Publ. Astron. Obs. Belgrade No. 54 (1996), 159 —~ 162  Contributed paper

ON THE MOTION IN THE SPHERICALLY SYMMETRIC
POTENTIAL FIELD

V. ZIVKOV and S. NINKOVIC
Astronomical Observatory, Volgina 7, 11050 Belgrade, Yugoslavia
E-mail vzivkov@aob.aob.bg.ac.yu
F-mail sninkovic@aob.aob.bg.ac.yu

Abstract. The authors discuss various types of dependence of orbital parameters in the
case of spherical symmetry. A particular example is given.

1. INTRODUCTION

It is very well known that in the case of a gravitational potential, possessing spherical
symmetry and explicitly time independent, the orbit of a test particle is planar and
limited in space (of course, if the given test particle is bound) so that the test particle
remains between two circles (pericentric and apocentric ones). Since in the general
case of a spherically symmetric and time independent potential the fifth integral of
motion is not isolating, the orbit will not be closed and its specific form depends on
the particular potential. A good review of the problem was given in the paper by
Kuzmin and Malasidze (1970).

As well known, the solving of any problem - the finding of the radius-time de-
pendence or that of the radius on the position angle - requires the solution of the
corresponding differential equations. As also well known, these differential equations
allow an analytical solution in a very limited number of cases, indeed (e. g. Kuzmin
Malasidze, 1970). To these cases one may add those containing elliptical integrals,
whereas in all other ones the only possibility is to look for a numerical solution. In
the present paper such a case is studied.

2. PROCEDURE AND RESULTS

The recent investigations have indicated a type of the spherically symmetric and
stationary gravitational potential which, though sufficiently simple in its form, allows
only numerical solutions for the equations of motion. This is the so-called logarithmic
potential

.
=31+ In-t) | u. = const , 1, = const . (1)
-

This potential type is applied as the most simple approximation to the (dark)
coronae of galaxies (e. g. Antonov et al., 1975). Therefore, it is suitable for application
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in cases when the galactocentric orbit of a globular cluster (especially if a distant,
metal-weak one is studied) should be determined. A typical case may be NGC 4147,
a distant and metal-weak globular cluster (according to Suntzeff et al., 1991 [Fe/H]
is -1.8; the distance will be commented on below). Its galactocentric motion for the
case of the potential given by (1) has been already studied (Brosche et al., 1985),
but only the parameters of the galactocentric orbit were given without calculating
the entire orbit. Such an approach does not allow to present all important quantities
characterising the orbit, for example the anomalistic and the sidereal periods were
not given by Brosche et al. (19853).

In the present case the input data (the constants in (1) and the initial conditions)
are the same as those used by Brosche et al. (1985). The only difference is that the
r; parameter of (1) is here explicitely specified - we assume 1, = 100 kpc. In our
opinion this value is quite correct taking into account the modern results of galactic
astronomy (e. g. Allen Martos, 1986). In the paper by Brosche et al. (1985) it was
tacitly assumed that the apogalactic distance of the cluster was smaller than 7.

Using these initial conditions we calculate the four independent isolated integrals
of motion. Though it is clear that their values must be the same as those given by
Brosche et al. (1985), for completeness we present the most important ones:

ro = 52.66kpc , T, = 12.35kpc

where, as usually, r, and rp mean the apo- and perigalactic distances, respectively.
As well known, they can be substituted by the mean galactocentric distance 7y, and
eccentricity e defined in the following way

Te T 7Tp
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2
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In the present case, as casy to see, we have

rm = 32.5kpc, € = 0.62 .

The next step is to calculate the successive cluster positions in the orbital plane.

For this purpose we solve the differential equation

dr g2
& B+ M) - M2

B+ - ]
following from the energy and angular-momentuim integrals (E and J are the specific
energy and angular momentum, respectively). The solving procedure is a numerical
one applying the Runge-Kutta-four (the description can be found in e. g. Radunovic,
1991). The integration step is constant and the single-step error is equal to O(h®)
where h is the step value.

In Fig. 1 we present the radius-time dependence from which there follows the value
of the anomalistic period. We obtain P, = 0.61 Gyr (1 Gyr = 10° years). Fig.2
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presents the radius dependence on the position angle ¢ in the orbital plane. It is also
a periodic function - the period is equal to 2 - where «a is the angular separation
between the perigalacticon and the next apogalacticon. As known from the literature,
« should be within the interval [7/2.7] (e. g. Kuzmin Malasidze, 1970). In our case
this is 2.14 rad. Finally Fig. 3 presents the orbit in the orbital plane given over a time
of several anomalistic periods.
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Fig. 1. Radius-time dependence (r in kpc, t in skpe/km).
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Fig. 2. Dependence of radius on position angle (7 in kpe, ¥ in rad).

The value for the sidercal period follows from those for the anomalistic one and «
according to the woll-known formula (e. g. Kuzmin Malasidze, 1970 - p. 194)

P.="P,.
o
As casily seen we obtain P = 0.89 Gyr.
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Fig. 3. Galactocentric orbit of NGC 4147 in the orbital plane (units kpc, peri- and

apogalactic circles are indicated).

3. DISCUSSION AND CONCLUSIONS

The orbit calculation for the globular cluster NGC'4147 assuming the simple spherical
symmetry for the galactic potential deserves attention though the calculations of its
galactocentric orbit for the case of a more realistic potential are available (e. g. Brosche
et al., 1991). This is due to the fact that the contribution of the dark corona to the
total galactic mass significantly exceeds those of other subsystems. On the other hand
a detailed orbit calculation, like the present one, enables to infer the ratios of different
orbit parameters (the two periods, angular separation a, etc.) for a particular case
of mass distribution (1) being an intermediate case between the homogeneous sphere
and point mass for which such ratios are very well known.
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