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J. KUBÁT and B. KUBÁTOVÁ
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Abstract. Determination of mass-loss rates of massive stars is an important output of
massive star analysis, which influences our understanding of stellar evolution. Stellar mass-
loss rates are usually determined using wind models with a different level of sophistication.
Commonly used models are based on an assumption of spherical symmetry and solve the
NLTE radiative transfer consistently for a given density and velocity structure, which means
that the hydrodynamic structure is held fixed. Usually, an approximate dependence of
velocity on radius is being assumed (the so-called β-velocity law). Using a different approach,
mass-loss rates can be predicted by hydrodynamic models, which do not solve the radiative
transfer, but they describe the radiation force in a parametric way (using force multipliers).
The most sophisticated wind models do not use the simplifications of the β-velocity law and
the force multlipliers. Consistent NLTE wind models including both the wind dynamics and
NLTE radiative transfer can be calculated.

1. INTRODUCTION

The large luminosity, short life, and final supernova explosions of massive stars make
them an important source of heating and ionization of interstellar medium, as well
as they provide kinetic energy via their outflows. Their importance is not diminished
by the fact that they are rare, they form a small but important fraction of the stellar
population visible even at large distances.

The main task of the quantitative spectroscopy of massive stars is a determination
of the stellar mass M∗, stellar radius R∗, stellar luminosity L∗, chemical composition
(abundances αk for each element k) and of wind parameters, namely the terminal
wind velocity v∞ and mass-loss rate dM/dt = Ṁ for each studied star. The mass-
loss rate is of a particular importance. Besides its direct effect of lowering the stellar
mass, it is also an important input parameter for stellar evolution codes. It can not be
measured directly, its determination relies on wind models, which are briefly discussed
in this paper.

2. MASS-LOSS RATE DETERMINATION AND WIND MODELLING

Unlike terminal wind velocity (v∞) measurement, which is relatively straightforward
and can be done by direct measurement of the position of the blue edge of the P-Cygni
line profile (see, e.g. Lamers & Cassinelli, 1999), direct mass-loss rate determination
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is not possible. Wind mass-loss rate is being determined indirectly, by comparison
of model predicted spectra with observed ones. If the spectra match, then the mass-
loss rate used in calculation of the theoretical spectrum is attributed to the star.
However, since the problem is complicated, approximations have to be used in wind
model calculations and theoretical spectra predictions.

Because of high complexity of the problem, simplifying assumptions considered
as ‘standard’ ones are being used. The winds are assumed to be stationary and
spherically symmetric consisting of homogeneous spherical shells, which means that
1-D models are being solved. In addition, a core-halo approximation is often being
used. This means that the wind region is considered as a shell around a star with a
photospheric radiation as a lower boundary condition and with no back influence of
the wind region on the stellar photosphere. The inclusion of a quasi-hydrostatic lower
part of the model atmosphere improved the situation.

Wind models are calculated assuming basic stellar parameters (M∗, R∗, L∗, and
Z) with the final goal to predict emergent radiation and compare it with observations.
A 1-D spherically symmetric wind model can be considered as a dependence of a set
of wind describing structural quantities on the radial coordinate r. These involve
temperature T , mass density ρ, radial velocity v, atomic level populations (number
densities) ni (i stands for the level index), and the radiation field for each frequency,
represented here by its specific intensity I(ν). In some cases, some of the radius
dependences or additional parameters (e.g., Ṁ) are assumed in order to simplify and
speed up the process of model calculations. The final step of modelling is comparison
with observations. This can be done only by comparison of emergent radiation from
the model with observed radiation from the stellar source. If both match, the pa-
rameters used for calculation of a model, and both assumed and calculated structural
quantities are attributed to the stellar source.

Let us describe several options used in modelling winds and mass-loss rate deter-
mination. Note that the division presented here is rough and methods that do not
exactly fit to our classification categories may exist.

Formal solution of the radiative transfer equation. This is a solution of the radia-
tive transfer equation for given opacity end emissivity (see Hubeny & Mihalas 2015).
In the case of wind modelling it means that all structural quantities except the ra-
diation field are given (i.e. assumed). This implies that also the mass-loss rate is
given. The level populations are also given, either they are determined using a simple
nebular model (e.g. Kraus et al. 2000) or the local thermodynamic equilibrium (LTE)
is assumed. The latter assumption is used for calculation of the emergent radio flux
from the outermost parts stellar winds (Panagia & Felli 1975, Wright & Barlow 1975),
which can be then compared with radio observations to determine Ṁ .

In optically thin media, absorption is usually considered in a simplified manner or
is it neglected.

NLTE wind models. If the structure is given and LTE is not an acceptable as-
sumption (which is always in massive star winds), we have to solve for the level
populations, which have to be determined consistently with the radiation field. In
this case we assume T (r), ρ(r), and v(r) as given and seek solution for I(ν, r) and
ni(r) by simultaneous solution of the radiative transfer equation and kinetic equilib-
rium equations. This type of model is usually referred to as the NLTE line formation
problem.
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In a generalized NLTE line formation problem the mass density is not assumed
arbitrarily, but it is calculated from given v(r) and Ṁ using the continuity equation.
The velocity field is usually assumed in the form of a β-velocity law, which can be
written as (β is a free parameter)

v(r) = v∞

(
1 − R∗

r

)β
. (1)

This implies that v∞ has to be assumed as well. Then the equations of kinetic
equilibrium together with the radiative transfer equation (the above mentioned NLTE
line formation problem) have to be solved to determine the emergent radiation.

Alternatively also T (r) can be determined together with the solution of the NLTE
line formation problem by adding the equation of radiative equilibrium or the thermal
balance equation to the set of simultaneously solved equations.

Full radiation hydrodynamics (stationary) models. The ideal case for modelling
is to solve for all structural variables mentioned at the beginning of this section.
This means to solve the continuity equation, equation of motion, radiative transfer
equation, the kinetic (statistical) equilibrium equations, and the energy equation to
obtain the structure of the mass density ρ(r), velocity v(r), radiation field I(ν, r),
level populations ni(r), and temperature T (r), ideally simultaneously. To our knowl-
edge, there is currently no code which does such full solution without fixing any of
the structural variables. However, several codes use some simplifications or iterative
schemes to obtain the full stationary RHD solution, and are on their way towards the
full solution. A more detailed description of these models is in the Section 6.

Hydrodynamic wind models with a parametric radiation force. The last type of
models we mention here does not allow a direct comparison with observations, as
the radiation field is not an output of such models, rather it is used as an input to
calculate the radiation force necessary to drive the line driven wind. An option to
determine the radiation force in a parametric way is frequently used. This option
implicitly means that both the radiation field and level populations are assumed, and
the hydrodynamic equations (continuity equation, equation of motion, and sometimes
also the energy equation) are solved to detemine mass density and velocity (and
sometimes the temperature structure). These models are described in the Section 3.

3. HYDRODYNAMIC WIND MODELS

The task of hydrodynamic wind modelling is to obtain a solution of stationary hy-
drodynamic equations for given basic stellar parameters (M∗, R∗, L∗, and αk). Hy-
drodynamic models seek solution of the continuity equation (which determines the
mass-density ρ)

d
(
r2ρv

)
dr

= 0, (2)

equation of motion (which determines the radial velocity v)

ρv
dv

dr
= −dp

dr
− GM∗ρ

r2
+ grad (3)

(p is the gas pressure, G is the gravitational constant, and grad is the radiation force
density), and sometimes also the energy equation (which determines the temperature
T ). Alternatively, a prescribed T (r) or its constant value is used.
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The key quantity in hydrodynamic equations of a radiatively driven stellar wind
is the radiation force density. It is caused by radiation-matter interaction and it
accelerates the stellar wind. It is given by the integral (Hubeny & Mihalas, 2015,
Eq. 11.50)

~grad =
1

c

∫ ∞
0

dν

∮
dω ~n [χ(ν, ~n)I(ν, ~n) − η(ν, ~n)] . (4)

which clearly describes the fact that ~grad may be large if both opacity and radiation
flux are large. It can be split to the radiative force caused by radiation-matter in-
teraction in continuum transitions (ionization, free-free transitions, and continuum
scattering) ~grad,C, and to the radiative force caused by absorption and scattering in
spectral lines ~grad,L. The latter is calculated as a sum of the radiation force caused
by individual line transitions, ~grad,L =

∑
lines ~grad,l. Then

~grad = ~grad,C +
∑
lines

~grad,l. (5)

The detailed calculation of the line radiation force is quite time-consuming and com-
plicated, since the radiation force in each line depends on corresponding atomic level
populations, which have to be obtained by solution of kinetic equilibrium equations
for each element considered. This is why approximations are used. The most com-
mon approximation of the line radiation force (the so-called CAK approximation) was
introduced in first hydrodynamic wind models (Castor, Abbott, Klein 1975; Abbott
1982) and later modified by Gayley (1995). The radiation force in this approximation
is expressed with the help of parameters (also referred to as force multipliers) k (or Q),
α, and δ (for a more detailed description, see, e.g., Hubeny & Mihalas 2015, Section
20.3). These parameters offer a simple approximation of the radiation force. They
can be determined by detailed calculation of the line opacity (e.g., Abbott 1982).
This is usually done only for a restricted set of stellar parameters.

Using this simplified description of the influence of radiation on stellar wind, hydro-
dynamic wind codes calculate the model hydrodynamical structure (depth dependence
of structural variables on radius). As a part of the output, they also predict values of
v∞ and Ṁ . The latter quantity is usually referred to as the predicted mass-loss rate.
Hydrodynamic wind models do not offer emergent spectrum.

Hydrodynamic wind modelling was initiated by seminal works of Castor et al.
(1975), Abbott (1980), and Pauldrach et al. (1986). Later the stationary hydro-
dynamic codes gradually incorporated the radiative transfer solution to improve the
parametric treatment of the radiative force. However, parametric description of the
radiative force is still used in time dependent hydrodynamic simulations of stellar
winds (e.g. Owocki 2011, and references therein).

4. NLTE WIND MODELS

NLTE wind models assume the hydrodynamic wind velocity structure, which usually
has the form of the β-velocity law (1) for the radial velocity component. Note that
this law with β = 0.5 was derived by Chandrasekhar (1934) assuming that the wind
driving force was proportional to gravity. Knowing v(r), the mass density ρ(r) is
calculated from the continuity equation (2) using the assumed value of the mass-loss
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Figure 1: The scheme of stellar (M∗, R∗, L∗) and wind (v∞, Ṁ) parameters deter-
mination using independent NLTE wind models and hydrodynamic wind models.

rate Ṁ . Then the equations of radiative transfer and kinetic equilibrium are solved
simultaneously to obtain consistent values of level populations and radiation filed.
This solution can be accompanied with a solution of an energy equation (radiative
equilibrium or thermal balance) to determine temperature.

Typical representants of this modelling are codes PoWR (e.g. Hamann & Gräfener
2004), FASTWIND (e.g. Santolaya-Rey et al. 1997, Puls et al. 2005), and CMFGEN

(e.g. Hillier & Miller 1998). In these codes, the dependence v(r) is assumed, either
in the form of the β-velocity law (1) or a more involved relation using two free β-
like parameters (the double-β velocity law). Also the stellar mass-loss rate Ṁ is
assumed. Then a full NLTE line formation problem is solved, which also predicts
the emergent radiation spectrum. Note that the back influence of radiation changes
on wind acceleration is typically not considered. The emergent spectrum is then
compared with observations. If both spectra match with sufficient accuracy, the
assumed value Ṁ is then referred to as the observed mass-loss rate.

5. OBSERVED AND PREDICTED MASS-LOSS RATES

The two ways of modelling mentioned in preceding sections (3 and 4) offer two values
of mass-loss rates, namely the “predicted mass-loss rate” and the “observed mass-loss
rate”. If both values match, it is usually considered as the match of theory and
observations. This situation is schematically depicted in the Fig. 1. Note that the
observed mass-loss rate is in fact based on a hydrodynamically simplified model, so
instead of match of observations and theory it is rather a match of the approximate
hydrodynamic model with exact radiative transfer and exact hydrodynamic model
with approximate radiative transfer.

6. FULL RADIATION HYDRODYNAMICS NLTE WIND MODELS

The drawbacks of the mass-loss rate determination mentioned in the preceding section
are removed when full radiative hydrodynamic NLTE models are used. This means
that for given M∗, L∗, R∗, Z a solution of the continuity equation, equation of motion,
energy equation, radiative transfer equation, and kinetic equilibrium equations is
performed to obtain I(ν, r), ni(r), ρ(r), v(r), and T (r). This full solution gives also
the values of Ṁ as the integral of the continuity equation and v∞ as the velocity at
the outermost point of the model.

In the modelling process several common additional assumptions used in hydro-
dynamic (Section 3) and NLTE (Section 4) wind models can be released, mainly the
parametric representation of the radiative force and the division of the atmosphere
model to a photosphere and wind (i.e., the core-halo approximaton).
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Line radiation force. The parametric description using force multipliers (the CAK
approximation) is not used any more. Instead, a detailed full description of the line
radiative force (5) is used, where contributions of all transitions are taken into account
separately. The need to calculate opacities for each transition causes the necessity to
calculate NLTE level populatons, since LTE is not applicable in stellar winds. This
is done using the kinetic equilibrium equations, which (neglecting time and advection
terms) can be expressed for the level i as

ni
∑
j

[Rij(I) + Cij ] =
∑
j

nj [Rji(I) + Cji]

where the dependence of radiative rates on radiation I is emphasized. Knowing
ni, the radiation force can be calculated. An equation (4) simplified for isotropic
emissivity (in the comoving frame) can be used. The pioneer in construction of this
type of models was A. Pauldrach, first steps were summarized in Pauldrach et al.
(1994). This work was extended in Pauldrach et al. (2001) and applied to wind
modeling of ζ Pup in Pauldrach et al. (2012). An independent modeling method that
includes consistent calculation of radiation force was developed by Krtička & Kubát
(2004), who used Sobolev approximation for line force calculation, later replaced by
CMF radiation transfer (Krtička & Kubát, 2010).

Photosphere. The core-halo approximation splits the expanding stellar atmo-
spheres to two parts, namely the hydrostatic photopshere and the wind above it.
Using this assumption the photospheric radiation is considered as a lower boundary
condition for the wind model. The influence of the wind part on the photosphere
(wind blanketing, Abbott & Hummer, 1985) is not taken into account. As a draw-
back, there is usually no smooth transition from the photosphere to the wind.

Relaxing the core-halo approximation means that the almost static photosphere
becomes an integral part of the model. The wind model starts already at large
optical depths where the diffusion approximation is valid and the transition from
the photosphere to the wind is smooth. First attempts to consistently remove the
artificial splitting were done in an approximate way by Gabler at al. (1989).

Global NLTE wind models. Krtička & Kubát (2010, 2017, 2018) presented a
method to solve all the above mentioned equations while relaxing the core-halo and
parameterized line force assumptions. The chemical composition of the wind is arbi-
trary and no force multipliers are used. In their code the radiation force is calculated
using actual level populations obtained by solution of kinetic equilibrium equations.
The radiation field, which enters these equations is calculated in a slightly simplified
way, the continuum radiative transfer is solved exactly (as it is practically the same
as in the static case) and the line transfer is solved using the Sobolev approxima-
tion. The line radiation force is calculated using the radiation field obtained by a
CMF solution of the radiative transfer, which improves the previously used Sobolev
radiative transfer solution. The photosphere-wind transition is smooth. Application
of the global wind models to stars from our Galaxy (Krtička & Kubát, 2017) and
Magellanic Clouds (Krtička & Kubát, 2018) showed that the mass-loss rates obtained
using global models are lower than the commonly used values of Vink et al. (2001).
The latter were obtained using a detailed Monte Carlo evaluation of the driving force
for given v(r).
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Figure 2: The scheme of stellar (M∗, R∗, L∗) and wind (v∞, Ṁ) parameters deter-
mination using full radiative hydrodynamic NLTE wind models.

Recently, NLTE wind modeling codes mentioned in the section 4 were also im-
proved to include hydrodynamic solutions as a part of modelling (e.g. PoWR, Gräfener
& Hamann, 2005; Sander et al., 2017; FASTWIND, Sundqvist et al., 2019).

Improved velocity law. An important aspect of the velocity structure obtained
from the full radiation hydrodynamic NLTE wind model is that it differs from the
commonly used β-velocity law (1). A more reliable analytical description of the veloc-

ity structure can be obtained using the polynomial expansion, v(r) =
∑3
i=0 ṽiP̃i(1 −

R∗/r), using Legendre polynomials P̃i and fitting coefficients ṽi (see Krtička & Kubát,
2011). A similar improved formula

v(r) =
2∑
i=1

ṽi

(
1 − γ

R∗
r

)i
, (6)

(ṽi and γ are fitting parameters) was used to fit the calculated model velocity structure
obtained by Krtička et al. (2021) for B supergiants.

Clumping. The big challenge in current methods for Ṁ determination are wind
inhomogeneities (clumping), which is a 3-D phenomenon. However, currently existing
unified (global) models are 1-D, and the only way to implement clumping in them
is to use simplifying assumptions or parameterized methods (Sundqvist & Puls 2018,
and references therein). The 3-D modelling of optically thick clumping was done only
for limited spectral regions, but its effect on mass-loss rate determination was clearly
shown (Šurlan et al. 2013).

7. SUMMARY AND CONCLUSIONS

The current commonly used method for mass-loss rate determination consists
of two steps. First the NLTE wind models with a prescribed (β) velocity law are
calculated and the “observed mass-loss rates” are determined. Then these values
are verified by hydrodynamic calculations to match the “predicted mass-loss rates”.
This two-step determination should be replaced by full radiation hydrodynamic NLTE
wind models, which offer the consistent mass-loss rate values directly (see Fig. 2).
These models represent an improvement in massive star analysis. They offer a tool
for more reliable modeling of atmospheres and winds of massive stars.
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