Publ. Obs. Astron. Belgrade No. 49 (1995), 151-157

ON THE GLOBAL REGULARIZING TRANSFORMATIONS OF
THE RESTRICTED THREE-BODY PROBLEM

B. ERDI

Department of Astronomy, Edtvés University
Budapest, Hungary

Abstract. The uniqueness of the general form ¢ = f(w) = [h(w) + h(w)™!] /4 of the
global regularizing transformations of the restricted three-body problem is shown.

1. INTRODUCTION

In the restricted problem of three bodies two bodies revolve around their center of
mass in circular orbits under the influence of their mutual gravitational attraction and
a third body, influenced by only the gravitational attraction of the other two bodies,
moves in the plane defined by the revolving bodies. It is assumed that the third body
has so small mass that it does not influence the motion of the cthers. All the three
bodies are considered as point masses. The problem is to find the motion of the third
body.

The equations of motion of the third body, in properly chosen units, in a barycentric
coordinate system which rotates uniformly together with the revolving bodies, are
(Szebehely, 1967) :

£—2y‘:QZ;

1
i+2¢=9Qy, (1)

where

1 l—p  p
Q=g [A-wri+prg] + ==+, 2)

n=V(e-p?+y?, rn=V(E+1-p?+y>

In Equations (1) z, y are the rectangular coordinates of the third body Ps (see Figure
1), the dots mean differentiation with respect to the time variable ¢ (which is actually
the mean anomaly of the revolving bodies, the primaries),  and y in the index mean
partial differentiation, p is the mass parameter (the mass of the smaller primary
divided by the total mass of the primaries), the body P; has mass 1—u and coordinates
(1,0), the body P, has mass u and coordinates (g —1,0), r; and r, are the distances
of P; from P; and P,.
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Fig. 1. Notations of the problem.
Equations (1) possess the well known Jacobian integral

#2+42=20-C, ®3)

where C is the Jacobian constant.

Equations (1) become singular at collisions of the third body with the primaries
when r; = 0 or 75 = 0. However, these singularities are not of essential character
and can be removed by regularizing transformations. An extended summary on the
problems and methods of regularization can be found in Hagihara (1975) and in
Szebehely (1967).

The regularizing transformations are conveniently written in complex variables.
Introducing z = z + iy (i = v/—1), Equations (1) can be written as

Z+ 2iz = grad,Q, (4)
where
M .00
grad,Q = r + 13—3;-.

By making use of the transformations

z = f(w), (5)
2

where w = u + iv, Equation (4) can be transformed into (Szebehely, 1967)

2

w”’ + 2i l% w’ = grad,, Q*. (7

Here the prime means differentiation with respect to the new time variable 7 and

Q~=‘df2(o_§->, ®)

dw
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where in Q

rn=lz—pl, ra=lz+1-pl.

Properly selecting the function f(w), the critical terms 1/7;, 1/r2 of the potential Q
can be made regular and thus Equation (7) also will be regular.
The Jacobian integral for Equation (7) is

lw'|? = 20" 9)

2. REGULARIZING TRANSFORMATIONS

Several regularizing transformations are known in the literature. The parabolic trans-
formation
z=w?, (10)

introduced by Levi-Civita (1904), can regularize a singularity at the origin of the
coordinate system. Thus, with a translation of the origin of the coordinate system to
either one of the primaries, the collision singularities can be regularized. Accordingly,

z=p+ w? (11)
will regularize the singularity at P; and
z=p—14w? (12)

will do that for the singularity at P,. These transformations are called local regular-
izations, since they can eliminate only one of the singularities.

There exist transformations which can remove the two singularities together. These
are called global regularizing transformations (although in a mathematical sense they
are local operations). It is convenient to write these transformations in a coordinate
system in which the two primaries are located symmetrically with respect to the
origin. The translation

1
q=Z+§—'[l (13)

shifts the origin into the midpoint of the primaries and they will be located at ¢ = :!:%.
Instead of Equation (4) we have

¢+ 2i¢ = grad Q (14)
with Q given by Equation (2), but

1 1
r1='q—§', "2=’l1+§|- (15)
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The transformations

¢ = f(w), (16)
2

transform Equation (14) into Equation (7).
The Thiele-Burrau transformation, introduced by Thiele (1895) for 4 = 0.5 and
generalized by Burrau (1906) for arbitrary p, can be given as

q= %cosw. 17

It is easy to see that in this case |df/dw|? = rir3, and thus in Equation (8) the two
critical terms are regularized together.
Birkhoff’s (1915) transformation can be expressed as

1

q:z(2w+2—tu—). (18)

In this case |df/dw|? = ryra/|w|?. This expression eliminates the singularities at P;
and P;, but introduces a new singularity, w = 0, in the transformed plane. However,
w = 0 corresponds to ¢ = oo and thus all points of the finite physical plane are
regularized by this transformation.

Birkhoff’s transformation can be generalized to (Deprit and Broucke, 1963; Aren-

storf, 1963)
1/, 1

This transformation is called Lemaitre’s transformation due to its relation to the
regularization of the general problem of three bodies by Lemaitre (1955). In this case
|df /dw|? = 4ryra/ |w]?.

There exist other generalizations as well. Wintner (1930) generalized Birkhoff’s
transformation and in the ‘midpoint’ coordinate system this can be expressed as

_ 1wt 3)" 4 (w—3)™

= ] 20
2wt j— (b o
where n is any positive integer.
Broucke (1965) generalized the Thiele-Burrau transformation to
1
¢ = 5 cosnw, (21)

and Birkhoff’s regularization to

1/, 1
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where n 1s any nonzero real number.
The global regularizing transformations (17)-(22) can be expressed in the general
form

q= f('w) S % [h(w) + ﬁ] 3 (23)

where h(w) = €', 2w, w?, and €"¥, w" for the Thiele-Burrau, the Birkhoff, the
Lemaitre and the two Broucke transformations, respectively, while in the case of
Wintner’s transformation

_(wt )"+ (w=3)"
Wt —w=d
One may ask, why Equation (23) is the general form for the global regularization.

Is not there any other form which together with the time transformation (6) results
in regularization?

3. UNIQUENESS OF THE GENERAL
FORM OF GLOBAL REGULARIZATION

To answer the above question we note that in order to eliminate the singularities at
ry = 0 and ro = 0 we must have

df
dw

2
= 7(11))(1"17’2)”. (24)

Then forming the product |df/dw|?Q, the terms 1/r; and 1/r; become regular. In
Equation (24) the function y(w) must be regular at the singularities. As to the expo-
nent n, it is necessary that n = 1, since n > 1 results in 2* = 0 at the singularities,
and from Equations (9) and (7) it follows that w' = 0, w” = 0 at the singularities.
That is, a steady-state solution is obtained in this case.

Thus the determining equation for the function f(w) from Equations (24), (15),
(16) is
af

y 1 1
2| ==+ (25)

With v = |a|?, this equation leads to

df_ g 1
w1

By integration we obtain

In(2f + V4f2 - 1) =,

where 8 = [ adw and the arbitrary constant may be set zero. Solving for f, we obtain

= (e” + e_ﬁ) (26)
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and with 8 = In h(w),

% [h(w) + ﬁ] . (23)

f=
Thus, Equation (23) represents the unique form for the global regularizing trans-
formations when the time transformation is given by Equation (6).
It also follows that

2
_ |8 _ | &
v=|g] = | (27)

The simplest form of Equation (26) is obtained for § = w or 8 = iw, in both
cases 7 = 1. Actually, § = 1w gives the Thiele-Burrau transformation, f = %cos w,
while # = w results in f = %cosh w. Both transformations, written explicitly in
the coordinates, offer similar formalism using elliptic coordinates. A similar kind of
transformation can be obtained with h = e** /¢, which results in f = %sin w, vy = 1.
All these transformations can be generalized to f = %cos nw (Broucke, 1965), f =
%cosh nw, f = %sin nw, ¥ = n?, where n is any nonzero real number.

Considering Equation (23), it is natural to look for the simplest form of the function
h(w) and thus one may take a linear function h(w) = aw + b, with a, b arbitrary
constants. Among these transformations the only one which leaves the primaries at
their places is obtained for a = 2, b = 0, and this is Birkhoff’s transformations.

Simple as it is but it seems so that Equation (25) is not written in the literature.
The use of the type of Equation (25) appears in more general problems. For example,
Giacaglia (1967) in order to regularize a four-body problem in which three primaries of
arbitrary masses revolve in circular orbits around their center of mass in the equilateral
equilibrium configuration and a body of infinitesimal mass moves in their field, studies
the equation (changing somewhat his notations)

2
L1 = tatw)Pls - 1l - s - £l

Mavraganis (1988) for the global regularization of the magnetic-binary problem solves

the equation
2

df
ol = r3r3.|hboz

For other examples in the more general case see Hagihara (1975).
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