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Abstract. The final aim during the deciphering analysis of a recorded data set of time-
series observations is to extract the information in the best usable form to understand the
dynamical processes working in the background and generating the observable.

In simple cases a frequency decomposition is enough for this purpose but in more complex
situations we have to look for more sophisticated methods. A new possibility based on the
geometrical picture of phase-space reconstruction methods will also e drafted which can
give a more direct bridge between observations and the governing equations.

1. GENERAL FORM OF HARMONICALLY
PERTURBED TIME-SERIES

In the first approximation a linear description gives a good fit to the behavior of dy-
namical systems. According to this the time dependent variations may be considered
as harmonic ones and we can use the following mathematical model function

f@) =Za; *sin(w; *t + ;)

for the observed time series.

In weakly nonlinear systems where the parameters becomes time dependent we
can generally suppose their slow variation. Hence, we can use average values of them
for a bit of time interval but the decomposition requires a proper resolution in the
frequency domain which means observations long enough in time. However, the two
requirements mentioned before can not be satisfied at the same time because increas-
ing the continuous time interval of analysis, the using of quasi constant averages for
the parameters will lose its right.

So, in the case of closely spaced frequencies we have to apply another approach if
the time dependence is faster.

The time dependence of parameters may be described by a similar decomposition,
i.e.

a;(t) = Z Ajj *sin(ay; *t + 0’,'_1'),
j

w,-(t) = E B,'j * Sin(ﬂ,'j *t 4 x.-j),
J
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¢,’(t) = Z C,'j * sin('y,-_,- 1+ ¢:’j).
j

Of course, the frequencies and phases in these expressions are independent from
the basic ones. Inserting these terms into our mathematical model formula the full
expression will be

f&) =Y J#sin()_ . Jxt+ D).
1 j k 1

This form may be transformed into a simpler one (similar to the original expression)
using trivial trigonometric and analytical relations

f(t) = Z b,'JH * sin(Q,-jH * 1+ Tijkl)-
ijkl
The frequencies appeared in the above formula are linear combinations of the orig-
inal ones
Qijrr = Vi ¥wi +nij xoj +mie * B +ra*m

and the amplitudes and phases may also be expressed by the original values.

This means, however, that performing the usual Fourier analysis we can get a very
complicated and scrambled spectral distribution of the power. Even in the simplest
amplitude modulation case, the original form of the function is

f(t) = A*sin(Qxt + @) * sin(w *t + ¢),
and this may be transcribed into
f(t) = a1 *sin((w — Q) *t + ¢1) + az * sin((w + Q) * t + ¢2).

The original frequency disappear and we can detect power in the spectrum at two
non-physical frequencies. Of course, the physical interpretation would be completely
wrong if one identified these frequencies with real pulsation modes.

One has to note that phase and frequency modulations get similar splitting produc-
ing completly mixed power spectra. Nevertheless, we can see from this transformation
that the information about the time dependent parameters will be decoded into the
pattern of frequencies. Using long term observations we can (in principle) recognize
and separate the real frequencies from the detected ones.

2. ARMA PROCESSES AND PREDICTION

We can improve the resolution in frequency using autoregressive AR (or general
autoregressive-moving average ARMA) processes. The procedure is iterative and its
essence may be understand easily from a geometrical visualization which is equivalent
to the generally used one at identification of stochastic processes (see Box, 1971. and
Hannan, 1970.).

We consider a dynamical system with several degrees of freea>m but we measure
only one of the observables which may be even an integrated value, e.g. the total
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luminosity of a star. The observations distributed equidistantly form a well ordered
time series (mj, ma, ..., m;, ...) but we allow gaps in this data set.

This one dimensional observation represents the full underlying dynamical behavior
of the system and we can extract that information from it. The followings are based
on Takens embedding theorem and its generalizations.

. From the ordered set of the observations we can form a new set of M-dimensional
vectors

X' = (mt,mt—r, -n,mt—Mw),

where 7 means the time interval between two consecutive observa‘ions. We can visual-
ize these vectors as points of an M-dimensional space. Due to the .heorems mentioned
these points will draw up a differentiable manifold topologically equivalent to the orig-
inal phase-space attractor of the solution. (For example, in the case of a harmonic
oscillator measuring the elongation and constructing a 2-dimensional embedding the
reconstructed phase-space trajectory will be an ellipse.)

An autoregressive process is defined by

Xe=a1*xXi1+asxXi_ o+ ... +ay*x Xi_pm + B

The last term of this expression may also be considered as a prediction error if we
consider the right hand side as a prediction formula for X;. In this picture we can de-
scribe the AR definition as a linear transformation of the points in the M-dimensional
embedding space.

This transformation will drag the points of the reconstructed phase-space trajectory
starting from a given observation track. Fitting this dragging path to the reconstructed
one we can determine the parameters of the best approximating AR process. During
this fitting procedure we have to minimize the cumulative quadratic prediction error
for all tracks and data points.

In a second step we can use these parameters to mend the j;aps of observation.
(Considering the harmonic oscillator the observational tracks will draw up the different
segments of the ellipse according to the phase of observation. Using the similar flow
of nearby segments we can draw the missing parts of the reconstructed trajectory.) In
observational series mended this way can again be analyzed giving a better resolution.

In general we can determine only a local flow of the reconstructed phase-space
trajectory and predict forward or backward for a limited interval.

Nonlinear systems may be chaotic whith a diffuse power spectra. In spite of this,
the reconstructed phase-space trajectory will tend to fit a simple low dimensional
manifold, the attractor of the realized solution (Kollath, 1990). We can use the local
prediction methods described above in this case, too, but we can not decompose it to
several independent harmonic components of the variation.

3. FROM TOPOLOGY TO DYNAMICS

In this case the real information about the system is represented by the topological
structure of the attractor. However, if our embedding dimension is higher then three,
it is difficult or ambiguous (or impossible) task to guess its shepe. Hence, we have
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to use some algorithmic procedure for identification. The algebraic topology supplies
these tools in a ready form for us. These methods are widely used in other parts of
the physics, e.g. in solid state physics or particle physics.

The topological property of a manifold may be described by i1ts homology group.
(The topological features, e.g. twisting, connectedness or unconnectedness, etc., are
transformed in this way into an algebraic structure. A good introduction into these
technics is given by Nash, 1983). The so called ’exact sequences’ procedure gives a
direct way to determine the homology group of a given manifold.

There exists a one-to-one connection between the homology group of a manifold and
the cohomology group of differential forms defined on the manifold. These differential
forms correspond to our differential equations used in the every-day work.

Next steps of an algorithmic approach could be given as followings :

e draw the reconstructed phase-space trajectories with different imbedding dimen-
sions

determine the best dimension from these embeddings

extract the empirical attractor manifold

compute and represent the homology group of this manifold

map it to the dual cohomology group of differential forms

In this way we can get ’directly’ the governing equations from our observations.
The application of the procedure mentioned before to real anu noisy astrophysical
observations is in progress.
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