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Abstract. In the age of intensive exploring of the solar system, many professionals and
non-professionals become interested in calculating the basic data regarding the solar system
planets. We have considered some concepts of the physical ephemeris calculation for the
natural and artificial solar system bodies. As an effective result, during a conference session,
we presented an oral explanation of an interactive program for practical calculation of the
physical ephemeris of the planets as a problem of general interest. As a specific example,
in this article the readers can find the theoretical and practical elements and procedure
explanation for two useful methods of the satellite orbit determination: LSQOD and EKF.

1. INTRODUCTION

The precise determination of a spacecraft orbit is a necessary condition for carrying
out any spaceflight mission, such as, performing orbital transfer, orbital rendez-vous,
gravitational fly-by, atmospheric reentry, etc.

There are a lot of preconditions that should be satisfied, before any orbit calculation
can be done. The most important are: choosing an appropriate coordinate system
and applying an adequate theoretical and practical model.

2. CHOICE OF THE COORDINATE SYSTEM

It is important to chose an appropriate coordinate system because an optimal choice
allows easier determination of the most important parameters and makes the calcu-
lation process more easy. For example, tracking of a geostationary satellite in the
Earth-rotating equatorial coordinate system enables treating of any changes in the
coordinates as orbital disturbances that should be corrected by some on-board action.
On the other hand, tracking of an interplanetary probe in that coordinate system does
not have much sense. Therefore, the choice of the coordinate system depends mostly
on the orbit type and the type of results that are required. Generally, coordinate
systems can be classified according to several principles. The first one is based on the
position of the coordinate system center. In the case of Earth-orbiting spacecrafts,
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they can be divided into two groups: geocentric and spacecraft centered. Further-
more, geocentric coordinate systems can be inertial and non-inertial often connected
with the Earth rotation. The inertial coordinate systems are suitable for calculation
of an orbital maneuver while non-inertial coordinate systems are used for determina-
tion of the spacecraft position with respect to a ground site. Most commonly used
inertial geocentric coordinate systems are equatorial ones.

For the purpose of determining the satellite orbit the horizontal coordinate system
is most commonly used because any ground measurement of the position of a satellite
usually has azimuth, elevation and range as the output.

3. CHOICE OF THE MATHEMATICAL MODEL

The choice of an appropriate mathematical model depends on two things:

e accuracy level that is required,
e resource and time consuming limitations.

Depending on the accuracy level that is required, a number of important parameters
can be included in the model: atmospheric drag, solar pressure, Earth thermal radi-
ation pressure, gravitational anomalies, third body perturbations etc. On the other
hand, the choice of the mathematical model, is also influenced by the resource and
time consuming limitations. Nowadays, there is a lot of space missions that include
spacecrafts of very small and limited masses (femto satellites have only up to 100
grams) and every gram is very important and expensive. Time consuming problems
appear because there are many situations when it is necessary to make decisions very
fast and there is no much time for a lot of calculation. Therefore, in a particular case,
it is necessary to find an optimal relation between these two opposed conditions.

4. METHODS FOR ORBIT DETERMINATION

Two methods for orbit determination are presented here: least square orbit deter-
mination (LSQOD) and extended Kalman filter (EKF) (Vallado 2007). The main
difference between these two methods is the fact that LSQOD gives the orbit predic-
tion after evaluation of an entire group of measurements while the extended Kalman
filter gives the improved prediction after evaluation of every new measurement.

4. 1. LEAST SQUARES ORBIT DETERMINATION (LSQOD)

In the least squares method there are three quantities of interest:

e True value
e Measured value
e Estimated value

In mathematical notation

7 = [t1--¥n)T — measured y values
f(x) =[fi...fn]' — independent functions
v =[r;.2,)T — true x values
v =[vi..vy)]T  — measurement errors (1)
9 =[1.-¥n]T — estimated y values
e =l[er...en)T  — residual errors
& = [7..7,)T — estimated y values
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The goal of the least squares method is to find the minimum of the loss function

J=ele=[5— f(@)]"W[g— f(2)] (2)

where W is a weight matrix. The algorithm for orbit determination using least squares
method is shown in the figure bellow.
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Figure 1: LSQOD algorithm.

As you can see, there are two possible criteria for termination of the calculation.
The first one is when the convergence criterion is reached, so that Ax is small enough
to satisfy our starting condition, and the second one is when the previously specified
maximum number of iterations is reached.

4. 2. EXTENDED KALMAN FILTER (EKF)

The Kalman filter was introduced in 1960 by Rudolf E. Kalman. It is a set of math-
ematical equations that provide an efficient computational (recursive) means to es-
timate the state of a process, from a series of noisy measurements, in a way that
minimizes the mean squared error. The Kalman filter model assumes that the true
state at a time k is evolved from the state at (k — 1). This means that only the esti-
mated state from the previous time step and the current measurement are needed to
compute an estimate for the current state. In contrast to batch estimation techniques,
no history of observations and/or estimates are required.

The basic Kalman filter is limited to the assumption of linearity. However, most
non-trivial systems are non-linear. The non-linearity can be associated either with the
process model or with the observation model or with both. In the extended Kalman
filter, the state transition and observation models need not to be linear functions of
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the state, so the EKF is a non-linear version of the Kalman filter. In mathematical
notation

Model 2(t) = f(x(t),u(t)t) +G#)w(t),w(t) ~ N(0,Q(t))
U = h(zk) + vk, vk ~ N(O, Ry)
Initialize Z(ty) = Tp

Py = BE{&(to)i" (t,)}
Gain Ky = Pg_HkT(x;Z)[ k(@ )Py Hil (2)) + Ryl ™!
Hi(zy,) = (fTZ)j(t) (3)
Update & = 2 + Kk — h(3y)]
Py = [ - KuHi(#;))P,
Propagation z(t) = f(@(t),u(t),t)
Pt) = F(@),t)P{t)+ P FT(2(t),t) + G#)Q(1)GT
Fa)t) = <%>x(t)

The algorithm for orbit determination using the extended Kalman filter is shown
in Fig. 2.

Model of continual dynamical propagation

------------- Descrete measurements updated to epoch
v, lw(i ) ] ltk
~ Input from instruments _ pereenseneeeas . LI Output to
Ve > Updated :X, Position controler 3
& ». position ! model - T
& R H Ar
2}; .. .............. -
——— Updated : e
»: gain Ik
Pk— hssssssnnnnnnnn Fl
. R . | P
. X, — Updated P Covariance ; IE
: covariance : _»| model P [ o
Pk_ hessssssnnnnnns 4 T
L
|

Figure 2: EKF algorithm.

There are two parts of this algorithm. The first part represents discrete measure-
ments updated to the epoch and the second one represents the model of continual
dynamical propagation. After every new measurement, the new Kalman gain, up-
dated covariance and updated position are calculated.
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Table 1: Coordinates of the HST

urc | APl | E[°] | plkm]
10:42:00 | 140.50 | -37.07 | 8577.517
10:44:00 | 135.49 | -39.84 | 9016.998
10:46:00 | 130.53 | -42.58 | 9439.921
10:48:00 | 125.52 | -45.28 | 9840.469
10:50:00 | 120.39 | -47.91 | 10210.323
10:52:00 | 115.07 | -50.47 | 10563.606
10:54:00 | 109.46 | -52.93 | 10881.29
10:56:00 | 103.50 | -55.25 | 11167.061
10:58:00 | 97.11 | -57.41 | 11418.971
11:00:00 | 90.20 | 59.38 | 11636.214

Table 2: Convergence history for the LSQOD

Initial guess | 1. iteration | 2. iteration | 3. iteration
To 400 396.141 396.150 396.150
Yo -6400 -6409.396 -6409.368 -6409.368
Zo -2670 -2665.134 -2665.139 -2665.139
Zo 7.1 7.153 7.153 7.153
Yo 1.3 1.341 1.341 1.341
Zo -2.1 -2.128 -2.128 -2.128

We analyzed 10 sets of HST (Hubble Space Telescope) coordinates in order to com-
pare the initial conditions estimated by LSQOD and EKF. Since the main goal is to
compare these two methods, we have used the simplest mathematical model which
includes only the inverse square law in the equation of motion of the satellite.

The coordinates of HST are taken from www.n2yo.com and shown in Table 1.

In Table 2, a dramatic convergence of the LSQOD can be seen after just two

iterations.

Table 3 shows the most descriptive characteristics of the EKF where the estimation

5. COMPARISON OF THE METHODS

Table 3: Convergence history for the EKF

Initial guess 1 2 9 10
Zo 400 400 393.256 395.691 396.150
Yo -6400 -6400 | -6408.462 | -6409.284 | -6409.368
Zo -2670 -2670 | -2662.006 | -2664.563 | -2665.139
Zo 7.1 7.108 7.164 7.154 7.153
Yo 1.3 1.267 1.338 1.340 1.341
Zo -2.1 -2.071 -2.137 -2.129 -2.128
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of the initial conditions is improved after every new measurement, and after the 10th
measurement it reaches the same accuracy as LSQOD in 2 iterations.

The most important advantage of EKF against LSQOD is that EKF can use a
previous estimation to evaluate a new one for an extended number of observations,
while in LSQOD we must find the estimation again from the entire set of measure-
ments. In the case of on-board calculations on strongly weight limited satellites this
is of paramount importance.

6. CONCLUSIONS

As shown in the example above, in the case when it is necessary to have an improved
estimation after every new measurement, EKF is more suitable because it includes
significantly less calculations than LSQOD and thus, it is much faster and has lower
resource requirements.

It is important to say that both methods could have problems with numerical
stability. A lot of algorithms which include different types of matrix factorization are
developed for overcoming this problem. This can make the calculation process more
time consuming and thus, increase resource requirements. EKF is more sensitive to
this problem because its main advantage over LSQOD is its possibility to work fast
and with lower resource load.

Regarding all mentioned above, LSQOD is used for the determination of the passive
satellite orbits and for the estimation of the geodetic parameters from satellite orbits.
On the other hand, EKF is more suitable for real-time applications because of its
possibility of improving the estimation after every new measurement, in a very short
time and without need of evaluating all previous measurements. This fact makes it
a very useful mathematical tool for on-board calculation on strongly weight limited
satellites.
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