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Abstract. Asymptotic motion around the collinear equilibrium points of the Hill problem
is considered when the primary is radiating. Specifically, asymptotic orbits to the collinear
equilibrium points and to Lyapunov orbits are determined. Transversality of the latter is
achieved by construction of appropriate surface of section portraits of the unstable manifolds.

1. INTRODUCTION

Motion around the collinear equilibrium points of the restricted three-body prob-
lem or its Hill limiting case has attracted considerable attention in the last decades
(e.g. Sim6 and Stuchi, 2000; and references therein). An interesting case of such
motion is the case when the moving particle traces orbits which asymptotically em-
anate/terminate from/at these points or the Lyapunov periodic orbits around them
(see for example Llibre, et al., 1985; Gémez and Mondelo, 2001; Markellos et al., 2003).

Asymptotic orbits at collinear equilibrium points may be considered as limiting
cases of asymptotic orbits to the Lyapunov periodic orbits, i.e. they are orbits ema-
nating/terminating from/at the collinear equilibria themselves, instead of from finite
orbits around them. Therefore, an asymptotic orbit at a collinear equilibrium can
be used as a reference orbit since its existence indicates the existence, in its imme-
diate neighbourhood, of an infinity of orbits asymptotic to the Lyapunov periodic
orbits (Kalantonis et al, 2006). These orbits have been studied by Deprit and Hen-
rard (1965) and Perdios and Markellos (1990), in the framework of the restricted
three-body problem. On the other hand, orbits asymptotic to Lyapunov orbits are
important from a theoretical and practical point of view since they cause the destruc-
tion of invariant tori, while they can also be used for the design of trajectories for
space missions (Koon et al., 2000; Gémez et al., 2005).

In this paper we study homoclinic orbits at the collinear equilibrium points as well
as at the Lyapunov orbits, of a variant of Hill’s problem in which the primary (“the
Sun”) is a source of radiation. To determine orbits which asymptotically terminate
at these points we use fourth order expansions with respect to a small orbital param-
eter. For the determination of asymptotic orbits to the Lyapunov periodic orbits we
compute the corresponding unstable manifolds. A number of appropriate surface of
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section portraits are constructed in order to detect transversality of the stable and
unstable manifolds. Several such orbits have been determined for the specific value
of the radiation factor ;1 = 0.5.

In rotating coordinates, the Hill problem, in which the larger primary is a source of

radiation, is described by the following equations of motion (Markellos et al. 2000):
2
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where W is the potential function and r = /22 + y2. The equation of the Jacobi
integral is 2W — (:ic2 + gf) = T', where I" is the Jacobi constant. These equations
result from the corresponding variant of the restricted three—body problem where the
larger primary is a source of radiation by placing the origin at the smaller primary,
appropriate rescaling of lengths and radiation factor.

The problem admits two unstable collinear equilibrium points; L; on the negative
axis and Ly on the positive axis. The r—axis is an axis of symmetry but, contrary to
the classical Hill problem, the y—axis is not. The positions of these equilibria can be
found analytically (Markellos et al., 2000).

2. HOMOCLINIC ORBITS AT COLLINEAR EQUILIBRIA

We express the solution near an equilibrium point L;, i = 1,2, to fourth order terms
in a small parameter e:

4
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where &, 7 are the coordinates with origin L;, ¢ = 1,2. To determine an asymptotic
orbit to L;, © = 1, 2, we consider the solutions which correspond to the real eigenvalues.
Two outgoing and two incoming solutions exist. Here we consider only the asymptotic
solutions which remain in the sphere of influence of the secondary. The solution to
first—order, corresponding to the eigenvalue \g > 0, is directly obtained in the form
E(t) = ee™l, n(t) = egie?ot, where:

A2 — A, 220 2 1

= = , with A1 =3+—, B=-——. 3
=7 BI-A ' g FTod )
The corresponding fourth order solution is of the form:
4 _ 4
G0 = S dhet ) = 3 g, (1)
j=1 j=1

where the coefficients hj, g;, j = 2, 3,4, are determined by successive approximations.
Due to the symmetry of the problem w.r.t. the x—axis we are able to determine the
initial conditions of the incoming asymptotic orbit from those of the outgoing orbit
by changing the signs of yy and .

Due to the same symmetry, transversality of the unstable with the stable manifold
of the equilibrium point is detected when the orbit reaches this axis peprpendicularly,
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Figure 1: Homoclinic orbits at collinear equilibrium point Ls.

i.e. with 2(Q1) = 0. Therefore, we scan the Q1 —axis and for each value of @1 integrate
the equations of motion, using appropriate initial conditions from our analysis, up to
the n—th crossing of the orbit with the z—axis. The roots of the function #(Q;) will
indicate the existence of homoclinic orbits at the collinear equilibrium point. When a
homoclinic orbit has been detected, we can determine it accurately by applying well-
known differential corrections procedures or by a more refined scanning. Numerical
data of many homoclinic orbits are available for the readers. In Fig. 1 we show
homoclinic orbits (continuous lines) at the positive collinear equilibrium point for
the values of the radiation factor @7 = 0.01471899, @; = 0.03551808 and @, =
0.72629021 (from left to right) together with the corresponding zero— velocity curves
(dashed lines).

3. HOMOCLINIC ORBITS TO LYAPUNOYV ORBITS

In order to detect homoclinic orbits to periodic orbits of the Lyapunov family we
shall use again the symmetry property of the problem w.r.t. the xz—axis. For a
particular Lyapunov orbit the initial four—dimensional phase space is reduced to a
three—dimensional subspace of iso—energetic orbits due to the equation of the Jacobi
integral, for the specific value of the Jacobi constant of the Lyapunov orbit. The final
reduction of the phase space to a two— dimensional sub—space is carried out by con-
sidering the cuts of the unstable manifold of the Lyapunov orbit with the r—axis. If
the unstable manifold of the Lyapunov orbit has a perpendicular intersection with the
r—axis, i.e. the horizontal component of the velocity is zero (& = 0), then transversal-
ity is achieved and a homoclinic orbit to the Lyapunov orbit exists. The construction
of the corresponding stable—unstable manifolds is based on a linear analysis (Simo
and Stuchi, 2000).

In Fig. 2(a) the phase portraits, in the (x,4) plane, of the unstable manifolds
(first cuts with the z—axis) for various Lyapunov orbits are presented for the value
of the radiation factor Q1 = 0.5. Each curve corresponds to a specific periodic orbit
and the points of the curve located on the x—axis, i.e. with & = 0, denote the
existence of homoclinic orbits. The tangential curve (dashed line) marks the onset
of transversality. Note that the “center” of the innermost elliptic curve represents
the limiting case of the unstable manifolds of the Lyapunov orbits, i.e. the one—
dimensional unstable manifold of the equilibrium point L;. In Figs. 2(b) and (c)
we show the phase portraits of the second and third cuts of the unstable manifolds
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Figure 2: The phase portraits of the unstable manifolds of Lyapunov families around
L, for the (a) n =1 cuts, (b) n =2 cuts and (c) n = 3 cuts.

y y y
\ \
0.4, 0.4\ 0.4
\ - ~ \ - N \ -7
- \ -
\ \ N N
\ \ .~ \
0 | 0 | 0 |
, ,
- ~_ ’ N - ! S -
0.4}/ ~0.4]/ 0.4
; )

-0.6 -0.3 O 0.3 x -0.6 -0.3 O 0.3 x -0.6 -0.3 O 0.3 x

Figure 3: Homoclinic orbits to Lyapunov orbits around L;.

for various Lyapunov orbits together with the portraits of the corresponding stable
manifolds (dotted lines). In these two cases we observe that transversality of the stable
with the unstable manifolds occurs also outside the x—axis indicating the existence
of non— symmetric homoclinic orbits. In Fig. 3 some symmetric homoclinic orbits to
Lyapunov periodic orbits are shown.
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