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Abstract. The MHD wave behavior in the solar corona with magnetic field having the
shape of arcades is investigated. It is shown that a particular analytical solution to the
linearized MHD equations can be obtained for perturbations with short wavelengths in the
direction of the arcade tunnel.

Two possibilities are considered regarding the related wave frequency : the high frequency
domain yields MHD waves propagating along the tunnel of the arcade as a fast MHD mode
while the low frequencies produce two decoupled wave modes representing the Alfven and
the slow magnetoacoustic wave, both modified by the gravity and the profile of the magnetic
field. All these waves are stable, contrary to the case when the magnetic field is purely
horizontal and when the magnetic buoyancy instabilities can set in.

1. STATIONARY MAGNETIC ARCADE

Magnetic fields having the shape of arcades are commonly found in the solar corona.
They are usually considered as low plasma—g fields meaning that the magnetic pres-
sure significantly exceeds the thermal pressure of the ambient plasma. As the field
lines of a coronal arcade emerge from the much denser photosphere, it is obvious that
various photospheric processes will cause disturbances that can propagate further into
the corona and be responsible for coronal heating and other phenomena (Cadez et.al
1995a, 1995b). It is, therefore, of particular interest to investigate the behavior of such
perturbations which is being done either by numerical methods (Oliver et.al. 1993)
or analytically (Cadez et.al.1994).

In this paper, we shall restrict our attention to the behavior of the so called narrow
perturbations whose definition and properties are going to be given below.

Consider a magnetohydrostatic equilibrium of an ideal isothezmal plasma with a
magnetic arcade in a uniform gravity field along the vertical z—axis :

1 = = -
—v2Vpo + #—O(v x By) x By + pog =0 (1)
where v, = \/RTj is the isothermal (v = 1) speed of sound.
The magnetic field of the arcade has two components, both lying in the verti-

cal z,z-plane By = (Boz, 0, Bo.), they are independent of the remaining horizontal
y—coordinate and are given by the standard expressions :
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Bux(2,2) = Buw)cos (=) /%2, Bu(2,2) = ~Bow)sin () =+
AB AB

The quantity ¥(z, z) does not change along the field line and is known as flux function.
If Byo is independent of 4, the considered magnetic field becomes force-free and
potential.

The field intensity By = Boo(¥) exp(—z/AB), shows an exponential decrease with
the height z while the corresponding scale length Ap remains unspecified at the mo-
ment.

For further calculations, it is convenient to replace the pair of Cartesian coordinates
(x,z) by a new set 6 and ¥ in such a way that the new curvilinear coordinate lines
¥ = const. coincide with magnetic field lines while § = const. lines are orthogonal
to them. The y—coordinate remains unchanged and oriented horizontally, along the
tunnel of the arcade. Thus :

Y _ L z -z/AB 4 — z -z/AB —
E_COS(/\B)_COS</\B)C , s =sin by e , Y=y

The quantity L is used only to define the referent ¢ = 0 coordinate line and its
value can be chosen arbitrarily.
The standard vector field operators take now the following form :

lap. 10p. Bph 1[0 7]
P=hapt T Rat t gyt 2V ”_T[Q(hvaﬁ(hm] ¥

vy
Oy
for the gradient of a scalar p and for the divergence of a vector  respectively, and :
hé, hég éy
1 g o0 0
Vxi=—=| — = —=— 2
VTR 5y 0 By @)
hvy hvg vy

9 2 -1/2
for the curl of a vector ¢. Here h = e?/28 = [(;\%) + (cos :\!;_3_ - 7:%) }

The hydrostatic balance equation (1) can now be expressed in components which
gives :

2
BOO g In BQO =0 (3)

2 0 5 . 0
In(poh’) =0 and v2— In(poh®) + opohZ 30

o a9 * 0y

where § = gAp/v2.
According to the first equation in Egs.(3), the expression poh® depends only on the
variable ¥ while the second equation indicates the same property for pgh?. Therefore
6 = 2, meaning that Ap = 2\ with A = v?/g being the standard scale height of an
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isothermal and non magnetized atmosphere. However, in cases when Byy = const.
(a potential magnetic field) and/or BZ,/(uopoh?) > v? (the low plasma B medium),
the value of the parameter § remains arbitrary. In both cases, namely, the spatial
distribution of the plasma density does not affect the magnetic field distribution,
they are mutually independent and § = Ag/\ may have any value.

2. LINEARIZED EQUATIONS

To investigate the behavior of small amplitude isothermal perturbations of the de-
scribed equilibrium state, we start from the standard set of linearized MHD equa-
tions :

-

7] - OB I
aptl +V. (pov) = 6_t1 =V x (U X Bo), P1= ‘Ufpl,
v 1
poat Vp1+# (VXBQ)XBl+—(VXBl)XBo+p1g (4)

Since the basic state is stationary and does not depend on the variable y, any of the
perturbed quantities can be taken as a product of a harmonic function of both the time
variable ¢ and the spatial coordinate y, i.e. exp(—iwt + ikyy), and a (¢, §)—dependent
amplitude. In this case the Egs.(4) reduce to the following system of equations for
the perturbation amplitudes :

w2y, +v,,a;;: + iwv? (gg %*:—vzg%lnuin) =0 (5)
h2w2w+v%6;0‘:9 +iwvfivi%g = (6)

h?w?V, + A;ﬂ [;;(hv )] whv?k, 11 =0 (7
iwII:’e—v_;v—z’-‘-(?:Z-)-th) %%. (8)

Here v2 = v2v%/(v2 +v3%), V = 9/h and I is the total pressure perturbation normal-
ized to the local gas pressure of the unperturbed medium, i.e. Il = p;/(v2po) and
Prot = v2p1 + B1g Boo/(huo).

The obtained set of Eqs.(5)-(8) reduces to the result obtained by (Goedbloed, 1971)
for the 2D perturbations with ky, = 0 when the Alfven mode, propagating along the
tunnel of the arcade, was decoupled from the two remaining modes propagating in
the cross sectional plane of the arcade.

In our case, now, all three modes are coupled and an overall analysis of their
behavior, based upon the solution of Eqgs.(5)-(8), is rather complicated. However, it is
possible to examine a particular domain of these perturbations when they have very
short wavelengths along the y—direction, i.e. the case when k, takes comparatively
large values, contrary to the k, = 0 considered earlier (Goedbloed, 1971).
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3. NARROW PERTURBATIONS

The perturbations with large k, are of a narrow shape in the lateral y—direction

and will be referred to as narrow perturbations. In other words, we shall consider

narrow perturbations as those disturbances whose y—derivatives are much larger than

either their ¥— and #—derivatives or the corresponding derivatives of the basic state
\ ] 9

quantities. Symbolically :
0
5 5 ] i

As to the time derivatives, i.e. the perturbation frequency w, there are two possi-
bilities : the low frequency and the high frequency domains when the y—derivatives
are much larger and of the same order respectively as compared to the related time
derivatives. Symbolically this would be :

=5 >

1 0 w

i}

‘—6—3;| =ky > sl P = m——r the low frequency case (10)
9 1 i) w .

la—yl =ky ~ -7l Rl the high frequency case (11)

To see what this means, one can consider the typical coronal conditions when
va > vy and v4 ~ 10%m/s. In this case the low frequency condition (10) becomes

[

T w w 27
> > —

k bl
v Ay Vs +v4 V4 TUL

Consequently, the conditions (10) and (11) now relate the perturbation lateral
extend Ay to the oscillation time period 7 as follows :

A A
L gvg~10%m/s and X ~uvy~10%m/s
T T
for the low frequency and the high frequency cases, respectively.
The low frequency solutions. Consider the low frequency case first with orderings

given by (9) and (10). As the large wave number k, enters only the equations (7) and
(8), they can be expressed as follows :

_ 1 2,2 2_‘9_[
wIl = o, {’“” Vo +vagg [n et

_ 1 vf . c‘)Va 6V¢
Vv‘m[—“uzwz (‘“’“‘Fo“) a¢] 0

The Egs.(5)-(8) finally take a simple form :

62V¢, 2 BZVo 2 w2 _
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I=0 and V=0 (13)

where h(%,0) is given in (2).

According to (13), the considered low frequency narrow perturbations are in a total
pressure equilibrium and cause no fluid motions in the y—direction. In addition, it
can be easily shown from the condition V - Bi = 0, that the perturbed magnetic field
has no y—component either, i.e. that B;y = 0 in this case.

The equations (12) are now decoupled and contain no t—derivatives. The initial
system of four coupled partial differential equations is thus reduced to only two mu-
tually independent ordinary differential equations. The variable ¢ can be treated as a
parameter and, consequently, the solutions can be obtained for arbitrary Alfven speed
distributions v% () by integrating Eqgs.(12) over the variable 6 only.

Both Egs.(12) are of the same form and can be expressed as :

2y, 2
% I%Z-v =0, hee i=,0

where :

u= 4 = tan (_:c_) 0
AB Icos (—L—) L Ap

s/ s
242 22 2, .2
2 _ wiAB 2 _ wAE _ vi+vi(¥) 2.
a; = ——= and aj = = w ) 14
) B A1) Rl T ) (14)

The approximate solution of the above equation can be obtained by means of the
WKB method in the following form :

Vi= C("')V,-(H + C(')V,-(_), CcH) =) = const.

where the two linearly independent solutions, V,-(H and V‘-(_) , are given by :

V,~(+) — 0:1/2(1 + u?)Y/* cos {a; In [(1 +u?) /24 u] +a;ln 2} )

 TAG ai'l/z(l + u2)1/4 sin {a,' In [(l + 112)1/2 + u] +a;In 2} .

The above solution is valid provided the condition for the WKB approximation is
satisfied which, in this case, means that the following inequality holds :

|2 - |
4a?(1 + u?)
It can be easily shown that (15) is satisfied for any value of u i” the coefficient a; is

large enough : a; > 1/+/2. Since ay > ay according to definitions (14), this condition
becomes :

<1 (15)

a =27r/\3>> 1
w_‘rvA V2
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where 7 = 27 /w is the oscillation time period.

To estimate the condition (16) let us introduce some real values for the solar corona
by taking Ag = 120,000 km and vq = 10%m/s. In this case (16) requires 7 <
247/2 ~ 110s. or that oscillations with time period up to 1.5 min. can be treated by
the considered WKB method.

The high frequency solutions. In the case when the frequency w is taken suffi-
ciently large to make the terms with w? of the same order of magnitude as those with
Icz , the Eqgs.(5)-(8) reduce to a simple set of algebraic equations again :

2 2
h2w?V,, — hv?k,wll = 0, v’:—zv“‘hkyVy —wl=0 and Vy=Vp=0 (17)

s

As can be seen, the high frequency narrow perturbations induce fluid motions in
the y—direction only and also a varying total pressure. The resulting wave propagates
in the y—direction, according to the dispersion equation

2 w22 - k: =0
Vs + vA('/))
that follows from Eq.(17). This is the fast MHD mode with its phase velocity depend-
ing on the variable .

4. CONCLUSION

As can be seen from both solutions obtained in the low and in the high frequency
domain, the considered magnetic field configuration is stable with respect to the
narrow perturbations which is not the case when the field is purely horizontal (Gilman,
1970). The stability of a magnetic arcade is due to the addit'onal magnetic field
curvature stress that opposes the destabilizing action of the magnetic buoyancy.
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