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Abstract. We present a new form of merit function which measures agreement between
a given data set and the model function with a particular choice of parameters. Proposed
merit function is functional compound of recently introduced Close Points Concept and
ordinary least-squares approach. Essentially it measures a density of ordinary least-squares
for an arbitrary data set. New merit function is insensitive on outlying points and can
be applied to data sets containing no more than few points. Specifics of the proposed
merit function, including scale independent behavior, are detailed in several examples. We
illustrate efficiency of the presented merit function on the common problem of finding the
base line of a spectrum. In particular, when the base line represents continuum radiation,
estimation of thermodynamic temperature is considered.

1. INTRODUCTION

The aim of the present paper is to put forward a simple and efficient alternative
method for robust estimation of a model function parameters, insensitive to outlying
points. Proposed method is suitable in general case, regardless to the number of
points in the data set.

2. MERIT FUNCTION

Let us consider a data set of xi’s and yi’s (i = 1, 2, ...n) and a family of model functions
y(x; a1, a2, ...am) depending on x and on the parameters a1, .., am = a, specifying a
particular model function from the family. We introduce the density of the least

squares Ds for a given data set s in the following way:

Ds(aols) =

∑

s

d 2
i

d k
max

. (1)

Here
∑

s

d 2
i =

n
∑

i=1

[yi − f(xi; aols)]
2 is the sum of squared deviations if the model

function is calculated with parameters a = aols obtained by ordinary least-squares
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(OLS) method. In other words
∑

s

d 2
i is the ordinary least-squares sum for a given

data set s. With dmax = |yj − f(xj , aols|max we denoted maximum deviation from
the model function achieved for some point j. dmax specifies width of the data set in
respect to the model function. Below we will give arguments that natural choice for
value of the exponent is k = 2.

Therefore, Eq. (1) defines generalized density, Ds, of the least-squares for a given
data set s. Let us consider a data set containing n points with one outlying point. It
is intuitively clear that quantity Ds for the whole data set will be less then Dss for
the corresponding subset with outlying point removed, because dmax in denominator
is significantly less if there is no outlying point. We will establish our merit function
relying on the following simple fact: if the data set s contains outlying points then
exists subset ss, with outlying points removed, for which density Dss is higher than
Ds. Our merit function results from the above analysis and has the following form:

χ = −Dss(aols) = −

∑

ss

d 2
i

d k
max

. (2)

In relation (2) we don’t seek parameters a which minimize value of χ. Instead, we
need to find subset ss for which density of the least-squares Dss is maximum. This
task can not be reduced to standard minimization problem.

We will propose a simple strategy to solve this problem: for a given data set or
subset we calculate the best fit model function according to OLS and locate a point
(or points) with dmax = |yj − f(xj , aols|max, subsequently removing this point. We
repeat the same procedure with remaining points, preserving initially obtained value
dmax, until all points with di ≥ dmax are not removed. Points eliminated applying
this procedure represent a layer of outer points or, simply, a layer. Now, starting
from a given data set s we can iteratively remove layer by layer obtaining sequence of
data subsets ss with appropriate Dss associated to each. We expect that for certain
subset, Dss will attain the maximum value. This subset we will call the best subset,
points belonging to the best subset we will call the close points while removed points
are distant points or outliers in respect to the given model function. The best fit
coefficients ab, together with corresponding errors ∆ab and width dbest

max ≡ db, one
can obtain by applying OLS again, to the close points only. Presented approach we
will call Close Points Concept Least-Squares (CPCLS) to emphasize the origin of the
merit function (2), (see Bukvić and Spasojević, 2005).

3. CALIBRATION PROCEDURE

Suppose that specific data set is given with really large number of points, n0, normally

distributed around value y = 0, i.e. n(y) ∼ n0 · exp(− y2

2σ2 ), where σ is a standard
deviation. For this particular distribution we don’t need to remove layer by layer,
we can directly calculate generalized density of the least-squares, Dss, for arbitrary
width d in respect to the model function y = 0:1

1We have omitted index max for width d of the data set.
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Dss = f

dk

where
f ∼ n0 ·

∫ d

0
y2n(y)dy.

Dss will have a maximum if ∂Dss/∂d = 0, or:

k =
f ′

f
d =

1√
π

exp
(

− d2

2σ2

) (

d2

σ2 − 1
)

+ 1
2 erf

′

(

d

σ
√

2

)

− 1√
2π

d
σ
· exp

(

− d2

2σ2

)

+ 1
2 erf

(

d

σ
√

2

) · d

σ
√

2
. (3)

Eq. (3)2 relates exponent k with a single variable d/σ. Note that set of normally dis-
tributed data has no distinct outlying points, instead we need to decide which points
will be considered as outlying/close points. It is common to accept as a boundary
value d = σ. Consequently, points with yi < σ will be considered as the close points
while points with yi > σ are outlying points. Inserting d = σ in Eq. (3) one can
obtain corresponding value of the exponent k, i.e. k ≈ 2.44.

Removing layer by layer from the initial data set, sooner or latter we will have
to deal with data subsets containing small number of points. Consider the following
example: data set of n + 1 points is given. n points belong to the same horizontal
straight line while one is out of the line. Our model function is a straight line also.
We immediately find that first layer contains outlying point. When we remove this
layer, n points remain laying on the same straight line. Note that our merit function
(2) is undetermined in that case. Both,

∑

di and dmax are equal to zero. However, it
should be underlined that our points are not exact, they are result of the measurement
performed with a limited accuracy. Therefore, our n points are not necessarily on the
same line and we must admit presence of some unknown sub distribution below the
resolution limit of measurement. For our purpose it is sufficient to characterize this
sub distribution with average deviation of data points from model function. Suppose
that average deviation d1 = d2 =, ..., = dn = dmax√

m
where m is a small number. It

follows that for remaining n points

Dss ≡ Dn =

nd2

max

m

dk
max

. (4)

It is obvious that choice k = 2 simplifies above relation and we obtain: Dn = n/m
where n is the number of points belonging to the straight line, while m is a subject
to choice. Note that in our example Dn+1 = (1+n)/n. Thus, a choice m = q ensures
that single outlying point will be recognized as an outlier if the number of points
belonging to the straight line satisfies n/q > (n+1)/n. Otherwise, the single outlying
point will be included in the set of n + 1 close points.

It is simple to show that k = 2 is the most suitable choice for arbitrary model
function. According to Eq. (3) it will introduce ∼ 1.4σ equivalent width of the best
subset if applied on a data set with large number of normally distributed points.

2Here, erf(x) ≡
2√
π

∫

x

0
exp (−t

2)dt is the standard error function, while its first derivative is

erf ′(x) = 2√
π

exp(−x2).
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Figure 1: (a) Typical spectrum base line and (b) continuum processed by CPCLS.

4. EXAMPLES

In Fig. 1a an artificially generated spectrum with three spectral lines is shown.
Magnitude of the applied Gaussian noise is σ = 0.04. Full line in Fig 1a represents
the best fit polynomial according to CPCLS. It is interesting to note that width of
the best subset db = 0.039 coincides well with the applied Gaussian noise. This value
can serve as a discrimination level, points with d < db are included in the noise while
the points with d > db are formally speaking outliers, in our case these points belong
to the spectral lines.

Finally we will consider the real world example, a high voltage pulsed discharge
spectrum obtained by miniature Ocean Optics spectrograph. Created argon plasma
is in a state close to the thermodynamic equilibrium, (see Djeniže and Bukvić, 2001)
generating spectrum with number of spectral lines and strong continuum. Appropriate
model function follows from the Planck’s law of black body radiation. Within this
simple example we will use Planck’s formula without any corrections in the following
way: I(λ, T ) = c1

λ5 · 1
exp ( hc

λkT
)−1

+ c2, where parameter c1 comprises all fundamental

constants present in Planck’s law, including unknown sensitivity of the spectrograph
while parameter c2 takes care of the instrumental offset. The third fit parameter, T ,
is thermodynamic temperature. Other symbols have their usual meaning. In Fig. 1b
we present the best fit Planck’s function according to the proposed methodology. The
estimated temperature is approximately 8200K.
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