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Abstract. Energy spectra of photoelectrons produced in sequential two-photon ionization
of hydrogen by gaussian and half-gaussian laser pulses are studied using a three-level model
(1s, 2p, continuum). The spectra show an intensity dependent splitting of the resonant peak
and associated modulations. The splitting can be attributed to the existence of two dressed
states whose quasi-energies repel each other by the field-induced coupling. The modulations
can be explained by the interference of electron waves emitted at different times during the
pulse duration.

1. INTRODUCTION

We study the sequential two-photon ionization of the hydrogen atom by an intense
short laser pulse and analyze interference effects in the photoelectron energy spectrum
(PES). The atom, which was initially in its ground state (1s), is resonantly excited
into the intermediate 2p state by the absorption of a single photon of energy ω =
E2 − E1 = 3/8 a.u. and subsequently ionized by a second photon (see Fig. 1).

In order to determine the populations of atomic states during the action of the
laser pulse and after, and to obtain the PES, we calculate the evolution of atomic
state |ψ(t)⟩ by solving the time-dependent Schrödinger equation (in atomic units)

i
d

dt
|ψ(t)⟩ = H |ψ(t)⟩ (1)

with the initial condition |ψ(t0)⟩ = |1s⟩. The total Hamiltonian has the form H =
H0 +W , where H0 is the Hamiltonian of the field-free (bare) atom, while the term
W (t) describes the atom-field interaction. We consider a linearly polarized laser pulse
whose electric component, directed along the z-axis, reads

E(t) = E0 g(t) cosωt. (2)

E0g(t) is the time-dependent amplitude of the electric field strength, where g(t) is the
pulse envelope and ω is the carrier frequency of the pulse. Then the interaction term
in the dipole approximation has the form W (t) = zE(t), where z is the projection of
the electron-nucleus distance in the field direction.

2. THE THREE-LEVEL MODEL

2. 1. EQUATIONS FOR THE AMPLITUDES FOR POPULATION OF STATES

In the case of resonant excitation of an intermediate state (here 2p), the other excited
states are nonessential and at weak fields their role in the ionization process may
be neglected, i.e. the process may be adequately described within the three-level
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Figure 1: Energy level scheme of the hydrogen atom and the two-photon absorption
paths for transitions from the ground (1s) state to the final continuum states (εs and
εd) via one-photon resonant excitation of 2p state.

model (1s, 2p, continuum). Then, the atomic state at time t reads (Demekhin and
Cederbaum 2012)

|ψ(t)⟩ = aI(t)|I⟩+ aR(t)e
−iωt|R⟩+

∫
aε(t)e

−2iωt|Fε⟩dε, (3)

where aI(t), aR(t) and aε(t) are the time-dependent amplitudes for the population
of states |I⟩ ≡ |1s⟩ (initial), |R⟩ ≡ |2p⟩ (resonant) and |Fε⟩ (final), respectively. The
states |R⟩ and |Fε⟩ have been multiplied with the phase factors e−iωt and e−2iωt in
order to simplify the set of equations for the amplitudes.

By inserting Eq. (3) in the Schrödinger equation (1) and applying the rotating wave
approximation (Steck 2020) and the local approximation (Demekhin and Cederbaum
2011), one obtains the following set of equations for the amplitudes (Demekhin and
Cederbaum 2012)

iȧI =
1

2
D∗E0 g(t)aR(t),

iȧR =
1

2
DE0 g(t)aI(t) +

(
ER − i

2
Γg2(t)− ω

)
aR(t), (4)

iȧε =
1

2
dε E0 g(t)aR(t) + (Ip + ε− 2ω)aε(t),

where D = ⟨R|z|I⟩ and dε = ⟨Fε|z|R⟩ are the dipole transition matrix elements for
the excitation of the intermediate state and for its subsequent ionization, respectively.
Here we set the ground state energy to zero (EI = 0, as in Fig. 1). Then the energies
of the resonant and final (continuum) states are ER = Ip + E2 = 3/8 a.u. and
EF = Ip+ε, where Ip = 1/2 a.u. is the ionization potential of the hydrogen atom and
ε is the kinetic energy of photoelectrons. The resonant value of ε is ε0 = 2ω− Ip (see

Fig. 1). Finally, Γ = 2π |dε0/E02|
2
is the ionization rate of the intermediate resonant

state |R⟩. The imaginary term − i
2 Γg

2(t) describes the losses of the population of the
intermediate state by the ionization into all final electron continuum states |Fε⟩.
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2. 2. DRESSED STATES AND THE ENERGY SPLITTING

The resonantly coupled dynamics of states |I⟩ and |R⟩ in the first two of Eqs. (4) is
governed by the 2× 2 Hamiltonian

H =

(
0 1

2Ω
∗
0g(t)

1
2 Ω0g(t) − i

2Γg
2(t)

)
, (5)

where Ω0 = DE0 is the frequency of Rabi flopping between populations of the coupled
states at the peak value of laser intensity. By solving the eigenvalue problem of
Hamiltonian (5) we obtain two dressed states as superpositions |±⟩ ≈ (|I⟩ ± |R⟩)/

√
2

and the corresponding complex eigenenergies E±(t)≈± 1
2Ω0 g(t)− i

4Γg
2(t). Due to the

imaginary parts of E±, dressed states |±⟩ are decaying, i.e. they are two decoupled
resonances. The real parts of E− and E+ move apart as the pulse arrives, and towards
each other as the pulse expires, estimating the splitting of the resonant peak in the
PES ∆ε ∼ Ω0g0, where g0 is the maximum value of envelope g(t) (usually g0 = 1).

3. RESULTS

The evolution of the ground state of the hydrogen atom exposed to the laser pulse
of carrier frequency ω = ER = 3/8 a.u. = 10.2 eV has been calculated for two pulse

shapes: (a) the gaussian shape g(t) = e−t2/τ2

with τ = 30 fs and (b) the half-gaussian

shape g(t) = e−t2/τ2

H(t) with τ = 60 fs (H(t) is the Heaviside step function). The
computed dipole transition matrix elements for the excitation and ionization, used in
Eqs. (4), are D = 0.744936 a.u. and dε0 = 0.407759 a.u. Figure 2 shows the evolution
of populations of the ground (1s) and excited 2p state for the pulses of these two
shapes and peak intensity I0 = 1TW/cm2 (I0 = E2

0/(8πα), α = 1/137), while figure
3 shows the populations of these states as functions of I0 in the domain of 109-1013

W/cm2 after the pulses have expired. One can see that the latest populations for the
two pulses practically coincide.
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Figure 2: (a) Populations of the ground (1s) and the excited 2p state, calculated as
|aI(t)|2 and |aR(t)|2, respectively, at the sequential two-photon ionization of hydro-
gen by a gaussian laser pulse of 1TW/cm2 peak intensity, τ = 30 fs and the carrier
frequency ω = 10.2 eV which fits to the energy of 1s→ 2p transition. (b) The popu-
lations obtained using the half-gaussian pulse with τ = 60 fs and the same frequency
and intensity. The dashed lines represent the envelopes of the laser pulses.

Figure 4 shows the photoelectron energy spectra calculated for the two shapes of
the laser pulse and the peak intensities I0 marked in figure 3 by vertical lines. For
each value of I0 the spectra consist of the resonant peak whose splitting, according
to relation ∆ε ∼ Ω0g0, increases with the peak value of field strength E0 (∼

√
I0).
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Figure 3: Populations of the ground (1s) and excited 2p state of hydrogen as functions
of the laser peak intensity after the laser pulse has expired. The results obtained for
the gaussian and half-gaussian pulses of the same carrier frequency ω = 10.2 eV with
τ = 30 fs and τ = 60 fs, respectively, which practically coincide, are presented. The
vertical dashed lines indicate the peak intensities at which the atom manages to
complete an integer number of Rabi cycles during the pulse.
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Figure 4: Photoelectron energy spectra represented by distributions w(ε) = |aε(3τ)|2
calculated for the gaussian and half-gaussian laser pulses (orange/black lines) with
the peak intensities marked in Fig. 3 by vertical lines. Black dots mark the real parts
of E±(0), whose separation (≈ Ω0) estimates the splitting of the resonant peak.

Demekhin and Cederbaum (2012) analyzed the modulations in the PES obtained
for the photoionization with the gaussian pulse. They explained the occurrence of
modulations between the positions of E± resonances by the interference of two pho-
toelectron waves emitted with the same kinetic energy at two different times – at
time when the pulse is growing and at time when it decreases. Our calculations, how-
ever, show that similar modulations exist also in the case of photoionization with the
half-gaussian pulse, that has no growing part. Based on this, we conclude that the
modulations are due to the interference of electron waves emitted all the time during
the pulse duration, rather than at two specific times.
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