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Abstract. At the heart of the computation of model atmospheres there is the so-called
Stellar Atmosphere Problem, which consists of the self-consistent solution of the radiative
transfer equations under specific constraints. The amazing progresses achieved in the field
since the 1970s are due to both the dramatic increase of the computational facilities and
the development of effective numerical algorithms. The purpose of this review is to draw
attention to some methods, alternative to those that are mostly used nowadays such as the
ALI methods. The improvement of the latter has been brought about by mathematical
refinement, whereas the former are the result of a careful analysis of the physics of the
problem. Rather than attempting an exhaustive presentation of these novel methods, which
would be out of place here, the prime aim of this article is to sketch the main guidelines and
to stress that it is always the physics itself that dictated the most effective algorithm.

1. INTRODUCTION

The comparison between observed and synthetic spectra is the key to the diagnostics
of the physical and chemical properties of heavenly bodies. The computation of
the spectral distribution of the electromagnetic radiation emitted by astrophysical
objects requires the previous calculation of a model of their structure in terms of the
fundamental dynamical and thermodynamic variables. This is tantamount to solve
the Stellar Atmosphere Problem. As we will show, the latter is a non-local problem,
owing to the transport of energy through the structure, and it is non-linear because
of the coupling of all the relevant equations. To get rid of the second difficulty a
straightforward approach would be to make the original system of equations linear
and eventually convert it into a system of linear algebraical equations. Algorithms
based on the Gauss-Seidel method can be envisaged for the numerical solution of the
latter. In the practice of stellar atmosphere modelling several linearization methods
have been introduced since the 1960s 1.

1For a basic review see Mihalas, 1978, Ch. 7. A recent general review on numerical methods in
radiative transfer can be found in Atanacković, 2020, pp. 81-116.
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Radiant energy is always transported in stellar atmospheres. The formal solution
of the radiative transfer (RT) equation for the mean value of the specific intensity of
the radiation field is given by the so-called Λ-operator. Numerical methods, based
on the repeated application of the above operator (Λ-iteration methods) can be en-
visaged. However it is a matter of experience, justified by theoretical considerations,
that the Λ-iteration is very slow (to say nothing that it may converge to a false so-
lution). In order to speed up the convergence Accelerated Lambda Iteration (ALI)
methods have been sought. Each element of the matrix representative the Λ-operator
and its collocation has a precise physical meaning: it expresses the contribution to the
radiation field, at a given point inside the stellar atmosphere, originating at distant
points (non-local aspect of RT). The greater the optical path from the point source,
the more removed from the diagonal of the matrix is the corresponding element.
By taking this into account, ALI methods replace the original full matrix used in
the straightforward Λ-iteration with an approximate diagonal (or n-diagonal) matrix.
From the mathematical point of view ALI is the application of preconditioning to the
iterative solution of a linear system of equations 2. A review of ALI methods can be
found in Stellar Atmospheres: Beyond Classical Models (Crivellari et al. 1991).

The improved rate of convergence brought about by ALI methods is due to math-
ematical improvements. In contrast, we present here alternative sequential methods,
which have been designed taking into account the physics that governs the structure
of a stellar atmosphere. After mentioning the algorithmic representation of physical
systems in Sec. 2, we list the fundamental equations of the stellar atmosphere problem
in Sec. 3. Successively in Sec. 4 we show the way they are solved sequentially within
an iterative procedure, whose effectiveness is brought about by the use of iteration fac-
tors that we are going to discuss in some detail in Sec. 5. The seminal idea introduced
by Eduardo Simonneau (Simonneau and Crivellari, 1988; Simonneau and Atanack-
ović-Vukmanović, 1991) has been developed and applied by Olga Atanacković and
coworkers to several line transfer problems. Their main results are presented in Sec.
5. Future applications of the foregoing strategy to the modelling of the circumstellar
envelopes of AGB stars will be mentioned in Sec. 6.

2. ALGORITHMIC REPRESENTATION OF PHYSICAL SYSTEMS

This is not the place for a philosophical inquiry into the reality of the phenomeno-
logical world. All that we want here is to achieve an effective description of physical
systems; in other words a representation of their structure 3. As a necessary premise
let us first introduce two definitions:

(i) By physical system we mean any arbitrary set of objects that can be identified
and quantified by means of physical variables. To specify the state of the system
a proper set of variables must be chosen that is necessary and sufficient to include
the maximum available information required to determine both the properties of the
system at a given time and its future evolution.

(ii) We define the structure of a system as the organization of the parts into which
it can be ideally separated. The structure shall be shaped by the mutual interactions
among these components.

2See Atanacković, 2020, p. 112.
3For more details see Crivellari (2005).
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Following Bridgman’s operational perspective 4 we ideally dissect a physical sys-
tem into an ensemble of simpler interacting parts so that we can describe the global
behaviour of the system in terms of the laws governing its elementary components.
Such a process leads eventually to a model of the physical system that, for its own
analytical nature, can be easily translated into set of equations that constitute a
mathematical model. The exact solution of this system of equations is not possible in
general. The unavoidable numerical solution can be achieved via discretization; for
instance, by means of a discrete ordinates method. After that the original system of
equations has been replaced by the corresponding system of discrete equations, it is
matter to seek for a suitable numerical algorithm for their solution.

If each stage of the previous steps has been worked out properly, the structure
of the ultimate algorithmic model will be akin to that of the original model. It may
therefore be considered as an operative representation of the physical system under
study. Joseph Fourier claimed that the relations among the mathematical functions
of the physical variables and their derivatives are not just matter of calculus; they are
actually present in the natural phenomena themselves 5. According to this point of
view the general scheme, required to convert the mathematical model into numerical
information by means of algorithms, partakes of Nature, too. This somewhat naive
form of realism, together with Henri Poincarè’s statement 6 that ”La physique ne nous
donne pas seulement l’ocasión de résoudre des problèmes ... Elle nous fait presentir
la solution.” shall be our tenet in the quest for the optimum algorithm.

3. THE FUNDAMENTAL EQUATIONS OF THE STELLAR
ATMOSPHERE PROBLEM

We will go beyond Auer’s definition (Auer, 1971) and say that the Stellar Atmo-
sphere Problem consists in the solution of the equations that define the structure of a
stellar atmosphere under specific assumptions, i.e. constraints, initial and boundary
conditions, simplifying hypotheses.

3. 1. THE EQUATIONS

The fundamental equations are listed in Table 1. From the macroscopic standpoint
the constitutive equations link the variables P, ρ and v that shape the fluid dynamic
structure. They play a protagonist role in what we call the mechanical block. With
regard to the energetics of the system, the transport and energy equations determine
its internal energy and hence the thermal structure. They constitute our energy block,
whose protagonist variable is the temperature T .

The foregoing equations are the continuous mathematical representation of the
physics that shapes the structure of a stellar atmosphere, described by the values
adopted at each point by the fundamental physical variables. These values are deter-
mined by:

4P.W. Bridgman (1882 - 1961) American physicist, Nobel Prize for Physics in 1947. In order to
get rid of the ambiguities inherent in the definition of scientific ideas, he introduced an ’operational’
approach to scientific meaning, described in his book The Logic of Modern Physics (1927).
Operationalism consists in defining physical concepts in terms of the operations, both physical and
mental, involved in their measurement.

5J.-B. J. Fourier: 1831, Analyse des Équations Déterminées, (Paris: Firmin Didot fréres), p. 185.
6H. Poincarè: 1911, La valeur de la Science, (Paris: Flammarion), Ch. V, p. 153.
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Table 1: The fundamental equations that shape the structure of a stellar atmosphere.

Constitutive equations: conservation of mass and momentum
equation of motion

Equation of state: macroscopic LTE state of matter

Microscopical description of matter: atomic occupation numbers:
Boltzmann and Saha laws in LTE
statistical equilibrium equations in
non-LTE

Transport equations: radiative transfer
convective transport

Energy equations: conservation of energy both for matter
and the radiation field

• the relations among the variables;
• the constraints imposed by the external conditions;
• the internal energy of the system.

3. 2. A NON-LINEAR AND NON-LOCAL PROBLEM

The essential difficulty of the stellar atmosphere problem arises because all the phys-
ical variables interact throughout the whole atmosphere. The problem is therefore
strongly non-linear. Moreover, the local variation of a variable can have an impor-
tant effect on the properties at a great distance, giving rise to a non-local problem.
In principle it could be possible to overcome the former drawback via a proper lin-
earization technique that convert the original system of equations into the equivalent
system of linear algebraical equations, but in the practice such a direct approach is
often unfeasible. In the specific case of the stellar atmosphere problem the number
of discrete points that warrant an adequate coverage for the behaviour with depth
of the structure, as well as that required to cover the range of frequencies for radia-
tive transfer, turns out to be exceedingly high. The dimensions of the matrix of the
coefficients of the system may be therefore as large as 104. It is well known that
the numerical inversion of large or ill-conditioned matrices is a severe problem. In a
seminal paper on the numerical inversion of matrices of high order von Neumann and
Goldstine (1947) consider that, in order to be suitable for numerical computation,
transcendental operations and implicit definitions (e.g. the solution of algebraical
equations) must be replaced by algorithms involving only those elementary opera-
tions that computers can handle directly. Consequently, they state that, when ’exact’
(transcendental) arithmetic is replaced by ’approximate’ arithmetic, no computing
machine can perform all the operations faultlessly because of the finite number of
digits available.
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4. ITERATIVE SOLUTIONS OF THE STELLAR
ATMOSPHERE PROBLEM

Since the 1960’s a lot of iterative algorithms have been conceived in order to achieve
the numerical solution of the Stellar Atmosphere Problem. In the following we are
going to compare the widely used Complete Linearization Method with our own se-
quential approach, firstly devised by Eduardo Simonneau in the 1980’s.

4. 1. COMPLETE LINEARIZATION METHOD VS. ITERATIVE SEQUENTIAL APPROACH

The basic idea of the Complete Linearization Method (CLM) 7 is to write the system
of fundamental equations in terms of a starting approximate solution and to expand
linearly the relevant variables around the values given by the former (linear pertur-
bation). By replacing the original variables with their linear expansion one obtains
a system of linear algebraical equations in which the new unknowns are the pertur-
bations of the variables. This scheme is then iterated to convergence. At the basis
of the CLM is the assumption, explicitly stated by Mihalas, that no one variable is
more ’fundamental’ than any other, for they all interact mutually.

Against such an ’egalitarian’ treatment we shall remark that: (i) the different
processes are characterized by very different scales; (ii) the strength of the coupling
among the different phenomena may vary considerably case by case. A sequential
procedure may therefore be envisaged. According to the nature of their mutual in-
teractions, we individualize the different processes and group them into elementary
blocks such that each of the latter contains the statement of a self-consistent physical
problem. We may define these problems as ’atomic’, in the sense that the relevant
physical information cannot be further reduced. Afterwards the elementary blocks are
organized into a sequence in which the atomic problems are solved one by one. Data
coming from the solution of upstream blocks are of course required for the solution
of the one under consideration, which will constitute the input for the downstream
blocks. At the core of an effective strategy to solve the global problem is finding the
proper sequence of the elementary blocks.

The equations in Table 1 are listed according to a certain order that may be con-
sidered as ’natural’. The mechanical block, which includes the constitutive equations
together with the equation of state, accounts for the dynamic and thermodynamic
properties of the stellar atmosphere material. It is therefore the first to be solved.
However, the number of available equations is less than that of the variables involved;
in the most general case 5 equations for the 3 variables T, P, ρ and the 3 components
of the vector v. The amount of energy carried on throughout the atmosphere (mainly
by radiative transfer) under the constraint of energy conservation is considered in the
energy block, whose protagonist variable is T , as already mentioned. The coupling
of the two blocks via the microscopic description of matter allows the closure of the
global system of equations.

Of course, the solution of the foregoing system requires a numerical algorithm.
The above considerations dictate in a natural way the sequential approach, sketched
in Fig. 1. If an initial guess of the run of one of the fundamental variables is given, the
number of the variables is equal to that of the equations of the mechanical block, which
therefore can be solved. The microscopic state of matter can then be determined,

7See Mihalas, 1978, pp. 230-234.
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Figure 1: The ’natural’ sequential procedure. In the mechanical block the constitu-
tive equations are solved simultaneously. The correction of the current temperature
distribution is achieved after the energy block. For an atmosphere in radiative equi-
librium the RE constraint can be used as a transcendental equation to correct the
current temperature T . Such an iterative procedure is equivalent to a Λ-iteration.

so that the emissivity ην and extinction χν = aν + σν (the macroscopic transport
coefficients that define the RT equations) can be computed. The solution of the system
constituted by the latter yields the values of the specific intensity of the radiation field,
Iν(n), and its mean value Jν . At this point the constraint of energy conservation can
be checked. In general it will be not satisfied and the run of the trial variable has
to be up-dated. Because the constraint of energy conservation involves the internal
energy U(T ), T is the logical choice for the trial variable. In particular, when the
simplifying hypothesis of radiative equilibrium (RE) is assumed, the corresponding
energy conservation equation can be used as a transcendental equation in T to correct
the current trial distribution. Then the sequential scheme is iterated until a prefixed
criterion of convergence is achieved.

It is, however, a matter of experience that the foregoing ’natural’ scheme does not
work in the practice. The iterative solution of the coupled equations in the mechanical
block is quickly obtained. But the convergence of the global procedure, namely the
successive corrections of the temperature, is either infinitely slow or may even converge
to a solution, which is false from the physical standpoint. This should be expected
because the iterative solution inside the energy block is akin to a Λ-iteration, whose
drawbacks are well known.
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Figure 2: Simultaneous solution of radiative transfer and the RE constraint. The
latter is included in the source function of each specific RT equation.

4. 2. COUPLING OF THE RT AND ENERGY CONSERVATION EQUATIONS

The sequential procedure in the energy block can be replaced by the simultaneous
solution of the coupled RT and energy conservation, like the constitutive equations
in the mechanical block (see Fig. 2.) For the sake of an illustrative example let
us consider a stellar atmosphere in radiative equilibrium. In this case, taking into
account the customary form of the source function Sν = εν Bν + (1 − εν) Jν ,
where εν ≡ aν / (aν + σν), the equation of energy conservation reduces to

Ja ≡
∫ ∞

0

aν Jν dν =

∫ ∞

0

aν Bν(T ) dν , (1)

where Ja accounts for the amount of radiant energy absorbed and Bν(T ) is the Planck
function. We can linearize the latter around the value Bν(T0) corresponding to the
trial temperature distribution, that is

Bν(T ) = Bν(T0) +

(
∂Bν
∂T

)
0

(T − T0) . (2)

By taking into account eqs. 1 and 2 it follows that the correction of the temperature
can be expressed as

T − T0 =

[
Ja −

∫ ∞

0

aν Bν(T0) dν

]
/

∫ ∞

0

aν

(
∂Bν
∂T

)
0

dν . (3)
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Consequently, we can rewrite eq. 2 as

Bν(T ) = f1(ν;T0) + f2(ν;T0) Ja , (4)

where the values of f1 and f2 are computed with the trial value T0 of the temperature.
By substitution, the source function can be written as

Sν = εν [f1(ν;T0) + f2(ν;T0) Ja] + (1 − εν) Jν . (5)

Recast into this form the source function of each specific RT equation includes the
RE constraint. All the specific equations are coupled through the common term
Ja ≡

∫
aν Jν dν. The problem is that this integral is formally akin to a diffusion

integral. To solve iteratively a diffusion problem is equivalent in the practice to a
Λ-iteration. The intrinsic difficulty arises from the coupling in the source function
of each RT equation of all the monochromatic specific intensities, that is to say all
the individual solutions, which are characterized by different hight scales due to the
huge difference of opacity with frequency. Ostensively we can define the above one,
brought about by the long-range interactions, as a strong coupling. In contrast the
rapid iterative simultaneous solution of the equations of the mechanical block justifies
labelling their coupling as weak.

5. THE ITERATION FACTORS METHOD

A smart strategy to soften the strong coupling between the RT equations and the
RE constraint has been conceived by Eduardo Simonneau. Such an approach, the
Iteration Factors Method, fully generalizes the idea of the Variable Eddington Factors
(VEF) 8. A first application to the iterative temperature correction in a stellar at-
mosphere (Simonneau and Crivellari, 1988) was succesively used for the computation
of stellar atmosphere models when convective transport is taken into consideration
(Crivellari and Simonneau, 1991),

5. 1. FUNDAMENTALS OF THE METHOD

As an illustrative example, we consider the particular but paradigmatic case of a
plane-parallel stellar atmosphere in radiative equilibrium. The first two µ-moments
of the relevant RT equations integrated over the full frequency range (bolometric) that
link the bolometric µ-moments J, H and K of the specific intensity of the radiation
field, are

dH(τ)

dτ
=

1

χR(τ)

[ ∫ ∞

0

aν Jν dν −
∫ ∞

0

aν Bν(T ) dν

]
(6)

and

dK(τ)

dτ
=

χH(τ)

χR(τ)
H(τ) , (7)

where τ and χR are the Rosseland optical depth and mean opacity, respectively, and

8See Mihalas, 1978, pp. 46-47.
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χH(τ) ≡
∫ ∞

0

χν(τ) Hν(τ) dν / H(τ) . (8)

In eq. 8, χν = aν + σν is the monochromatic extinction (i.e. absorption plus
scattering) coefficient. The RE constraint requires the two integrals on the RHS of
eq. 6 to be equal; it holds, therefore, that H(τ) = H = const. The constant H is
fixed by the luminosity of the star and is a datum of the problem. If we define now

β(τ) ≡ χH(τ) / χR(τ) , (9)

we can rewrite eq. 7 as

dK(τ)

dτ
= β(τ) H . (10)

The further definition of a ratio akin to the VEF,that is

F (τ) ≡ K(τ) / J(τ) , (11)

will yield the necessary closure for the system constituted by the first two µ-moments
of the bolometric RT equation. Thanks to the above factor we can recast eq. 10 in
the form

d

dτ
[ F (τ) J(τ) ] = β(τ) H . (12)

This is an RT equation for the bolometric mean specific intensity that includes the
RE constraint.

By introducing the customary definition of the absorption mean aJ ≡
∫
aν Jν dν / J

and the Planck mean aP ≡
∫
aν Bν(T ) dν / B(T ), after defining the factor

α(τ) ≡ aJ(τ) / aP (τ) (13)

we can rewrite the RE constraint as

B(T ) = α(τ) J(τ) . (14)

If J(τ) is known, eq. 14 gives the ’corrector’ of the current temperature and the new
temperature, consistent with the RE constraint will be

T (τ) =

[
π

σrad
α(τ) J(τ)

]1/4
, (15)

where σrad is the Stefan-Boltzmann constant.

5. 2. ITERATION FACTORS FOR THE SOLUTION OF THE ENERGY BLOCK

The solution for J(τ) consistent with the RE constraint, as given by eq. 12, is
obtained only if β(τ) and F (τ) are known. When dealing with the energy block in
the course of the iterative sequential procedure the transport coefficients aν and σν
are external data, hence β(τ) is given. On the contrary, the ratio F (τ) = K(τ)/J(τ)
depends on the previous solution of the RT equations. An operative solution can
be achieved by means of a new iterative scheme inside the energy block. The first
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Figure 3: Simultaneous solution of the RT equation for J and the RE constraint
obtained introducing proper iteration factors that convert the coupling into a ’weak’
one.

step consists in the solution of the specific RT equations, whose source functions are
computed with the current temperature distribution and the transport coefficients
(the input to the block). The approximate closure for the system of the µ-moments
of the bolometric RT equations, that is F (τ), can then be computed in order to solve
eq. 12. On the other hand the factor α(τ), the key to correcting the temperature via
eq. 15, is computed from the values of Jν , the solution of the specific RT equations.
This scheme (see Fig. 3) is iterated with the up-to-dated temperature until a given
convergence criterion is satisfied.

Experience shows that this new procedure rapidly converges to a solution that is
correct from the physical standpoint, owing to the fundamental fact that the coupling
between the RT equation for J(τ) and the RE constraint is now brought about by
the ratio K(τ)/J(τ) and not by the integral Ja ≡

∫
aν Jν dν, as in the previous

scheme for the energy block. The foregoing strong coupling has been converted into
a weak one. The success of the above strategy is essentially due to the introduction
of the factors α(τ), β(τ) and F (τ). Because of their intrinsic nature they carry
on information optimally from a block to the successive one. As they are a ratio
between homogeneous quantities, they mend the errors that affect the current values
by eliminating wrong factors of scale. We call such ratios, that prove to be good
quasi-invariants along the iterative sequential procedure, Iteration Factors.
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5. 3. DEVELOPMENTS AND FURTHER APPLICATIONS

The convergence of some of the iterative methods currently in use can be greatly
accelerated when we treat separately, within a forth-and-back process, the natural two-
stream representation of the radiation field along each line of propagation. Integral
methods based on the Λ-operator employ an implicit representation of the source
function when computing the mean intensity of the radiation field. In contrast to the
above scheme, which might be regarded as global, one may consider a local implicit
scheme: the specific intensity propagating along a given direction is expressed at a
given point as a linear combination of the unknown values of the source function
S and its first derivative S′ at that point. In contrast with other ALI methods,
the FBILI method proposed here is a two-point algorithm that works by taking into
account the values of S and S′ on pairs of successive depth points. In the first step
of an iterative procedure, the forward-elimination (FE), the values of the incoming
specific intensities, as well as the coefficients of the linear relation above mentioned,
are computed with the formal solution of the RT equation by using the known current
values of S and S′. These coefficients are stored to be used in the successive back-
substitution (BS). The FE starts at one of the end points, where the given value of the
incoming specific intensity sets one of the boundary conditions, and sweeps inwards
all the inner points up to the last one, where the outgoing specific intensity is given by
the second boundary condition. In the BS the up-dated values of the source function
are computed together with those of the outgoing intensities.

Such a simple and efficient approach, called as Forth-and-Back Implicit Λ-Iteration
(FBILI), has been introduced by Atanacković-Vukmanović (1991) and later developed
by Atanacković-Vukmanović et al. (1997). The implicit representation of the source
function in the computation of the intensities within the above iterative scheme dra-
matically accelerates the rate of convergence of the iterative process while retaining
the straightforwardness of an ordinary Λ-iteration. This is mainly because, in the FE
when the coefficients of the implicit linear relation are computed, the only piece of
information that the FBILI retains from the previous iteration at each depth point is
the value of a single iteration factor, i.e. the ratio of the non-local part of the ingoing
mean intensity to that of the current source function S0. This iteration factor is used
in the next step of iteration. It is worth stressing that the implementation of this
new method comes from physical considerations, not from a previous analysis of the
mathematical properties of the problem. Once again it is physics that dictates the
optimum algorithm.

Along the foregoing guidelines, significant developments and new applications to
the line formation problem have been introduced by Olga Atanacković and cowork-
ers at the Faculty of Mathematics of the University of Belgrade. Let us quote here
only the most significant results. The Iteration Factors Method for the line for-
mation problem: for the paradigm problem of the Two-Level Atom line transfer
Atanacković-Vukmanović (1991), Atanacković-Vukmanović and Simonneau (1994);
for multi-level atom line transfer Kuzmanovska-Brandovska and Atanacković (2010).
The FBILI method for multi-level line transfer: Kuzmanovska, Atanacković and Fau-
robert (2017). The FBILI method for radiative transfer in 2D: Milić and Atanacković
(2014).
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6. MODELLING AGB STARS AND THEIR
CIRCUMSTELLAR ENVELOPES

Sergio Cristallo and Luciano Piersanti at the INAF - Oss. Astronomico d’Abruzzo
(Italy) are conducting a research project to study giant stars on the asymptotic branch
of the Hertzsprung-Russell diagram (AGB stars) and their circumstellar envelopes; it
is part of the n TOF (neutron time-of-flight) experiment at CERN. In particular, they
concentrate on circumstellar envelopes. Besides the modelling of the overall structure
and atmosphere of AGB stars, the subjects covered include the formation of molecules
and dust grains in their neighborhood. The complex interactions among the physical
processes involved require effective ad hoc numerical methods for the solution of the
relevant non-local and non-linear problem. A first step into this direction has been
the construction of the hydrodynamic code VULCAN that can follow the propagation
of shocks in the circumstellar envelopes of AGB stars (Cristallo et al. in preparation).
Modelling AGB stars implies to take into consideration the physical properties of both
their outermost layers and the circumstellar medium, as well as the hydrodynamics
of the material lost during the stellar lifetime, all of which requires proper solutions
for the constitutive equations, the equation of state and the RT equations. The
architecture of the Iterative Sequential Approach allows for direct control over the
results of each elementary block and their quantitative effects on the structure of the
atmosphere brought about by each physical process. Therefore, to adopt this strategy
will greatly help the implementation of the corresponding numerical algorithms in the
VULCAN code. Preliminary results have been achieved. A test model atmosphere
has been computed under the simplifying hypotheses of hydrostatic and radiative
equilibrium. The significant improvements introduced are: (i) the previous solution
of the 1D RT has been replaced by the 3D solution obtained with the Implicit Integral
Method of Simonneau and Crivellari (Simonneau and Crivellari, 1993; Gros et al.,
1997) ; (ii) after the due revision of the equation of state to take into account the
H2 molecule and compute the corresponding atomic population, the contributions of
selected molecules (CO, H2O, SiO and TiO) have been included in the opacity of the
stellar material; (iii) the injection of non-radiative energy in the outer layer, in order
to mimic the passage of a shock, has been considered. The next steps will be the
removal of the current simplifying hypothesis of hydrostatic equilibrium to allow for
the correct fluid dynamics treatment, as well as the inclusion of convective transport.
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Atanacković-Vukmanović, O.: 1991, PhD Thesis, Department of Astronomy, Faculty of
Mathematics, University of Belgrade.
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