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Abstract. We construct a dynamical model in order to study the motion in a BL-Lacertae
active galaxy. The model consists of a logaritmic potential with an internal perturbation.
Two cases are investigated. (i) The time independent model and (ii) the evolving model. A
large number of orbits are chaotic in both cases. Responsible for the chaotic motion are the
internal perturbation, the flattening parameter and the dense nucleus. Theoretical arguments
support the numerical outcomes. Comparison of the results with data from observations is
also made.

1. INTRODUCTION

BL-Lacertae (BL-Lac) objects are active galaxies characterized by rapidly varying
luminosity no emission lines in the spectrum and point Vlike appearance. The first
observed BL-Lac galaxy was mistaken for a peculiar kind of variable star in our
own galaxy and assigned that kind of name. The mystery of the BL-Lac was solved
about fifty years later in the late 1970s when a group of astronomers demonstrated
unequivocally that the prototype of the BL-Lacs is located in a luminous galaxy (see
Miller & Hawley 1977, Miller et al. 1978). Particularly, Miller and his collaborators
showed that the light from the nucleus of the prototype of the BL-Lacs had a spectrum
similar to that of the small elliptical galaxy M32. This result, together with the fact
that we can see much further into the heart of a BL-Lac object, strongly suggests
that BL-Lac objects are elliptical galaxies with bright active nuclei.

Given the above, it seems challenging to construct a dynamical model in order
to study the motion in a BL-Lac object. In particular, we shall try to segregate
the critical parameters of the system, that is the parameters that play an important
dynamical role in the system and define this role. Furthermore, it would be of partic-
ular interest to compare the results obtained using our dynamical model with results
available from observations.

In order to describe the motion in our BL-Lac model we use the potential

VBL(x, y) =
1
2
υ2

0 ln[x2 + ay2 − λx3 + c2
n] . (1)
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The dynamical model (1) represents an elliptical galaxy with a flattening parameter
1 ≤ α < 2 and a nucleus of radius cn. The term −λx3, λ << 1 represents an
internal perturbation (see Binney & Tremaine 1987). The parameter υ0 is used for the
consistency of the galactic units. We use a system of galactic units, where the unit of
length is 1kpc, the unit of time is 0.97746×108yr and the unit of mass is 2.325×107M¯.
The velocity and the angular velocity units are 10km/s and 10km/s/kpc respectively,
while G is equal to unity. The energy unit (per unit mass) is 10(km/s)2. In the above
units we use the values, υ0 = 15, cn = 0.25, while α, λ, Ω are treated as parameters.

In a clockwise rotating frame, with an angular velocity Ω, potential (1) writes

Veff (x, y) = VBL(x, y)− 1
2
Ω2(x2 + y2) , (2)

while the corresponding Hamiltonian is

HJ =
1
2
(p2

x + p2
y) + VBL(x, y)− 1

2
Ω2(x2 + y2) =

1
2
(p2

x + p2
y) + Veff (x, y) = hJ , (3)

where px, py are the momenta, per unit mass, conjugate to x and y, hJ is is the
numerical of the Hamiltonian which is conserved and is it the well known Jacobi
integral. The equations of motion in this rotating coordinate system are

ẍ = −2Ωpy − ∂Veff

∂x
, ÿ = 2Ωpx − ∂Veff

∂y
, (4)

where the dot indicates derivative with respect to the time.
This article is organized as follows: In Section 2, we study the structure of the

phase plane and present the different families of orbits in the Hamiltonian (3). Some
theoretical arguments, supporting the numerical results, are given in the same Section.
In Section 3, we present results when our model is time dependent. We close with
Section 4, where a linking to observation data together with a discussion and the
conclusion of this research are given.

2. ORBITS IN THE TIME-INDEPENDENT POTENTIAL

This Section is devoted to the study of the structure of the x − px, y = 0, py > 0
phase plane. The values of parameters are hJ = 500, α = 1.1, cn = 0.25. When
Ω = 0, λ = 0 the motion is regular, while chaotic regions, if any, are negligible. There
are two main families of orbits producing invariant curves around the 1:1 direct and
retrograde periodic points. For the above values of the other parameters and Ω = 0.5,
we observe a considerable chaotic layer which appears between the regular areas, while
the at the same time small islands are produced by secondary resonances. Thus, we
can say that the role of rotation is to produce chaotic motion. Fig. 1a shows the phase
plane, when λ = 0.01,Ω = 0.5, while other parameters are as above. Here the chaotic
region is much larger, while some secondary resonance are also present. Therefore, it
is evident that the internal perturbation enlarges the chaotic regions. Fig. 1b is same
as Fig. 1a but when α = 1.7. In this case one observes a large chaotic sea, while the
regular areas around the 1:1 periodic points are much smaller.
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In the following we shall give a semi-theoretical explanation about the structure of
the phase plane descibed above and given in Fig. 1a-b. The star’s angular momentum
in the rotating case is given by

L = xpy − ypx − Ω(x2 + y2) . (5)

Although the angular momentun is not conserved, we have proven (see Caranicolas
and Papadopoulos 2005 and references therein) that its averaged value decreases as
Ω increases. It is also well known that stars of small angular momentun can display
chaotic motion in galaxies with dense nuclei. Therefore, the one expects to observe
larger chaotic layers in the phase plane as as Ω increases.

The role of the vertical force is very important in order to observe chaotic motion
in galaxies with massive nuclei. The stronger is the vertical force the larger chaotic
regions are observed (see Caranicolas and Innanen 1991, Caranicolas and Papadopou-
los 2003). The role of vertical force for the potential (1) is played by the Fy force
component, which is

Fy = − αυ2
0y

x2 + αy2 − λx3 + c2
n

+ Ω2y . (6)

It is evident that the attractive Fy force near the nuclear region for given but small
values of x and y, when all other parameters are fixed, increases as λ increases. The Fy

force also increase rapidly as the flattening parameter α increases. This fact justifies
the increase of the chaotic regions observed in Figs. 1c and 1d. Another interesting
result coming from equation (6) is that the Fy force increases as the radius of nucleus
decreases. Thus, one would expect larger chaotic regions from galaxies with denser
nuclei. Numerical calculations, not shown here, justify this result.

3. ORBITS IN THE TIME-DEPENDENT POTENTIAL

In this Section we shall study the behavior of orbits in the time dependent potential.
In particular, we shall consider the case when our BL-Lac model evolves in such a
way so that the parameters α and λ are linear functions of the time given by the
equations

α(t) = ain + k1t, λ(t) = λin + k2t , (7)

where αin, λin are the initial values of α and λ, while k1, k2 are parameters. Let
us consider an orbit starting at x0 = 6, y0 = px0 = 0 with initial value of energy
hJ0 = 500. The value of py0 in all cases is found from the energy integral. It is evident
that this orbit stars near the retrograde periodic point. All other parameters are as
in Fig. 1c, while the flattening parameter α evolves following the first of equations
(7) with αin = 1.1 and k1 = 0.01. During the evolution the energy is not conserved
because the potential is time dependent. It is assumed that the evolution stops when α
reaches a final value αfin = 1.7. This means that for the first 60 time units the galaxy
evolves and after that the evolution stops and we have a final value of energy. The
results for a period of 100 time units are shown in Fig. 2. We observe a well defined
quasi-periodic tube orbit. The final value of energy is hJF = 527.85. Therefore, we
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Figure 1: a-b: a-left, b-right. The x − px Poincare phase plane for the Hamiltonian
(3). The values of parameters are hJ = 500,Ω = 0.5, cn = 0.25. Details are given in
text.

can say the orbit starts as regular, remains regular during the evolution and continues
as regular after the end of the galactic evolution. Furthermore, we conclude that the
structure of the phase plane, near the retrograde periodic point, continues to be the
same as that of Fig. 1a.

Fig. 3 is same as Fig. 2 but the orbit has different initial conditions. This orbit
starts at x0 = −6, y0 = px0 = 0 with initial value of energy hJ0 = 500. The final
value of energy is hJF = 539. Here, the numerical calculations suggest that the
orbits starts as regular, becomes gradually chaotic during the galactic evolution and
remains chaotic after the galactic evolution has stopped. In this case, we can say that
the structure of the phase plane, near the direct periodic point, changes drastically
from regular to chaotic.

4. COMPARISON WITH OBSERVATIONAL DATA

It is today clear that the name BL-Lacertae is actually a remnant from an original
misidendification. The first BL-Lac galaxy was mistaken for a variable star in our
own galaxy. Now we know that BL-Lacs are distant galaxies with active nuclei. The
excellent seeing conditions obtained by the large telescopes give interesting informa-
tion of the properties and environment of those galaxies during the last years (see
Burbidge 1996, Falomo et al. 1996, Falomo et al. 2002, Grundahl et al. 1995, Heidt
et al. 1996, Nilsson et al. 1996, Vladilo et al 1997, Wright et al. 1998, Barth et al.
2002, Falcone et al. 2004).

On this basis we felt it would be of interest to construct a dynamical model for BL-
Lac galaxy, study its dynamical behavior and compare theoretical with observational
data. The model and some of its dynamical properties were presented in the preceding
Section. In this Section, we shall try to compare some theoretical outcomes with data
from observations.

A first step for this comparison is to obtain the rotational velocity Θ = Θ(r)
corresponding to the axially symmetric (α = 1, λ = 0) dynamical model (1). This is
given by the equation
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Figure 2: - Figure 3: Fig. 2-left. A regular orbit in the time dependent potential.
Initial conditions starting at x0 = 6, y0 = px0 = 0, hJ0 = 500. All parameters are as
in Fig. 1a, while the flattening parameter α evolves following the first of equations
(7) with αin = 1.1 and k1 = 0.01. Fig. 3-right. Same as Fig. 2 but with initial
conditions x0 = −6, y0 = px0 = 0. The orbits starts as regular, becomes gradually
chaotic.

Θ(r) = υ0

√
r
dVBLA(r)

dr
= υ0

√
r2

r2 + c2
n

, (8)

where VBLA(r) the axially symmetric potential. An estimation of the mass M0 inside
the radius cn can be made using the formula

M0 = r0
Θ2

0

G
. (9)

When r0 = cn, equation (8) gives Θ0 = υ0/
√

2. Setting these values of r0, Θ0 in
(9), we obtain

M0 =
υ2

0cn

2G
. (10)

For values of cn between 0.1 and 0.25 equation (10) gives values of M0 in the range
2.6×108M¯−6.5×108M¯. Those values are in very good agreement with the values
of the active nuclei inside BL-Lac objects 107.9M¯ − 109.2M¯ obtained by Barth et
al. (2003) using observational data.

It is also of interest to compare the maximum theoretical velocity with that ob-
tained using observational data. Setting y = 0 in the integral (3) we find

1
2
(p2

x + p2
y) + Veff (x) = hJ . (11)

Equation (11) gives

1
2
p2

y ≥ Veff (x) + hJ − p2
x , (12)
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defining the area on the x − px phase plane inside which motion is permitted. The
equation

p2
x = 2[hJ − Veff (x)] = 2hJ − υ2

0 ln(x2 − λx3 + c2
n) , (13)

defines the limiting curve. The maximum px velocity occurs at x = 0 and since we
are on the limiting curve, where y = py = 0, this is the maximum total velocity. Thus

υmax =
√

2(hJ − υ2
0 ln cn) . (14)

Note that for a fixed value of the energy hJ the maximum velocity increases as
the radius of nucleus decreases that is higher velocities are expected in galaxies with
dense nuclei. For the values hJ = 500, cn = 0.25, υ0 = 15 we find υmax = 403km/s.
This value is very close to the maximum velocity observed by Barth et al (2003),
which was found equal to 370km/s

Therefore, one can say, that our dynamical model describes in a satisfactory way
the properties of motion in a BL-Lac active galaxy and its theoretical outcomes are in
good agreement with the data available from observations. Since active galaxies is a
fast developing branch of Observational Astronomy, we hope to be able to construct
better dynamical models for those systems in the near future.
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