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Abstract. Computer vision is a subfield of artificial intelligence that deals with automated
detection and classification of objects from images, used in a variety of advanced applications,
from facial recognition to self-driving cars. While other machine learning methods have
gained a strong footing in astronomy over the last several years, computer vision is still a
relatively rare and novel approach. We have been experimenting with this technique in the
context of eclipsing binary stars, with the aim to automate the analysis of photometric time-
series data from ground- and space-based surveys. The current and future deluge of such
data requires the automation of as many tasks as possible, otherwise much of it will remain
unutilized. Computer vision might be used to estimate the stellar and orbital parameters
of eclipsing binaries based on the images of their light curves. As proof-of-concept, we have
already developed a computer vision system for automated recognition of light curves with
total eclipses, and demonstrated that a computer can perform this task as well or better
than humans.

1. INTRODUCTION

Close binaries, although well studied, are still at the forefront of astrophysics because
they allow us to determine the masses, sizes and temperatures of stars based on
relatively simple physics. In eclipsing systems, these parameters are traditionally
found by light curve modeling. This involves fitting synthetic light curves, generated
from a mathematical model parametrized directly by the orbital parameters of the
system and the stellar parameters of the components, to the observations. Several
such models are in use. The most popular is the so-called “WD Code” (see e.g.
Wilson et al. 2020 and the references within), but a quantity of excellent work has
also been done with the model developed within our institute, the “Djurasevic code”
(Djurašević 1992, Djurašević et al. 1998) which has recently been modernized for
automated applications (see e.g. Djurašević et al. 2016, Latković et al. 2019). This
is the model we use for the research reported here.

Finding accurate orbital and stellar parameters of an eclipsing binary from a model
is possible because they are encoded in the shape of the light curve. For example,
the widths and relative depths of eclipses are indicative of the temperatures and
sizes of the components, the amplitude of the light curve is related to the orbital
inclination, and so forth. However, a critical parameter, the mass ratio, typically
cannot be measured from photometry alone, and requires the construction of radial
velocity curves, which are in turn obtained from time-series spectroscopy. In the
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case of contact binaries, where the components are immersed in a stable, co-rotating
common envelope, spectroscopy can be skipped. The shape of the common envelope
is determined by a single equipotential Roche surface, which means the mass ratio is
strictly constrained by the size ratio, and the size ratio can be obtained from light
curve modeling—but only in the presence of a total eclipse (see the contribution of
Čeki et al. in these proceedings for a more substantial discussion).

With the work presented here, we aim to automate the selection of totally eclips-
ing contact binaries from vast light curve archives of ongoing and future ground- and
space-based surveys using a machine learning technique—computer vision. Automa-
tion of this and other tasks related to the modeling of close binaries is getting more
and more important as the amounts of underutilized observations grow. For exam-
ple, some 30 000 contact binaries were identified in the Catalina Real-Time Transient
Survey (CRTS) Variable Star Catalog (Drake et al. 2014); and more than 70 000
in the ASAS-SN Catalog of Variable Stars (Jayasinghe et al. 2020). These samples
are already too large to tackle “manually”, by traditional examination of individual
objects; and yet even larger ones are sure to follow from Gaia, LSST and so forth.

A human astronomer recognizes a total eclipse as a distinct, flat region inside the
light minimum by looking at a plot of the light curve. Computer vision encompasses
machine learning algorithms that essentially do the same: recognize objects in images.
In what follows, we describe the architecture, training and performance of a computer
vision system for detection of total eclipses in the light curves of contact binary stars.

2. COMPUTER VISION MODELS FOR AUTOMATED
RECOGNITION OF TOTAL ECLIPSES

Computer vision methods are usually based on convolutional neural networks, or
CNNs. A CNN reduces the information contained in a matrix of image pixels to a
numeric array that can be processed by an ordinary classification algorithm through a
series of convolutions with detection filters—low-dimension matrices trained to select
visual features such as vertical or horizontal edges, curves and so on.

Like other supervised machine learning algorithms, CNNs learn by processing large
numbers of labeled examples. In our case, that would be the images of light curves
with either partial or total eclipses. Unlike most other machine learning algorithms,
CNNs don’t need precalculated features to help them discriminate between objects
in images. If we wanted to apply an ordinary neural network to light curves as time
series, we would have to engineer the features ourselves. This was done in one of
the first applications of machine learning in astronomy, for automatic modeling of
thousands of eclipsing binaries observed by Kepler: the light curves were first fitted
by chain polynomials, and the coefficients of these polynomials were used as features
for the neural network (Prša et al. 2011). A CNN learns the features itself by finding
statistical patterns in the data.

The simplest of our CNN models has three convolutional layers that transform
input images of 32×32 pixels into 2×2×32 volumes, and eventually feature vectors
with 128 elements that are fed to a classification layer that resembles an ordinary
neural network. Increasingly complex models, with 4, 5 or 6 convolutions, are trained
to process larger images (up to 512×512 pixels), with full light curves or eclipse
cutouts.
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2. 1. GENERATED TRAINING DATA

For training, we use synthetic light curves created using the Djurasevic code. Some
examples are given in Fig. 1. We generate equal numbers of light curves with total
and partial eclipses. Labels for the generated images (whether the eclipse is total or
not) are assigned automatically based on the light contribution of the eclipsed star.
The model parameters for generating these light curves (orbital inclination, mass
ratio, the size of the primary star relative to orbit size, its effective temperature and
the parameters of a single spot) are drawn randomly from distributions derived using
a large sample of individually studied W UMa stars (see the contribution of Čeki et
al. in these proceedings).

We generate training images with three levels of noise: noiseless (similar to binned
Kepler light curves; see Fig. 1), moderate (representative of what we expect from
ground-based observations of individual objects) and noisy (similar to what we have
seen in the light curves from ASAS, OGLE and CRTS). The noise is drawn from a
normal distribution with the standard deviation approximately equal to 2 and 5% of
the light curve amplitude in the latter two cases, respectively.

2. 2. TEST DATA AND HUMAN PERFORMANCE

We also use synthetic light curves to validate the model performance by testing it on
labeled data that were not used for training, but we test the model on real observations
as well. However, here we face another problem: that of the reliability of human
classifications and in general, the availability of ground truth.

With generated data we have access to the fluxes of both stars and can determine
the true label beyond doubt. But even simulated total eclipses can be made to look
like partial ones in a noisy light curve or if there are too few points in the minimum
to make out its shape.

To our knowledge, human ability to recognize total eclipses has never been ques-
tioned or measured prior to this work. We measured it on synthetic data (for which
we could later look up the ground truth). The two of us (Č.A. and L.O.) looked
at randomized sets of 500 generated images in two sizes1 with all three noise levels,
and got the results summarized in Table 1. On average, we achieved 97% balanced
accuracy2 on noiseless examples, down to 85% on noisy examples. Meaning that, in
the presence of noise, we misclassified 15% of light curves.

Let us see how this compares to computer vision.

1This experiment was done in an early stage of the research and the images used for it are of
different sizes (250×250 and 350×175 pixels; see also Table 1) than those we currently use (32×32,
64×64, 128×128 pixels, 256×256 and 512×512 pixels). The 250×250 pixel images are not signifi-
cantly different from the 256×256 pixel or other square images. The 350×175 pixel images are twice
as wide as they are tall, which is helpful (for humans) when trying to determine the nature of the
eclipses, but has proven to have no notable effect on the performance of the machine learning method.
This is why we discontinued their use. The measurement of human performance with updated image
shapes and sizes (and hopefully with more human participants) is part of planned future work.

2Balanced accuracy is a performance metric often used instead of the ordinary accuracy (that
would be the ratio of correct classifications to the sample size) to account for the “class imbalance”
expected in observational data. Namely, there are far more light curves with partial than with total
eclipses. In the case of Kepler catalog, out of about 300 contact binary light curves, only around
30 (or 10%) show total eclipses (at least as far as we humans can tell). While not as severe as in
many other applications of machine learning, this imbalance can affect the performance of our eclipse
recognition system in ways we’re yet to quantify.
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Figure 1: Top – examples of generated light curves with different noise levels and
partial (panel A) or total eclipses (panel B). Bottom – examples of binned Kepler
light curves, again with partial (panel C, showing data for KIC 10074939) or total
eclipses (panel D, showing data for KIC 5022908). These examples are representative
of the largest input images (512×512 pixels) used for training and testing of the
computer vision algorithm. The vertical dashed lines indicate the phase range for
input images with eclipse cutouts (128×128 pixels and smaller).

2. 3. PERFORMANCE OF COMPUTER VISION

Fig. 2A shows how our models fared when evaluated with test data generated the same
way as training data. The colors represent different noise levels and the performance
obviously declines as the noise increases. The different line types represent images of
different sizes; increasing image size moderately improves performance. Finally, from
left to right is the size of the training set, starting at 500 and ending at 75 000 training
examples. Each set is divided equally between the two classes. The dotted black lines
mark the human performance levels from Table 1 for each noise level. Apparently, AI
can surpass humans with this task—at least with synthetic light curves.
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Table 1: Human performance

Noise level Image size Balanced accuracy
250x250 0.96
350x175 0.97

0.00 0.97
250x250 0.88
350x175 0.92

0.02 0.90
250x250 0.84
350x175 0.85

0.05 0.85

In Fig. 2B we see the same plot, but when the models are evaluated using binned
Kepler observations instead. The best models, trained with moderate noise, reach
just above 90% balanced accuracy and surpass human performance on noisy light
curves. The models trained on noisy data perform poorly, but this is expected, because
the training light curves generated with high noise are visually very different from
smoothed Kepler observations.
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Figure 2: Performance of computer vision in recognition of total and partial eclipses
when tested with generated data (panel A) and with binned observations from Kepler
(panel B). The horizontal dotted lines mark the human performance at different noise
levels (see Table 1).

3. CONCLUSIONS AND FUTURE WORK

The success of training a machine learning algorithm using simulated data depends
critically on the ability of the simulation to mimic real-life phenomena the algorithm
is intended to work with after training. In our case, great performance on generated
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light curves but significantly worse on real observations means that there’s a “data
mismatch”. To improve this situation, we might need to re-examine our assumptions
about the nature of the noise in the observations, and take into account the factual
class imbalance when creating simulated training sets.

There are also other datasets we can test our models on. The application on ASAS
data is already a work in progress. Preliminary tests indicate that models trained on
noisy generated data perform the best there, but overall, not as well as with Kepler.
Another venue is CRTS data, where Sun et al. (2020) have already identified 3000
totally eclipsing systems among the 30 000 light curves of contact binaries.

Once we’ve established the reliability of our computer vision system, it can be
applied to even larger, existing and future datasets, as a first step of a fully automated
analysis pipeline.
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