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PROGRAMMED MOTION WITH HOMOGENEITY ASSUMPTIONS
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Abstract. We consider the problem: Given a planar region Torb described by one inequality
g(x, y) ≤ c0, find the potentials V = V (x, y) which can generate monoparametric families
of orbits f(x, y) = c (also to be found) lying exclusively in the region Torb. We make
assumptions on the homogeneity of both the function g(x, y) describing the boundary of the
region Torb and of the slope function γ(x, y) = fy/fx of the required family. We show that,

under certain conditions, the slope function γ(x, y) can be obtained as the common solution
of two algebraic equations. The theoretical results are illustrated by an example.

1. INTRODUCTION

Monoparametric families of orbits f(x, y) = c, which are produced by a given potential
V (x, y) and which have ‘slope function’ γ(x, y) = fy/fx, satisfy the second order
nonlinear PDE (Bozis 1995)

γ2γxx−2γγxy+γyy =
−(γγx − γy)
Vx + γVy

(γxVx−(2γγx−3γy)Vy−γ(Vxx−Vyy)−(γ2−1)Vxy), (1)

where the subscripts denote partial derivatives. Families of straight lines, for which
it is γγx − γy = 0 and Vx + γVy = 0 (Bozis & Anisiu 2001), are excluded from our
study.

The inequality (Bozis & Ichtiaroglou 1994)

B(x, y) ≥ 0, (2)

where

B(x, y) =
Vx + γVy

− (γγx − γy)
, (3)

determines the region Torb of the xy plane where the potential V (x, y) creates real
orbits or real parts of the orbits belonging to the family γ(x, y).
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Conversely, we can select a specific region Torb of the xy plane which we want to
make the exclusive allowed region for certain unknown families created by an unknown
potential.

We restrict ourselves to regions which are described by one inequality, say

b(x, y) ≥ 0, (4)

and impose the condition that the function B(x, y) (corresponding to the pair (V , γ))
defines the same region (2) as the inequality (4) does. We interpret this by stating
that there must exist a nonvanishing function Θ(x, y), in a region T0 broader from
the region Torb, such that

B(x, y) = b(x, y)Θ(x, y), (5)

Θ(x, y) ≥ 0 for (x, y) ∈ T0 and Θ̃(x, y) 6= ∞, (6)

where Θ̃(x, y) denotes the (one-variable) function Θ(x, y) evaluated at the points of
the curve b(x, y) = 0.

Bozis (1996) solved the problem of finding the force fields which produce a given
family of orbits in a fixed in advance region, and Anisiu & Bozis (2000) considered
the conservative case for the families f(x, y) = y −H(x) and a given region.

2. BASIC PROGRAMMED MOTION PROBLEM

The function B satisfies the second order linear equation (Bozis 1995, Anisiu 2003)

−Bxx + k∗Bxy + Byy = λ∗Bx + µ∗By + ν∗B, (7)

k∗ =
1− γ2

γ
, λ∗ =

γx + 2γγy

γ
,

µ∗ =
2γγx − 3γy

γ
, ν∗ =

2(γxγy − γyy + γγxy)
γ

.
(8)

The first partial derivatives of V are related to B by

Vx = −B(γγx − γy) +
1
2
γ(By − γBx), Vy = −1

2
(By − γBx). (9)

Remark If γ is homogeneous of degree zero, then so is k∗, whereas λ∗, µ∗ are of
degree −1 and ν∗ of degree −2. If B(x, y) is weighted homogeneous of degrees e.g. n1

and n2, then the entire equation (7) will lead to a weighted homogeneous expression
of degrees n1 − 2 and n2 − 2.

We suppose that a region is given by the unique inequality (4). The basic pro-
grammed motion problem is: What families can be created in the given region (4) and
which potentials do generate them? We introduce the function B(x, y), as given by
(5), into the equation (7) and we obtain the linear in Θ PDE

b (−Θxx + KΘxy + Θyy) = LΘx + MΘy + NΘ, (10)

where
K = k∗, L = λ∗b + 2bx−k∗by,M = bµ∗−k∗bx−2by,
N = ν∗b + λ∗bx + µ∗by + bxx − k∗bxy − byy.

(11)
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3. HOMOGENEITY ASSUMPTIONS

The remark in the preceding section shows that the problem becomes simpler if the
functions are homogeneous, therefore we suppose that:

(i) The allowed region is given by (4), where

b = c0 − xmb0(z), z =
y

x
, b0 6= 0. (12)

(ii) The slope function γ is homogeneous of degree zero, i.e.

γ = γ(z). (13)

(iii) The function Θ is also homogeneous of degree k, i.e.

Θ(x, y) = xkΘ0(z), Θ0 6= 0. (14)

Then, equation (10) becomes

R1x
k + R2x

m+k = 0. (15)

Both R1 and R2 must vanish identically, resulting in a system of two ODEs of the
form

2Θ0(zγ + 1)γ̈ + 2Θ0zγ̇2 + k1γ̇ + k0 = 0 (16)

2b0Θ0(zγ + 1)γ̈ + 2b0Θ0zγ̇2 + m1γ̇ + m0 = 0, (17)

where k1, m1 are linear in Θ0 and Θ̇0, and k0, m0 in Θ0, Θ̇0 and Θ̈0.
Our hypotheses (b0 6= 0, Θ0 6= 0 and straight lines excluded) assure that

b0Θ0(1 + γz) 6= 0, (18)

therefore the equations (16) and (17) are equivalent to

γ̇ =
Γ2γ

2 + Γ1γ + Γ0

∆1γ + ∆0
, 2(1 + γz)γ̈ + 2zγ̇2 + K1γ̇ + K0 = 0, (19)

where
Γ2 = Γ00 + Γ01w, Γ1 = Γ10 + Γ11w, Γ0 = −Γ2 (20)

Γ00 = (1− k −m)r + z(ṙ + r2), Γ01 = 2zr −m
Γ10 = m(1−2k−m)−2(1−k−m)zr +(1−z2)(ṙ +r2)
Γ11 = 2(r + mz − rz2),

(21)

∆1 = 2(m− 2rz), ∆0 = rz2 −mz − 3r; (22)

K1 = K11γ + K10, K0 = K02γ
2 + K01γ + K00, (23)

K11 = 4zw + 2(1− k), K10 = −(z2 − 3)w + kz (24)

K02 = (1− k)w + z(ẇ + w2)
K01 = k(1− k)− 2z (1− k) w + (1− z2)(ẇ + w2)
K00 = −(1− k)w − z(ẇ + w2),

(25)
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with
Θ̇0 = wΘ0, ḃ0 = rb0. (26)

We consider m, r = ḃ0/b0, c0 (i.e. the function b given by (12)) as known and we
try to make compatible the two equations (19). In so doing, we prepare γ̈ from the
first of equations (19), insert into the second one and obtain the quintic in γ algebraic
equation

α5γ
5 + α4γ

4 + α3γ
3 + α2γ

2 + α1γ + α0 = 0, (27)

where the coefficients α5, α4, ..., α0 are functions of z, and of w and its derivative of
the first order.

We now differentiate (27) in z and we obtain γ̇ which we equate to γ̇ given by the
first of equations (19), and get

β6γ
6 + β5γ

5 + β4γ
4 + β3γ

3 + β2γ
2 + β1γ + β0 = 0, (28)

where the coefficients β6, β5, ..., β0 are functions of z, and of w, ẇ, ẅ. We are interested
in the common roots of the equations (27) and (28) and this leads us to the eleventh
order Sylvester determinant which is an ODE in w of the second order.

We have to analyze also the case when

∆1γ + ∆0 = 0. (29)

If Γ2γ
2 + Γ1γ + Γ0 6= 0, the first of equations (19), hence the considered problem,

has no solution. If Γ2γ
2 + Γ1γ + Γ0 = 0, we express γ from (29) and substitute it in

the second equation in (19). We obtain a solution for our problem if we can find a
function w which gives a suitable Θ.

4. EXAMPLE

Let us try to find families of orbits and the corresponding potentials creating them in
the region

y ≤ 1. (30)

We can write
b(x, y) = 1− y, (31)

hence
m = 1, b0(z) = z and c0 = 1. (32)

We can now verify that, with k = 2, the Sylvester determinant of (27) and (28) (which
for the case at hand are of degree four and five) admits of a solution Θ0(z) = z2/2,
which gives

Θ(x, y) = y2/2. (33)

According to (5), (31) and (33), we find

B(x, y) = 8y2(1− y). (34)
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Figure 1: Curves of the family x2y = c in the region (30) for c1 = 0.002, c2 = 0.0045
and c3 = 0.008

Equations (27) and (28) have the common solution γ = 1/(2z), and from (9) we
get the Hénon-Heiles type potential

V (x, y) = −x2 − 4y2 + 4y3. (35)

The potential (35) generates the family of curves f(x, y) = x2y, traced in the region
(30).
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