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TRAPPED WAVES IN OPEN STELLAR ATMOSPHERES
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Abstract. Linear MHD waves whose energy remains localized in an unbounded stellar
atmosphere are considered analytically and numerically. The atmosphere is modelled by a
stratified fully ionized plasma with both the gravity force and the gradient of the unperturbed
fluid quantities aligned along the vertical z— axis. The temperature is taken to have a linear
profile while the magnetic field is assumed horizontal and homogeneous. The atmosphere is
semi-infinite with a solid boundary at its bottom (the stellar photosphere). In such a system,
we are looking for solutions localized in space and that could be treated as eigenmodes.

1. INTRODUCTION

The problem of the mechanism responsible for the coronal non thermal heating has
initiated numerous investigations of wave properties in unhomogeneous plasma con-
figurations. In particular, the dissipative processes that occur near the resonant points
were the phase velocity of a propagating MHD wave matches one of the two possible
local modes related either to the Alfvén or to the slow (the cusp) continuum, were
extensively treated recently. Goossens et al. derived a method that enables a proper
treatment of the corresponding singularities in the ideal MHD equations by intro-
ducing a narrow dissipative layer around them and by obtaining the jump conditions
for the vertical component of the Lagrangian displacement &, and of the total pres-
sure perturbation P taken across the layer. This method has recently been applied to
calculations related to various wave problems in solar physics like those in sunspots,
filaments and magnetic arcades.

One of the current interests among the solar physicists in this field is the wave
coupling between the opaque and much denser interior of the sun and the waves that
can be eventually observed in the corona, i.e. its atmosphere. This coupling is also of
practical interest to diagnostic purposes and to the solar seismology in general.

In this paper. our main goal is to determine the existence the MHD eigenmodes
that one could expect in a typical model of a stellar atmosphere. Once knowing these
modes, it is possible to expand the problem to the resonant coupling of oscillations
in the solar interior to those in the corona.

A stellar atmosp.ere like the solar corona, for example, can be considered as a semi-
bounded plasma medium in which the lower boundary, located at the z = 0 plane,
borders on a much denser photospheric region. The system is in static equilibrium
with the gravity acting along the z-axis which makes our mode] inhomogeneous in z
only.
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We then consider a linear perturbation field that is harmonic both in time ¢ and in
the horizontal (z,y) plane with the boundary condition that the vertical Lagrangian
displacement & vanishes at z = 0. The photospheric level is thus assumed a solid
boundary as far as the coronal perturbations are concerned.

The starting idea regarding the model is that we consider two separate regions in
it. The lower part of the corona is characterized by a stratified plasma where the
gravitational effect and the prescribed temperature profile are the cause of the inho-
mogeneity. At certain height. the plasma temperature reaches a sufficiently high value
when the kinetic energy of particles can be taken much larger than the potential en-
ergy and, consequently, we neglect the gravity effects thereon. In this region, we also
assume that the temperature profile has reached its platau and that all physical quan-
tities of the medium are constant and continuous everywhere, including the transition
between the two domains. Their derivatives, however, may have a discontinuity at the
transitional point.

2. THE MODEL OF THE ATMOSPHERE

The unperturbed stellar atmosphere will be treated in Cartesian coordinates with the
vertical z— axis oriented along the gravity acceleration. The lower boundary of the
medium, located at the photospheric level z = 0, is considered fixed while there is no
upper boundary to the atmosphere.

The magnetic field is uniform and horizontal, i.e. By = (By,0,0) while the temper-
ature profile is prescribed by a profile linearly growing with 2:

To(z) = Too (1 + %) and By = const. (1)

The entire system is initially in magnetohydrostatic (MHS) equilibrium described
by the MHS equation

dpo d B%
Rt =0
dz  dz2uo T Pog

which, together with (1), yields the following distributions

po(2) = Poo
)™
Po RT,
po(2) = —"_zl'oﬁ'mo— where Ho = —=2, poo = pooRToo  (2)
(1+%)

for the pressure po and the density po respectively.
Finally, the expressions describing the z— dependencies of the characteristic MHD
wave speeds are

v (z) =v% (1 + %) where vy = vRToo0,
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for the speed of sound v, then

9 2 z\1+L/Hp 5 . B§
va(z) =v 1+ = where Vig =
42 = vho (1+7) o=
for the Alfvén speed v4 and
v3 (2)v3(2)
vh(z) = alelale) 3)

vi(2) +v2(2)

for the cusp (or the slow MHD mode) speed vr.

The linear temperature growth (1) can, in principle, be applied to the region be-
tween the photosphere and the lover corona only, say up to some z = Z. For physical
reasons, the medium will be assumed homogeneous and with negligible gravity effects
if z > Z, as mentioned before.

3. LINEAR PERTURBATION EQUATIONS

To investigate the dynamical properties of small perturbations applied to the con-
sidered atmosphere we solve the corresponding eigenvalue problem with prescribed
boundary conditions at z = 0 and the asymptotics of the solutions at z — +oo.

Starting from the standard linearized MHD equations that are first Fourier trans-
formed in time ¢ and in two horizontal coordinates x and y, one obtains the following
two coupled equations for the perturbations of the vertical component of the La-
grangian displacement . = £.(2;Q) (Q = {w, k,, k,}) and the total pressure pertur-
bation P = P(z;Q):

d dP
p% —cie.—cp,. DL e —cip (4)
dz dz
where
C1 = gpow? (w? — w?), Cs = (w? — wi)(W? = w?) - wgvikg
Or = pR(? = wB)[(? + 3)(w? — ) (&? — wh)
d
+9(v? +v})(w? - wr) == po + g%(w* - W),
D = pp(v? + v3)(w? — wi)(w? — wh),
and

wa =Vaks, ws=v54/k2+k2,  wr=vrk,

The Eqs (4) are singular at locations where the coefficient D vanishes, i.e. when
either of the two ccnditions

w=wp or w=w4a, (5)

also known as the cusp and the Alfvén resonance respectively, becomes satisfied.
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The presence of resonances (5) indicates the existence of wave transformation due
to the excitation of the local slow MHD mode resp. the Alfvén mode. This means
that the eigenmodes of the considered atmosphere will have a complex frequency
whose imaginary part, small by the assumption, arises from the energy transfer to
the two, locally excited, MHD modes. For this reason, such eigenmodes are also called
quasi-modes (Poeds, 1991; Tirry, 1996).

4. METHOD OF SOLVING AND CONCLUSIONS

The Egs (4) are being solved in two domains: numerically by applying the Runge-
Kutta method when z < Z and analytically for = > Z. They are not yet completed
and we shall here describe only the method of the procedure.

The calculations start at z = 0 by taking §&, = 0 and P = 1 as the boundary
condition and an arbitrary set of parameters Q. The resonant points, when encoun-
tered, are treated by appropriate jump conditions according to the theory developed
in details by Sakurai, Goossens, Hollweg and Ruderman (1991, 1995).

Reaching the boundary z = Z of the inhomogeneous region, the calculated values
of £.(Z;9) and P(Z;Q) should be matched to their analytical solutions from the
domain z > Z that have the form of evanescent waves ~ exp(—+z). Namely, since the
effects of the gravity are neglected in this region, we immediately obtain the following
expressions from Eqs (4):

CyP(Z;9Q) = Dr-(Z:Q) and k2D? = —CyCs (6)

with coefficients D, C, and Cs3 taken at z = Z+0 i.e. on the side where g = 0. Finally,
as both calculated quantities should be continuous at z = Z, they have to satisfy the
relation (6) too. However, this will happen only if the initial wave parameters Q are
properly chosen and in which case they represent a point of the eigenmode spectrum
for the considered model. Finding out these point is performed by an appropriate
computational code.
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