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Abstract. We consider the ablative Rayleigh-Taylor instability at a steady ablation front of
a finite thickness target. In the present work a more accurate prediction is obtained based on
the sharp boundary model (SBM). One the advantages of the simple model here presented is
that offers the possibility of analyzing the effect of finite target thickness, which is stabilizing
for long-wavelength modes. On the other hand, it shows that the cut-off wave number kc is
independent of target thickness.

1. INTRODUCTION

In Inertial Confinement Fusion (ICF), a cold target material is accelerated by a hot,
low density plasma (Lindl 1995). The surface (front ablation) between the heavy and
light materials is Rayleigh-Taylor (RT) unstable similar to the interface between two
fluids of constant densities ρ2 and ρ1 subject to a gravitational field ~g pointing toward
the lighter fluid ρ1 (Rayleigh 1883, Taylor 1950). The Rayleigh–Taylor instability
(RTI) in ICF is one of the principal physical processes inhibiting the achievement of
inertial fusion. In this work, the linear stability analysis of accelerated ICF targets is
carried out including the finite thickness effect.

2. LINEAR STABILITY ANALYSIS

In This section, we study the RTI in a finite thickness target. We consider the
following planar configuration: the heavier target material of constant density ρ2

(heavy-fluid region, −d < y < 0) is accelerated against the lighter blow-off plasma
of constant density ρ1 (blow-off region, y > 0). The acceleration ~g is pointing in the
y direction ~g = g ~uy. In order to determine the growth rate of unstable perturba-
tions, one needs to solve the hydrodynamic equations describing mass, momentum
and energy conservation. We use one-fluid equations in the frame moving with the
unperturbed ablation front (Piriz et al. 1997):
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Where we have assumed that the fluid is an ideal gas and ρ, ~v, and ε are, respec-
tively, the density, the velocity, and the specific internal energy of the fluid. Moreover,
p = (2/3) ρε is the fluid pressure, Q is the energy flux corresponding to a diffusive
process of transport, and κD = χεn is the thermal conductivity, where for electronic
heat conduction in laser fusion n=5/2. The stability of such an equilibrium is inves-
tigated by imposing a small perturbation of the interface between the two fluids in
the following form: ψ = ψo + δψ, where ψo is the unperturbed value and δψ << ψo

is a small perturbation δψ ≺ exp (γt + qy + ikx)); q represents the longitudinal wave
number and γ is the instability growth rate.

2. 1. RESULTS AND DISCUSSION

The growth rate of the ablative RT can be calculated using a sharp boundary model
(SBM). We perform a first-order perturbation expansion on the above equations.
After a tedious but simple algebra (see e.g. Piriz et al. 1997), we obtain the following
dispersion relation that includes the effect of finite shell in terms of the density jump
rD

γ2 +
kv2 [3 + coth (kd)]

rD + coth (kd)
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(
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2
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−AT

)[
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]
= 0

Where v2 is the fluid speed ahead the front (ablation speed) and AT is the Atwood
number: AT = 1−rD

1+rD

The former equation can be easily solved for obtaining the instability growth rate:
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We can also find the following analytical expression for the cut-off wave number
kc:

kcv2
2

g
=

(1− rD) rD

1 + rD

This one is exactly the result obtained for the semi-infinite target model: the cut-off
wave number is invariant to target thickness.

It may be interesting, from a qualitative point of view, taking the limit kd >> 1,
where, coth (kd) → 1. Our model reduces to semi-infinite target one, and the relation
dispersion from Piriz is recovered:
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By introducing a simple corona model based on diffusive process of energy trans-
port, the parameter rD as a function of the Froude number results (Piriz et al. 1997,
Betti et al. 1996):

rD =
(

4α
5Fr

) 2
5
, where α is the dimensionless parameter α = k v2

2

g . We can plot
the dispersion relations which are shown in figures 1-2, for Fr=5. The solid lines
plotted are the results that would be obtained with our model (finite thickness target);
dashed lines are the results from Piriz model (semi-infinite target). The dimensionless
parameter kd is varied as indicated in the figures for kd=1 and kd=2. The solid line
(figure 1) show a considerable reduction of the growth rate due to finite thickness
for long-wavelength perturbations. Also notice that the cut-off wave number is the
same in both models. Therefore, the finite thickness does not affect the cut-off wave
number.

Figure 1: Dimensionless normalized growth rate versus dimensionless normalized wave
number. Dashed line corresponds to the Piriz’s results; solid line corresponds to our
model. Finite-thickness corrections are most important for long-wavelength pertur-
bations.
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Figure 2: Dimensionless normalized growth rate versus dimensionless normalized wave
number. Dashed line corresponds to the Piriz’s results; solid line corresponds to our
model. For kd≥ 2 and Froude number Fr=5 there is an excellent agreement with
semi-infinite target model.

References

Betti, R., Goncharov, V., Mc-Crory, R., Sorotokin, P., Verdon, C.: 1996, Phys. Plasmas, 3,
1402.

Lindl, J.: 1995, Phys. Plasmas, 2, 3933.
Lord Rayleigh: 1883, Proc. London Math. Soc., 14, 170.
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