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Abstract. We present in this paper a fully analytical theory of motion for the low lunar polar
orbiter, intended for the mission analysis i.e. for the preliminary study of the satellite orbit.
We first explain how in general one develops an analytic perturbation theory, and describe the
requirements to be met and choices to be done to build the theory and compute the solutions.

"hen we give the basic equations for the theory in question and discuss some particularities
2nd technicalities regarding the methods and procedures employed. The results achieved
wiih the current version of the theory (rms’s in semimajor axis, eccentricity and inclination
are & 13m, < 0.001 and < 0.001 rad, respectively, in the course of 6 months) are more
than enough for the present purpose. Finally, we briefly discuss the limitations of the theory,
and ways to improve it if and when the need arises.

1. BUILDING AN ANALYTICAL PERTURBATION THEORY

In order to build an analytical perturbation theory of motion of any natural or artificial
celestial body, one has to know precise answers to several apparently simple questions.
So, for example, it is necessary to know what kind of motion the theory is supposed
to describe, which part of the phase space of orbital elements will be covered, what
is the minimal/optimal dynamical model needed to meet the requirements on the
accuracy and the time stability of the solutions, what kinds of forces are involved,
which analytical methods best suite the purpose, etc. The success of any pertubation
theory critically depends on the right answers to the above questions (and many
other more specific and technical ones), and it is quite a complex task to develop and
correctly tune a theory which will perform in the best way, while still keeping the
effort and the time needed to complete and apply it within some reasonable limits.
We shall try to show in the following how we have fulfilled such a task in a particular
case of building the analytical theory of motion of a low-altitude, nearly-polar lunar
orbiter. The purpose of the theory is the mission analysis, i.e. the preliminary study of
the satellite orbit which must be at the same time suitable for the experiments to be
performed in the framework of the mission and such that the life-time of the satellite
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is long enough and manoeuvering as seldom and as little fuel-consuming as possible.
In a way, this theory bears some resemblance to the theory of computation of asteroid
proper elements (in particular from the viewpoints of basic analytical tools used to
construct the theory, and the forms of the solutions and procedures of their analysis),
so that one can also refer to it as “the theory of selenocentric proper elements”.

Let us first define our problem along the lines described above.

A spacecraft orbiting the Moon is subject to perturbation of its osculating two-
body orbital elements, due to the harmonics of the lunar gravity field, to the differen-
tial attraction from the Earth and from the Sun, to non gravitational perturbations,
and others. The effects of these perturbations belong to three main classes : very short
periodic (with periods of the order of the satellite orbital period, i.e. a few hours, or
less), medium periodic (with periods longer than one orbital period of the satellite,
but shorter than one lunar month), and long periodic. For the sake of simplicity, very
short and medium periodic perturbations will be collectively called short periodic.
The long term evolution of the orbit, in particular the time series of the periselenium
altitude which determines the safety of the mission, depends mostly on the long pe-
riodic effects. Thus a numerical computation of the orbit is extremely ineffective as
a tool for the study of the qualitative behaviour of the orbit. The computation of
a single orbit by brute force numerical integration is not a problem, but a system-
atic exploration of the phase space to define the safe region and the optimum orbit
maintenance strategy is almost impossible.

There are three types of elements involved : osculating, mean and proper. Oscu-
lating elements are the instantaneous ones; they can be expressed as a set of orbital
elements (e.g. keplerian), and usually they are obtained by a time independent coor-
dinate transformation from the state vector (cartesian position and velocity). Mean
elements are obtained from the osculating ones by removing all the perturbations
(due to the non spherically symmetric part of the gravity field of the Moon) with
short periods. As aforementioned, short periods are by definition shorter than one
lunar month, which is also one rotation period of the Moon. Proper elements are
obtained by removing from mean elements the long periodic perturbations. Proper
elements are therefore solution of an integrable problem, whose time evolution can be
computed analytically (and with a comparatively simple formula). However, it has to
be remembered that transformation of a non integrable problem into an integrable
one cannot be performed in an exact way, but only by neglecting some higher de-
gree and order terms; in practice, this means that the proper elements which should
be constant in the trivial dynamics, such as the proper eccentricity, are not exactly
constant when computed from a time series of state vectors. Following a procedure
well established for asteroid proper elements, we use the standard deviation of these
proper elements with respect to their long term mean as a measure of the accuracy
of the proper elements theory (see Milani and Knezevié, 1990, 1992, 1994).

Intrinsic to any analytic theory is the set of rules governing necessary truncations
of the gravity field potential, and of the order of theory in agreement with accuracy
requirements. In the particular case, the main choice to be done is the rule to be used
to truncate R, the potential of the lunar gravity field. For a low lunar orbiter, the
eccentricity can not be large, while the inclination can be large (and indeed we are

20



THEORY FOR LUNAR ORBITER

here interested mostly in polar orbits). Hence, we are using a rule based upon the
eccentricity, such that we truncate all the perturbations to degree 1 in eccentricity;
this requires to expand the perturbing function to degree 2 in eccentricity, since some
perturbations contain derivatives such as GR/0e. Note that we also perform some
truncation which takes into account that the orbit is nearly polar, that is cos I is
small.

A second truncation is with respect to the degree ! in the spherical harmonics ex-
pansion (see later). This is justified by the fact that the harmonic coefficients Cip,, Sim
are decreasing with [, roughly proportionally to 1/I2, i.e. according to the well known
Kaula’s (1966) rule. OQur theory has no a priori upper limit to I, but of course some
limitation has to be chosen to control the computational cost, and also to avoid nu-
merical instabilities. Moreover the actual values of the high degree and order harmonic
coefficients are highly uncertain, and there is no point in doing very long computations
based on unreliable input data.

The third truncation is a truncation to some order in the small parameters appear-
ing in the perturbations. For the computation of the short periodic perturbations, a
first order theory is accurate enough. On the contrary, for the long periodic pertur-
bations, if the accuracy required is very high and the time span is very long, some
terms belonging to the second order in the small parameters should be added. The
current version of our theory does not include these second order terms, also because
the uncertainty of the harmonic coefficients results in a larger error in the solution.

Finally, we should define our dynamical model (the current version of our theory
does not include the effects of the perturbations due to the Earth and to the Sun,
neither the non-gravitational effects), decide on the choice of variables (non-singular,
canonical) and perturbation methods (Lagrangian, Hamiltonian), coordinate system
(inertial, body-fixed), etc.

2. BASIC EQUATIONS
Let us quickly browse through the basic equations that serve to set up the problem.

2. 1. EQUATIONS OF MOTION

The potential of the lunar gravity field is given in terms of the development into
spherical harmonics (Kaula 1966) as a sum of the monopol term (potential of a sphere)
and the perturbation (accounting for all the deviations of a real body from a sphere) :

v=S" i r
r
GM +o00 Ry 1
R ey Z (T) Z Pirn(9) [Cim cos mA + Sy, sin m] (1)
=2 m=0

Since the I = 1 terms are removed by translation of the origin of the reference
system to the centre of mass of the Moon, the perturbing function R contains only
the terms of degree | > 2. The perturbing function can be expressed as a function
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of the usual keplerian orbital elements (a,e,I,Q,w,f) (semimajor axis, eccentricity,
inclination to the lunar equator, longitude of node, argument of periselenium, mean
anomaly), and expanded as follows :

R= E ZFlmp(I) Z Gipg(€)Simpe(w, £,2,0) (2

g m=0p=0 g=—00

GM IX (RM)
1=2

S - Cim €08 ¥impg + Sim 8in ¥impg (I-m even)

imps —Sim €08 ¥impg + Cim sin Wiy, (I-m odd)

Vimpg = (I = 2p)w + (I — 2p+ ¢)¢ + m(Q — 0)

where 8 is the phase of the lunar rotation, namely the angle between some body fixed
direction along the equator (Davies et al. 1992) and some inertial direction along
the equator; precession of the lunar pole and physical librations can be neglected.
The inclination functions Fimp and the eccentricity functions Gipq can be explicitly
computed.

We can now define very short periodic terms in R as those with | —2p+ ¢ # 0
(i.e., those containing the mean anomaly £); medium period terms are those with
l—2p+q=0but m # 0 (i.e. those containing m#@); long periodic terms have both
l—2p+ ¢ =0 and m = 0. We shall use the following notation :

R=R+R+R (3)

where R contains only the long periodic terms, R only the medium periodic terms, R
only the short periodic ones.

Thus we can formally define the mean elements by saying that they are such that
the equations of motion for them contain only the derivatives of R. The algorithm we
want to define contains two stages : first the short periodic perturbations (containing
the derivatives of R+ R) are removed, second we truncate R in such a way to obtain
an integrable system, which we can solve in closed form.

As already explained, the theory is to be used for the mission analysis of low lunar
polar orbiters. Low orbits imply low eccentricities, e.g. for an orbit with a mean
altitude of 100 Km eccentricities larger than about 0.06 result in crash against the
Moon in the periselenium. Low eccentricities, in turn, require using of the variables
which are not singular for e = 0. Therefore we switched to the nonsingular variables :

h = esinw; k=-ecosw (4)

For other elements such a switch was not necessary, and we eventually started with
Lagrangian equations of motion in mixed variables :
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da 2 6R

dt ~ nadx
dh_ 5 OR_, coll o
dt ~ na® Ok na’g 01

dk B OR . cotl OR

dt ~  na® Ok na’p oI

dI _ cotI9R 1 OR

dt  na’80w na®Bsinl 0Q

a2 1 OR

—_—=—_—— 5
dt ~ na®’@sinl 61 (5)

where 8 = /1 — €2

2.2. DYNAMICS OF THE MEAN ELEMENTS

Now let us start by discussing long periodic perturbations, that is the effect of the
perturbing potential R, and by ignoring R+ R; hence, we are considering the dynamics
in the phase space of the mean elements.

The perturbing potential R contains only the terms of the expansion (2) in which
{—2p+¢ = 0 and m = 0, therefore only the so called “zonal” harmonics of the gravity
field :

+00 1 !
R= GTM E (RTM) Cro Z Fiop(I)Gipg(€)Sq(w) (6)
1=2 : p=0

cos(—qw | even
S’(w)={sin((—:w)) ((1 odd))

q=2p—l

Let us next expand the eccentricity function in powers of eccentricity Gipq(e) =
gg,qe“' + g}pqelq|+2 + ..., where the upper index of g denotes merely that this is the
coefficient of the first (¢°), second (g'), etc. term in the development. The truncation
to degree 2 in eccentricity e (that is in A, k) implies that the value of the index ¢ must
be between —2 and +2; since in the long periodic terms ¢ = 2p — I, then for a given
value of [ there are only few possible values of p. For even | =25, p=s,5+ 1,5 — 1
are the only admissible values; for odd I = 2s + 1, p can only be s,s + 1. As a result
for each value of s there are only 5 terms to be computed. The final result can be
expressed by means of only four quantities A,C, D, W, each a function of a and of
the inclination I only :
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]
a a

R
A= (—M) C2:,0F2:,0 -(I)gz. 502

Q
II

2s-2
( ) Cas,0 Fz: 0,541(1)99, 4422+ Fas 00— 1(1)g3, 5 1,- ] 2

2s-1
= Z( ) Czs+1,0[F2a+1,o,.=(1)93.,+1,s,-1—F2:+1,o,s+1(1)93.,+1,,+1,1]

B disappearing since 8 & 1+ O(e?). The equations of motion (5) for the nonsingular
variables h, k, when truncated to degree 1, then become :

b _ A+ C)k—WE + O(h? + k?)
dk s
= —(A=C)h + Wh— D+ O(h? + ¥?) (7)

If R = R, the component of the angular momentum along the lunar polar axis is
an integral of motion : H = \/GMa(l — e?)cos I = const, thus a separate equation
of motion for I is not needed; the semimajor axis a is also constant, since the mean
anomaly £ does not appear in the potential. If the orbit is nearly polar, then the
changes in inclination are small : this can be deduced by differentiating the integral
H, from which we obtain, by using (5) :

dI cos | dh dk cos [
iy ( - kﬁ> — kD+O(h"’+lc2) (8)
While equation (8) is applicable for every inclination, if the orbit is nearly polar,
with cos I = O(e), then all the right hand side is O(e?) and can be neglected in our
truncation. Thus we can assume that the coefficients A,C, D, W in (7) are constant.
Equation (7), once O(e?) and O(e cos I) have been neglected, is a system of linear
differential equations with constant coefficients.
Geometrically, it is clear that (7) has a single equilibrium point for k = 0,h = hp
with :

D
e 9)
C—-A+W
Thus there is a particular solution of the long periodic equation which has constant
mean h and k; this frozen orbit has eccentricity er = |hr|. The existence of a frozen
orbit with nonzero eccentricity results from D # 0, that is from the presence of odd

hp =
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zonals, i.e. from the asymmetry between the northern and southern hemispheres of
the Moon. The other solutions describe ellipses in the mean h, k plane (see Figure 1).

We define the proper eccentricity ep as the length of the semiaxis of these ellipses
in the h direction. ep = 0 for the frozen orbit. The proper argument of perisele-
nium wp is the phase of the solution of the linear equation (7), thus it is ~within
our approximation- a linear function of time. The frequency A; cf wp is small, corre-
sponding to periods of a few years; for this reason the separation of the long periodic
perturbations from the short periodic ones is justified.

The proper inclination Ip is such that

cosIp =+/1—e2cosI (10)

Ip can be described as the value of Ip corresponding to the origin in the h, k plane
on the v/1 — e2 cos I = const surface, that is cos Ip is the minimum value compatible
with this integral. For the longitude of the node €2, starting from the usual Lagrange
equation :

dQ 1 OR

at nazﬂsinla_l D

and by the same method we obtain :

dQ
dt

and V and Z can be considered as constants by the same argument as above. In this

=V + Zh+ O(h? + k?) (12)

way we can derive a solution for the long periodic perturbations on €2, which revolves
with average frequency A, also very small.

2.3. DYNAMICS OF THE OSCULATING ELEMENTS

To build a theory of short periodic perturbations let us recall the distinction between
medium and very short period perturbatlons that is the splitting of the perturbing
potential R into three parts R = R+ R+ R.

Since the medium period perturbations on the eccentricity are much larger than
the very short periodic ones, let us first handle R.

2.3.1 Medium periodic perturbations
The medium period part of the perturbing function is :

k= E ZFI"‘P(I)GIPG(e)JImSImp(w Q, ()) (13)

a
m=1p=0

T
=2

where ¢ =1 —2p and m # 0 to isolate the medium periodic terms. The trigonometric
part is defined as follows :

CcOos

Simp = {sin [(=g)w + m(Q — 0) — 8ym] {l K m Z‘(Ii(:in (14)
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Polar orbit; contour of proper eccentricity
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Fig. 1. Contour curves of the proper eccentricity in the mean k, h plane. The solutions
of the long periodic perturbations equations move clockwise along these curves. When the
distance from the origin in this plane, that is the mean eccentricity, grows too much, hard
landing occurs. This plot is for a mean inclination of exactly 90° and for the Konopliv et al.
(1993) model of the lunar potential.

In these formulas the harmonic coefficients Cj,,,, Sin have been replaced by the cor-
responding amplitude and phase Ji,, bim

Jim =\/CE, + S2.; bim = arctan -glm (15)

To compute the medium period perturbations we use a canonical transformation
method. To do this, we need to adopt a canonical coordinate system which also
removes the e = 0 singularity (but not the I = 0 singularity); this is accomplished by
a small modification of the coordinate system introduced by Poincaré :
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(w ) (€ = V2L — 2G cosw )

¢ A=Cl+4w

49 > — ¢ “ A (16)
G 7=v2L - 2Gsinw
L L

\ H ) \ H J

where :

L = \/pa; G = y/pa(l — e2); H = \/pa(l —e?)cosI. (17)
The Hamilton function in these variables is :

FO&R L Hi0) = S0 + R (18)

where 6, the phase of the lunar rotation, is a known linear function of time :

df

Note again that for the medium period perturbations R does not depend on the
fast variable A (w being incorporated into &,7) :

. M - . dL
F(—,E,Q,L,n,H;0)=%+R+R; and E:O (20)

In order to remove terms with m@ we perform the canonical transformation :
F(¢&,Q,n, H;L,0) = F/(¢',Q',n/,H'; L) (21)

Notice that the variable L does not play any réle as a dynamical parameter and
does not need to be transformed; the purpose of the transformation is to eliminate
the dependency on 6, that is all the medium period terms from the Hamiltonian. This
transformation is performed by means of the generating function in mixed variables
q = (§,Q) being the coordinates, and p = (7, H) being the momenta :

S=5(q,p")=¢&n'+QH' + 5

31 = /Rdt (22)
so that :
a8,
= pl 4 22
pi - pg + 6q;
, 9%
= q, — —- 2
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We would like to stress that the need to use this method, rather than the sim-
pler non canonical perturbation theory, arises from the particular properties of the
problem. In the low altitude lunar satellite case, the medium period perturbations
on h,k are comparatively large with respect to the initial values of the same vari-
ables; actually, in many mission analysis simulations, the initial value is e = 0, that
is h = k = 0. Therefore it is not consistent to compute a first order perturbation by
setting the values of the variables h, k in the right hand side at their initial values,
otherwise most of the right hand side just disappears when initial e = 0. Truncation
to degree 1 in eccentricity can be performed consistently also with the non canonical
formalism, but truncation to order 1 in the perturbations to h, k result in an incon-
sistent approximation. We have therefore adopted a method which does not truncate
the transformation, but fully accounts for the implicit nature of the transformation
equations, without replacing old variables for the new ones in the right hand side.
In essence, since the equations are linearised, our method is a form of the Newton’s
method normally used to prove the results of the KAM (Kolmogorov, Arnold, Moser)
theory.

Having defined the formalism, the detailed computations are very similar to the
ones performed for the long periodic perturbations. The generating function S is
truncated to degree 2 in e, and again the number of terms is reduced to three for
each harmonic I, m with [ even, and two for each harmonic I, m with [ odd. Then the
derivatives of S; are computed with respect to the non singular variables A’ k and
transformed into the derivatives with respect to 7, £ by means of the equations :

05 _ 108, cotl0
on VL 6h VLg 01
_6& 1 8%, cot I 85,

Pt S Nttt 24
8¢ = VL ok *Vip ol )
Then we can switch back to the usual non singular variables h, k by using :
£ 3. _ N 3
k + O(e”); h=—+0(e) (25)

Vi VL

and the final transformation equations have the form :

A(Z):B(Z)+C (26)

which are implicit equations (because of the mixed variables appearing in the generat-
ing function Sj), but linear (because of the truncation to degree 1 in h, k). Therefore
they can be solved simply by :

()= o (2)+

The 2x2 matrices A, B have as entries linear combinations of even harmonic coeffi-
cients, while the vector C contains linear combinations of odd harmonics :
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A= ( 1+2: IZm =1 —myc2am[§ﬁ]s] \Ilz,’m 0)
Za =1 Zm-l —mu (AZ’ m C2-’.m i Wz‘:’") [—Slcr;s] Yosum 1
R A LT
0 1+ Es 1 Zm—l -—myC 2s,m [2?:] \I,z"'"

2s+1
C = (Z:—-l 211:+1 —my D23+1 m c:lsn] \I’23+1,m)

2s+1 1 - o8
23:1 Zm_l —mv D23+1 m sm] ‘I’2s+l,m

where (introducing again compact notation) :

R 2s-2
("a_) J23,mF2s,m,s(I)g%3,s,o2
R 25-2
C-{s,m =0 (T) J2s,m [F2a,m,s—1(1)gg,,,—1,_2 + F2s,m,s+l(1)gg,,,+1,2] 2
R 2s—-2
(—) J2s,m [FZs,m,s—l(I)gg,,,_l,_z - F2s,m,s+1(1)gg,,,+1’2] 2
2s—1
_‘) J25+1,m [F2s+1,m,s(1)9(2)s+1,s,—1 + F2-1+1.m.s+l(1)933+1,s+1,1]

_ R 2s—-1
D2s+l,m =0 (‘—> J2s+1,m [F2s+1,m,s(1)ggs+1,s,-1 o F23+1,m.3+1(I)ggs+l,s+l,1]
R

dF2.s,m,.s(I) 0

a dl 923,3,0

2s-2
WZs,m =0 <_) st’m cot ]
The medium periodic perturbations on H (hence I) and Q are computed directly
from :

B o

/
H= L8 EoK oH'

(28)
In this case we do not need, to the level of approximation we are using, to account for
the mixed variables appearing in S;, and therefore for the implicit nature of equations
(28), because our theory is meant to be used for mission analysis, thus the accuracy
in inclination does not need to be as high as in eccentricity (changes in sin of a
few 0.01 cannot result in hard landing). The theory could be improved by using the
same Newton’s method formalism —used for k, h’- also for the variables Q, H’, if this
is required.
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2.3.2 Very short periodic perturbations

The most important perturbations with a very short period are the ones on the
semimajor axis; on the semimajor axis there are perturbations neither with long nor
with medium periods. The very short periodic perturbations on h,k, I, are small
and therefore less important, but they can be accounted for by an analogous procedure
if the accuracy requirements are strict.

The relevant very short periodic part of the perturbing function can be expanded
as follows. Let us first introduce :

delmr

Otmr =TA+mM(Q—0)—bim; A=l4w;, r=1-2p+gq; 70

=rn—mv (29)

Then (always truncating at the same level of approximation) :

~ GM Ry’ Uyl 1 0 cos 2
B= 22 () 3 Fine(D) Y ohelim { o } Omr = qw) + O(e?)
1=2

< m=0p=0 g=-1
(30)

where the summation should be performed only for the terms with r =1 —2p+ ¢ # 0.
Then, by using the usual Lagrange equation for the semimajor axis :

1da 2 OR
adl ~nd OX L

the very short periodic perturbations can be directly computed.

3. RESULTS

In order to illustrate the behaviour of a low lunar polar orbit, we have plotted in Fig.
2 the time evolution (for about one lunar month) of the osculating values of non-
singular orbital elements h, k. All the three periodicities involved are clearly visible
in the plot : the very short period changes (of the amplitude of ~ 2 — 3 x 10~%) are
superimposed onto the medium period variations (amplitude =~ 5 x 10~2), while the
long period variation appears as an overall trend roughly in the direction upper left to
lower right corner of the plot. The data for this plot come from numerical integration
in which use was made of the GEODYNE software system, with Konopliv et al. (1993)
60 x 60 model of the lunar gravity field (R. Floberghagen, private communication).

In order to assess the accuracy, reliability and efficiency of the algorithm we de-
veloped on the basis of the described theory, we have performed a great number of
different tests. Here, however, we shall report only on two kinds of tests, those which
in the most straightforward and compact way show the quality of our results. The
first test consists of the computation of proper elements for each input record, con-
taining osculating elements output from the numerical integrator. The result of the
test can be assessed in the simplest way by computing the RMS of the deviations of
the proper elements, as computed, from their average value. Since a perfect proper
element should be exactly constant, this RMS measures the inaccuracy resulting from
the truncations and approximations performed in the computation.
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MORO osculatng/mean Ixs=4
0.004 T T T T T T

0.002

T

-0.002

-0.004

h = e sin(fomega)

-0.006

T

-0.008

-0 01 L 1 1 1 1 1
0 0.002 0.004 0006 0.008 0.01 0012 0.014
k = e cos(omega)

Fig. 2. Osculating h vs. k plane. Variations due to perturbations of three different peri-
odicities are clearly distinguished in the plot. Numerical integration from GEODYNE; time
span about one lunar month.

In Figure 3, we thus compare osculating and proper semimajor axis time variations;
in Figure 4, the corresponding variations of the inclination are given, while in Figure
5, the same is shown for the eccentricity. Numerical integrations used in these plots
are made with the USOC software system (G. Lecohier, private communication), and
pertains to a polar orbiter with a mean altitude of 100 Km, initial eccentricity 0.02
and initial w = 270°. The lunar gravity potential used was the Lemoine et al. (1994)
70x70 model, which includes the Clementine tracking data. Integration included only
the effects of the Moon (remember that our theory in the present version does not
include the other effects, in particular the Earth). The selenographic longitude of the
node corresponds to nearly 0° at date 2000/1/1/ 00 : 00: 00. This orbit ”decays”
after 275 days (perilune goes below 20 km).

Although there are still some unremoved oscillations of the proper values left (in
particular the trend of increase with time of the amplitude of proper eccentricity; see
later), the overall conclusion is that the results are very good. The proper semimajor
axis variations are astonishingly small (< 13 meters only), while the rms’s of both
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Fig. 3. Osculating (top), against proper (bottom) semimajor axis. The corresponding
RMS’s are given in the labels of y-axes; note the difference of the y-scales. Numerical inte-
gration from USOC, period 275 days.
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MORO initial Omega = 0 (simulation with Moon only)
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Fig. 4. The same as Figure 3, but for the inclination. Note that osculating values (top)
are given in terms of the tan I /2, while proper ones (bottom) are in terms of the inclination

itself.
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MORQO initial Omega = 0 (simulation with Moon only)
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Fig. 5. The same as Figure 3, but for the eccentricity. The trend of increase with time
of the amplitude of proper eccentricity is due to second order effects and/or to effects from
harmonics of degree higher than 20.

34



THEORY FOR LUNAR ORBITER

proper inclination (in radians) and (more important) of proper eccentricity are less
than 10~3, which is more than enough for the mission analysis purposes.

The second test is even more demanding : we have computed analytically a solution
for the same time span of the numerical test. What we do in fact is to compute the
proper elements for the initial instant of the numerical integration, propagate them
analytically for a span of time covered by integration, and recompute the osculating
values for these instants of time for which the values are sampled in the numerical
integration. Then we compute the difference between the analytical and the numerical
solution.

In Figures 6 and 7 differences of the analytically propagated and the osculating
values of h, k and tan I/2 are shown, for the same USOC integration decribed above
and lasting 275 days. Harmonics up to 20 x 20 are used in the computation, with
coefficients taken again from the lunar gravity field model by Lemoine et al. (1994).
The trend apparent in the differences of h,k is due to second order effects and/or
to effects from harmonics of degree higher than 20. However, for about 6 months
(more than enough with respect to typical duration of a mission) theory provides
solution at the entirely satisfactory 0.001 level of accuracy in eccentricity. Hence, one
can conclude that, although the analytical theory is not meant to provide precise
ephemerides of the satellite, but only to study the qualitative long term behaviour
of the orbit (e.g. for manoeuver planning purposes), this test shows its capability to
actually predict the orbit in a qualitatively correct way and even quantitatively with
a reasonable accuracy, more than presumably it is needed for the preliminary mission
analysis required in the mission definition phase.

4. LIMITATIONS OF THE CURRENT THEORY

Let us in conclusion briefly discuss limitations of the current theory. We have already
mentioned afore some open problems, which are responsible for the remaining errors
and uncertainties of the presently achievable results, but represent at the same time
the possibilities for future developments and improvement.

The theory described in this paper employes some assumptions and performs some
truncations and simplifications with respect to a complete problem. The choices we
have made correspond to the requirements arising from its use for the purpose of the
preliminary mission analysis of a low lunar polar orbiter. However, these assumptions
and simplifications ought to be explicitly stated, to be able to remove them if later the
need arises for a theory capable of higher accuracy and/or more general applicability.
In this section we list all these limitations, together with a few comments on what
should be done to remove each one of them.

As for the effects not included in the current version, perturbations by the Earth
are not accounted for, but are of a size relevant for a more accurate solution. Given
the theory available from Kaula (1962), we anticipate no special difficulty in including
these effects both in the long and in the short periodic perturbations. Gravitational
perturbations from the Sun are smaller (by a factor ~ 200) than those of the Earth,
therefore they will not be needed, unless an extremely accurate theory is required for
real time operations. On the contrary the effects of radiation pressure can be relevant,
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MORQO initial Omega = 0 (Moon only, Lemoine 70x70)
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Fig. 6. Differences of the analytically propagated values of h (top) and k (bottom) and
their counterparts coming from the numerical integration.
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MORQO initial Omega = 0 (Moon only, Lemoine 70x70)
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Fig. 7. The same as Figure 6, but for the tan I/2.

at least when the lunar satellite undergoes eclipses (Milani et al., 1987); in one of the
test we performed, the change in proper semimajor axis due to the long periodic
effects of radiation pressure accumulates to ~ 50 m. An analytic theory of radiation
pressure would be possible, but requires additional effort.

By using the semianalytical integration (that is, numerical integration of the analyt-
ical perturbation equations), and comparing it with the results of a purely analytical
propagation, we have been able to measure the size of the neglected second order
effects. This difference has a medium periodic component (mostly m = 1,2,3) and
a long periodic component, which accumulates to about 0.001 in h, k over 275 days.
This source of error was considered unimportant at this stage of development of mis-
sion analysis tools, because the uncertainty in the lunar potential results in a much
larger uncertainty in the long term behaviour. However, the inclusion of the main
second order long periodic effects is certainly a worthwhile upgrade of our theory,
which would become necessary when a better model of the lunar gravity field will be
available.

As pointed out in Section 2 (see comment with eq. (28)), we have chosen to replace
I' with I in the mixed variable generating function, when the perturbations on I and
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Q are computed. This results in lower accuracy with respect to the full solution of the
implicit equations, which was adopted for the h, k variables. This choice is justified
by the lower accuracy required in the inclination, with respect to the eccentricity, for
mission analysis purposes. This limitation could be removed by the use of the same
algorithm, namely one step of Newton’s method, to the whole set of four variables
h,k,AI AQ.

The current version of our theory is not suitable to compute the perturbations due
to very high harmonics, e.g. { > 40. Given the present state of the art for the lunar
potential models, in which the harmonics of such a high degree mostly reflect the a
priori constraints used in the collocation process, to compute the perturbations up
to such a high [ would be meaningless. However, when a reliable potential model will
be available, it will become necessary to ensure enough performance and numerical
stability even for high I. The main source of the loss of efficiency of our program for
growing [ is the enormous size of the files of coefficients of the inclination functions;
the number of records in these files grows like I%. The performance could be improved
by taking full advantage of the truncation in the harmonics of the mean anomaly (that
is by limiting the size of r = I — 2p + ¢). The loss of accuracy due to this truncation
is not very large, and mostly affects the semimajor axis. On the orher hand, the
numerical instability problems arise because the coefficients of the monomials in sin I
in Finp grow very fast with [; e.g. these coefficients become larger than the inverse of
the machine error for [ ~ 50. The resulting numerical instability could be avoided by
expanding Finp in a neighbourhood of I = 90°.

The precession of the lunar pole results in a drift of the inclination in the true of
date system (that is, with respect to the current lunar pole). After a few years, the
inclination appearing in the coefficients Fi,,(I) becomes noticeably different from
the one in the true of epoch system we are using, and this results in a degradation
of the solutions, because of a less accurate removal of medium periodic perturbations
(mostly m = 1). This could be improved, if the need arises for a longer time span to
be covered by mission analysis software, by explicitly accounting for this effect.

At the moment we are computing the very short periodic perturbations only for the
semimajor axis. The very short periodic perturbations on h, k are less than 0.0005,
thus their computation is not needed for the present requirements. However, the
theory is available and these terms can be easily added if the need arises. We do not
compute the perturbations on the mean anomaly, because we think that this element
is not really used at all in mission analysis; again, this computation could be done if
needed.

The approximation by which the coefficients of the long periodic equations (7) can
be considered constant is not consistent for non polar orbits; the changes are of the
order of ecos I, hence they are of the second order if cos I is of the order of e. The
very notion of a frozen orbit must be taken with some reserve for an orbit with low
inclination.

As a matter of principle, most of our theory could be applicable to satellites of
other bodies, including asteroids and comets. However, the modifications required are
far from trivial, and they depend essentially on the ratios between the orbital and the
rotation frequencies.
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