choose Neumann boundary condition.
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3. 2. NONCOMMUTATIVITY

We will consider three cases: (1) a2 6= 1
α , ã2 6= 1

α ; (2) a2 = 1
α , ã2 6= 1

α ; (3) a2 6= 1
α ,

ã2 = 1
α . We applied described Hamiltonian approach on the model given by the

action (14) and obtained the following results:

• Because ?F decouples from the rest terms in the action in all three cases, it is
commutative variable (in limit α →∞ the role of commutative coordinate takes
aix

i), while other ones are noncommutative.

• Case (1) - all constraints originating from boundary conditions are of the second
class (Dirac constraints do not appear). The number of Dp-brane dimensions
is unchanged.

• Case (2) - one Dirac constraint of the first class appears as a consequence of the
fact that metric ?Gij is singular. The number of Dp-brane dimensions decreases
by 2.

• Case (3) - two constraints originating from boundary conditions are of the first
class. The number of Dp-brane dimensions decreases by 2.

4. TYPE IIB SUPERSTRING THEORY

4. 1. PURE SPINOR FORMULATION OF THE TYPE IIB SUPERSTRING THEORY - AC-

TION AND BOUNDARY CONDITIONS

We will investigate the type IIB superstring theory using pure spinor formulation.
Originally, theory is formulated using BRST charge and contains ghost fields. For
our purpose, as well as in reference article of de Boer, it is enough to consider ghost
independent part of the action. The action is of the form

S = κ

∫

Σ

d2ξ

[
1
2
ηabGµν + εabBµν

]
∂axµ∂bx

ν

+
∫

Σ

d2ξ
[−πα(∂τ − ∂σ)(θα + ψα

µxµ) + (∂τ + ∂σ)(θ̄α + ψ̄α
µxµ)π̄α

]

+
1
2κ

∫

Σ

d2ξπαFαβ π̄β , (16)

where D = 10 dimensional space-time is parameterized by coordinates xµ (µ =
0, 1, 2, . . . , D − 1). The fermionic part of superspace is spanned by same chirality
fermionic coordinates θα and θ̄α, while the variables πα and π̄α are their canonically
conjugated momenta. The gravitational field Gµν , antisymmetric Neveu-Schwarz field
Bµν , gravitinos ψα

µ , ψ̄α
µ and bispinor Fαβ are constant.

According to the definition of canonical Hamiltonian, H = ẋµπµ+θ̇απα+ ˙̄θ
α
π̄α−L,

we have

H =
∫

dσH , H = T− − T+ , T± = t± − τ± , (17)
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where

t± = ∓ 1
4κ

GµνI±µI±ν , I±µ = πµ + 2κΠ±µνx′ν + παψα
µ − ψ̄α

µ π̄α ,

τ+ = (θ′α + ψα
µx′µ)πα − 1

4κ
παFαβ π̄β ,

τ− = (θ̄′α + ψ̄α
µx′µ)π̄α +

1
4κ

παFαβ π̄β , Π±µν = Bµν ± 1
2
Gµν , (18)

and πµ denotes momentum canonically conjugated to the coordinate xµ.
Using canonical approach described in the Section 2, we will derive boundary

conditions directly in terms of canonical variables. Varying Hamiltonian H we obtain

δH = δH(R) − [γ(0)
µ δxµ + παδθα + δθ̄απ̄α]

∣∣π
0

, (19)

where δH(R) is regular term without τ and σ derivatives of supercoordinates and
supermomenta, while

γ(0)
µ = Π+µ

νI−ν + Π−µ
νI+ν + παψα

µ + ψ̄α
µ π̄α . (20)

As a time translation generator Hamiltonian must have well defined derivatives in its
variables. Consequently, boundary term has to vanish and we obtain

[
γ(0)

µ δxµ + παδθα + δθ̄απ̄α

] ∣∣∣
π

0
= 0 . (21)

For bosonic coordinates xµ we choose Neumann boundary conditions implying

γ(0)
µ

∣∣π
0

= 0 . (22)

In order to preserve N = 1 SUSY of the initial N = 2 SUSY, for fermionic coordinates
we chose

(θα − θ̄α)
∣∣∣
π

0
= 0 , (πα − π̄α)

∣∣π
0

= 0 , (23)

where the first condition produces the second one.

4. 2. NONCOMMUTATIVITY AND EFFECTIVE THEORY

The solution of the constraints gives

xµ(σ) = qµ − 2Θµν

∫ σ

0

dσ1pν +
Θµα

2

∫ σ

0

dσ1(pα + p̄α) , (24)

θα(σ) = ηα −Θµα

∫ σ

0

dσ1pµ − Θαβ

4

∫ σ

0

dσ1(pβ + p̄β) ,

θ̄α(σ) = η̄α −Θµα

∫ σ

0

dσ1pµ − Θαβ

4

∫ σ

0

dσ1(pβ + p̄β) ,

πµ = pµ , πα =
pα

2
, π̄α =

p̄α

2
, (25)
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where

ηα ≡ 1
2
(θα + Ωθ̄α) , η̄α ≡ 1

2
(Ωθα + θ̄α) , pα ≡ πα + Ωπ̄α , p̄α ≡ Ωπα + π̄α (26)

and

Θµν = − 1
κ

(G−1
effBG−1)µν , Θµα = 2Θµν(Ψeff )α

ν −
1
2κ

Gµνψα
−ν ,

Θαβ =
1
2κ

Fαβ
s + 4(Ψeff )α

µΘµν(Ψeff )β
ν

− 1
κ

ψα
−µ(G−1BG−1)µνψβ

−ν +
Gµν

κ

[
ψα
−µ(Ψeff )β

ν + ψβ
−µ(Ψeff )α

ν

]
. (27)

Here we have

Geff
µν = Gµν − 4(BG−1B)µν , (Ψeff )α

µ =
1
2
ψα

+µ +(BG−1)µ
νψα

−ν , (ψα
±µ = ψα

µ ± ψ̄α
µ ) ,

(28)

Fαβ
s =

1
2
(Fαβ + F βα) . (29)

On the solutions of the boundary conditions original string variables depend both
on effective coordinates and effective momenta. This is a source of noncommutativity
relations

{xµ(σ) , xν(σ̄)} = 2Θµνθ(σ + σ̄) ,

{xµ(σ) , θα(σ̄)} = −Θµαθ(σ + σ̄) , {θα(σ) , θ̄β(σ̄)} =
1
2
Θαβθ(σ + σ̄) , (30)

where θ(σ + σ̄) is the step function.
Substituting the solutions of the constraints (25) into the expression for canonical

Hamiltonian (17) we obtain effective one. It easily produces the effective Lagrangian,
which on the equations of motion for momentum pµ, turns into

Leff =
κ

2
Geff

µν ηab∂aqµ∂bq
ν +

− πα(∂τ − ∂σ)
[
ηα + (Ψeff )α

µqµ
]
+ (∂τ + ∂σ)

[
η̄α + (Ψeff )α

µqµ
]
π̄α

+
1
2κ

παFαβ
eff π̄β , (31)

where
Fαβ

eff =
1
2
(Fαβ − F βα)− (ψ−µGµνψ−ν)αβ . (32)

Consequently, in effective theory only Ω symmetric parts survive: graviton Geff
µν

in the NS-NS sector, gravitino (Ψeff )α
µ in NS-R sector and antisymmetric part of

R-R field strength, Fαβ
eff . In our approach the effective theory has been obtained from

initial IIB one on the solution of boundary conditions. As its Ω symmetric part, it
corresponds to the type I superstring theory, but with improved background fields,
which beside standard linear terms in Ω even fields contain bilinear terms in Ω odd
fields. As a consequence of boundary conditions at σ = π, this is a closed string
theory.
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5. CONCLUDING REMARKS

In this article we demonstrated Hamiltonian approach on two examples: open bosonic
string in the presence of gravitational Gµν , Neveu-Schwarz field Bµν and dilaton field
Φ, and type IIB superstring theory. We derived boundary conditions using canonical
methods. Demanding that Hamiltonian as time translation generator is differentiable
in its canonical variables, we obtain the boundary conditions purely canonically.

Boundary conditions are treated as canonical constraints. Solving boundary con-
ditions we obtained the initial coordinates in terms of effective ones and effective
momenta. The general form of the solution is

xµ = qµ − 2Θµν

∫
dσpν , (33)

where qµ and pµ are Ω even parts of xµ and πµ and Θµν is some coefficient. It is
obvious that presence of momenta pµ in the solution for xµ implies

{xµ(σ) , xν(σ̄)} = 2Θµνθ(σ + σ̄) 6= 0 . (34)

In all considered cases effective theory, defined as initial one on the solution of bound-
ary conditions, is its Ω even part.

In the case of bosonic string we discussed three cases: (1) a2 6= 1
α , ã2 6= 1

α ; (2)
a2 = 1

α , ã2 6= 1
α ; (3) a2 6= 1

α , ã2 = 1
α . We showed that there is one commutative

coordinate in all cases, ?F . All other coordinates are noncommutative. In the cases
(2) and (3) a first class constraints appeared. In the case (2) constraint is of Dirac
type, while in the case (3) two of the constraints originating from boundary conditions
which initially were of the second class, became the first class ones. As a consequence
of the presence of the first class constraints, two coordinates which initially satisfy
Neumann, turned into Dirichlet boundary conditions and decreased the number of
Dp-brane dimensions.

For the type IIB superstring we obtained that Poisson bracket {xµ , xν} have the
same form as in the dilaton free bosonic case. The explanation is that solution for xµ

depends on the fermionic momenta but not on the corresponding canonically conju-
gated coordinates. The noncommutativity relations we obtained are generalization of
the results obtained by de Boer. For ψα

µ = ψ̄α
µ we confirmed results of the mentioned

article.
The background fields of the effective theory consist of standard linear terms,

which are even under Ω projection, and the improvements, which are squares of Ω
odd fields of the initial theory.
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Nikolić, B. and Sazdović, B., Phys. Lett., B 666 (2008) 400.
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