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Abstract. Here we discuss the interpretation of quasar spectral diversity by subjecting
quasars to non-linear treatment using a manifold learning technique called locally linear em-
bedding (LLE). We apply the LLE analysis to a sample of type 1 quasars, for which the
spectral features are taken from a Sloan Digital Sky Survey (SDSS) data catalog, which
counts a total of ∼14,600 low-redshift objects. When we have a large number of parameters
describing objects in question, LLE can be useful because it aims to find a low-dimensional
representation of the original data set while preserving the geometry of the local neighbor-
hoods within the data. We have shown that LLE can be used as a contextual tool in the
search for essential correlations in the spectral parameters of SDSS quasars.

1. INTRODUCTION

Quasars are extremely bright and compact energy sources located in the central re-
gions of some galaxies. Their extreme brightness is the result of the accretion of the
material onto a supermassive black hole (Salpeter 1964, Shakura & Sunyaev 1973).
This process creates a complex environment where the emission can be observed over
a wide range of frequencies (Netzer 2013). The presence of different relationships
between spectral parameters in different quasar populations originating from both
physical and orientation effects results in a staggering diversity in their spectra (e.g.,
Netzer 2015).

In order to study this diversity, we need relatively large number of high quality
spectra and appropriate methodology which can assist in finding the main trends in
the data. One such method is the principal component analysis (PCA), which belongs
to a family of linear dimensionality reduction methods. Identification of eigenvectors,
or most dominant relationships, and their association with a fractional contribution
to the data set’s total variance is an advantageous PCA property. Many authors have
utilized PCA to study quasar phenomenology, applying it to the measured spectral
parameters (Boroson & Green 1992, Grupe 2004, Grimes et al. 2004, Hamilton et al.
2008, Jankov & Ilić 2020a) or directly on spectra (Francis et al. 1992, Brotherton et
al. 1994, Shang et al. 2003, Yip et al. 2004, Ludwig et al. 2009).

One of the pioneering research papers that shed light on the complexity of the
quasar parameter space was done by Boroson & Green (1992) where they applied
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PCA to a sample of 87 low-redshift quasars from the Palomar–Green Bright Quasar
Survey (Schmidt & Green 1983). They have identified an anti-correlation between
peak flux of [O III] λ5007 Å and the equivalent width (EW) ratio of Fe II and broad
Hβ (RFeII) as the main trend in their sample (the first principal component or Eigen-
vector 1). The full width at half maximum (FWHM) of the broad Hβ was also found
to be well correlated with this component. The Eddington ratio was suspected as the
driving mechanism behind this trend, but more convincing arguments were provided
much later (Marziani et al. 2001, Boroson 2002, Shen & Ho 2014). Expanding fur-
ther on the PCA analysis of Boroson & Green and also on correlations that emerged
from ROSAT (e.g., Wang et al. 1996), Sulentic et al. (2000a) proposed an empirical
formalism, analogous to the Hertzsprung-Russell diagram for stars, which allows con-
textualization of quasar spectral diversity for type 1 sources. They have found that
quasars populate an elbow-shaped main sequence in the FWHM Hβ - RFeII plane
(E1 optical plane) driven by Eddington ratio convolved with the line of sight orienta-
tion. Using the main sequence, two main quasar populations (pop A and pop B) with
significantly different physical properties are identified (e.g. Sulentic et al. 2000a,b,
Sulentic et al. 2011, Marziani et al. 2018), as well as the highly accreting extreme
pop A (Marziani & Sulentic 2014).

All above correlations in quasars were based on PCA results, which is a linear
method, and its low dimensional projections cannot account for non-linear relation-
ships that may emerge in the complex real-world data sets, such as quasar spectral
data. Therefore, we select to utilize manifold learning (i.e., non-linear dimensionality
reduction) and analyze correlations revealed by newly obtained projections. All man-
ifold learning algorithms assume that real-world data sets lie on a low-dimensional
manifold embedded in the high-dimensional space. The goal is to unravel the manifold
and project it to a low-dimensional space while retaining the geometrical relationships
between data points as much as possible. There are several manifold learning algo-
rithms, but here we select to use locally linear embedding or LLE (Roweis & Saul
2000), since it preserves the geometry of the local neighbourhoods within the data,
while staying computationally inexpensive and having only two free parameters. It
also has a proven record of application in the astronomical context (e.g., Vanderplas
& Connolly 2009, Daniel et al. 2011, Matijevič et al. 2012).

Here we give preliminary results of the analysis of the application of the LLE
algorithm to a sample of low-redshift quasars. The paper is organized as follows: in
Sec.2 we briefly describe the data and the LLE method, in Sec. 3 we give the first
results, and in Sec.4 we outline our conclusions.

2. DATA AND METHOD

We use a sample of type 1 low-redshift (z < 0.35) quasars taken from the Sloan Digital
Sky Survey Data Release 7 quasar catalog with measured optical spectral properties
(Liu et al. 2019). The sample comprises of EW, FWHM and line luminosity (L) for
broad lines (Hαb and Hβb), EW and L for narrow lines (Hαn, Hβn, [O III]λ5007,
[O III]λ6300, [N II]λ6583, [S II]λλ6716, 6731), continuum luminosity at 5100Å (log
L5100), RFeII and luminosity of Fe IIλ4570. During the object selection process,
we only included objects with no null values for all previously mentioned spectral
parameters. As a result, the sample size was reduced from ∼14,600 down to 6236
objects. As LLE can be sensitive to outliers (Vanderplas & Connolly 2009), we made
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a choice to use density distribution in the E1 optical plane (FWHM Hβ - RFeII) to
locate and remove objects residing in the extremely low density regions. Although,
we do have a total of 23 input parameters, we have chosen this particular plane for its
proven high contribution to the total variance in quasar samples (Boroson & Green
1992, Sulentic et al. 2000a,b, Shen & Ho 2014). After the outlier removal, we were
left with a final sample of 6023 objects. We need also to select the number of nearest
neighbors (k) and the number of output dimensions (d) - two free parameters needed
by the algorithm, which was done as described in Jankov et al. (2020b).

3. RESULTS AND DISCUSSION

We apply the LLE algorithm (setting d = 3 and kopt = 16) to 6023 broad line quasars
described by 23 spectral parameters using the scikit-learn Python library (Pedregosa
et al. 2011), which results in three projections (Figure 1). We focus our attention to
the c2 − c3 projection (main projection, further in the text), where the two of three
identified branches are clearly distinguished (Figure 1 upper and lower left panel).
Locations of objects in the LLE projections are determined by their proximity in
the original 23-dimensional parameter space. Objects grouped in the projection have
similar spectral parameters and can be potentially described as a distinct quasar
population. Evidently, objects with different broad line structure, kinematics, and
spectral characteristics described by pop A, B, and xA (e.g. Marziani et al. 2018)
are clearly separated in two of three LLE projections, the main projection and c1− c3
(see bottom panels in Figure 1). The axes (components) of the projections have no
physical meaning (for details see Roweis & Saul, 2000). The main projection identifies
object’s progression along the N-branch (Narrow line branch) where many parameters
associated with narrow emission lines vary. The N-branch is orthogonal to a branch
identified as the quasar main sequence (defined as M-branch, Figure 1, bottom left).
To study the correlations along this track, bins of the same sizes are created, and
mean values of all input parameters are taken for each bin. Bins can be thought of as
counterparts to composite spectra. The potentially outlying objects populating low
density regions in the projection are eliminated (∼2% of the total sample).

Most prominent trends were spotted, namely the increase of narrow line EW
(Figure 2) and narrow line luminosity along the branch, but also the decrease in
continuum luminosity at 5100 Å and broad line luminosity (Figure 3). In addition
to bin edges, the upper panel of Figure 1 shows the smooth increase in EW of [O
III]λ5007, clearly indicating that the trend is indeed real. The N1 bin could contain
objects with a range of different luminosities originating from another branch that
hides behind our projection (Figure 3). This could produce higher average luminosity
in the first bin as some objects would actually be far away in the projected space, and
therefore have dissimilar properties in the obtained 3-dimensional LLE projection.
That branch is identified as the L-branch (or luminosity branch) and it can be seen
on the left side of c1−c2 and c1−c3 projections in Figure 1 (bottom middle and right
panels). Additional analysis of the L-branch is needed to understand the relationships
involving luminosities which is out of the scope of this contribution.
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Figure 1: Upper panel : The main LLE projection. Number of dimensions is reduced
from 23 down to three. This projection was chosen for analysis because of its clear
distinction of objects that populate two different branches. The N-branch (Narrow
line branch) is sampled by six equally sized bins. Axes are in arbitrary units and
correspond to second and third component of LLE decomposition. The colormap
indicates the gradient of log EW [O III] λ5007 in the projection. Bottom panels:
All three LLE projections. Populations xA, A and B are marked with blue, red and
green colors, respectively. Different branches are labeled by letters M (Main-sequence
branch), N (Narrow line branch) and L (Luminosity branch).
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Figure 2: Progression of EW values of [O III] λ5007, narrow Hα, [N II] λ6583, [S
II] λλ6716, 6731 and narrow Hβ indicated by diamonds, triangles, circles, squares
and reversed triangles, respectively. Symbols represent the mean values of log EW
for each bin. Bins are ordered according to their location on the projection: starting
from objects in bin N1 at the core of the projection and going towards the peak of
the branch populated by objects from bin N6. Symbols are connected by dashed lines
of different colors for clarity.
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Figure 3: Progression of luminosity of the continuum at 5100 Å (L5100), broad line
luminosity (Hα and Hβ) and the luminosity of FeII λ4570. Bins are ordered as
described in Figure 2.
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4. CONCLUSIONS

We have applied the LLE algorithm to a large sample from SDSS catalogue of quasar
spectral properties in order to study the quasar high-dimensional parameter space
(23 spectral parameters). We have found a low-dimensional projection which clearly
identifies three branches, and we discuss in more details the properties of the objects
along the branch of increasing narrow emission lines, i.e., the N-branch. The analysis
of bins along the N-branch shows the dominant trend producing the branch itself
- the variation of EW of all narrow lines from our sample indicating the presence
of a separate quasar population characterized by apparently strong narrow emission
lines (e.g., Ludwig et al. 2009). The continuum luminosity appears to decrease along
the branch, but this effect must be studied in tandem with other branches because
objects from those branches may contaminate the first bin. We conclude that manifold
learning techniques, LLE in particular, have proven to be immensely valuable tools
for the deep understanding of complex data sets such as quasar spectral data and it
may be proven even more useful if applied to ever more complex astronomical data
sets of the future.
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