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Abstract. The characterization of diffusion of orbits in Hamiltonian quasi-integrable sys-
tems is a relevant topic in dynamics. For quasi-integrable Hamiltonian systems a possible
model for global diffusion, valid for perturbations larger than a critical value, was given by
Chirikov; while for smaller perturbations the Nekhoroshev theorem leaves the possibility of
exponentially slow diffusion on a subset of the possible dynamical states with peculiar topol-
ogy, the so-called Arnold’s web. We have studied this problem using a numerical approach.
This paper contains a review of papers that we published concerning the numerical detection
of Arnold’s diffusion in continuous and discrete quasi–integrable dynamical system.

1. INTRODUCTION

The characterization of mechanisms for diffusion of orbits in quasi–integrable Hamil-
tonian systems and symplectic maps is a relevant topic for many fields of physics,
such as celestial mechanics, dynamical astronomy, statistical physics, plasma physics
and particle accelerators.

In 1979 Chirikov (Chirikov 1979) described a possible model for global drift valid
when the perturbation is greater than some critical value. Chirikov’s model has so
far been successfully used to describe diffusion in systems from different fields of
physics (see for example Morbidelli 2002). One of the reasons of the broad detection
of the Chirikov’s diffusion is that its typical times fall within the simulation abili-
ties of modern computers as far back as the seventies. For smaller perturbations the
systems fall within the range of celebrated perturbation theories such as KAM (Kol-
mogorov 1954,Arnold 1963, Moser 1958) and Nekhoroshev theorems (Nekhoroshev
1977), which leave the possibility for a drift only on a subset of the possible dynami-
cal states with peculiar topology, the so–called Arnold web, and force diffusion times
to be at least exponentially long with an inverse power of the norm of the perturba-
tion. The theoretical possibility of drift in slightly perturbed systems has been first
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shown in 1964 by Arnold (Arnold 1964) for a specific system, and is commonly called
Arnold diffusion.

Being interested to applications to specific systems, and in particular to systems of
interest for physics, we have used a numerical approach which, avoiding theoretical
difficulties, measures directly the quantitative features of eventual long term diffusion.
In 2003 we numerically detected a very slow local diffusion confined to the Arnold
web (Lega et al. 2003) in a model perturbed system satisfying both the KAM and
Nekhoroshev hypothesis. In that work we have numerically measured a diffusion coef-
ficient showing that it decreases faster than a power law of the perturbing parameter
and in agreement with the Nekhoroshev theorem.

The Arnold’s mechanism is related to a specific “ad hoc” model and the general-
ization of the mechanism to generic quasi-integrable systems is still an open problem.
One of the main difficulties is the so-called “large gap” problem (LGP hereafter),
which is related to low order resonance crossings. A new approach to solve the LGP
has been recently introduced (Delshams et al. 2003) to prove the existence of diffusion
in the so-called a priori unstable systems. Instead, the LGP has not been yet solved
for generic quasi-integrable systems.

Therefore, we found it interesting to explore the possibility for orbits of a generic
system to globally diffuse, i.e. to explore macroscopic regions of the space, in a model
problem in which the “gap problem” is present. In 2005 we have provided numerical
evidence both on quasi–integrable Hamiltonian systems and symplectic maps of a
relevant phenomenon of global diffusion of orbits occurring on the Arnold web (Guzzo
et al. 2005). More precisely, we have shown that a set of well chosen initial conditions
practically explores the whole web and, in the case of maps, the process behaves as a
global diffusion.

These results concern systems satisfying the hypothesis of Nekhoroshev theorem
(for map see Kuksin 1993, Kuksin and Pöschel 1994, Guzzo 2004).

This paper contains a review of results that we published on this subject and
which are more extensively described on (Lega et al. 2007). The paper is organized
as follows: In section 2 we give a more general definition of Arnold’s diffusion. A brief
recall of the numerical tool used to discriminate the dynamics of the orbits is provided
in 3. In Section 4 we introduce our model problems. We discuss results about local
and global Arnold’s diffusion on a suited Hamiltonian model and on maps in 5.

2. A GENERALIZATION OF ARNOLD’S DIFFUSION

Since Arnold model, there have been several generalizations of Arnold diffusion to
models more generic than Arnold’s one (Arnold 1964), which are motivated not only
by mathematical reasons, but also by their significance for physics.

Specifically, concerning the numerical experiments about Arnold diffusion reported
in (Tennyson et al. 1979, Lichtenberg and Lieberman 1983, chapter 6, Wood et al.
1990, Lichtenberg and Aswani 1998, Chirikov et al. 1979, Laskar 1993, Efthymiopou-
los et al. 1998, Giordano and Cincotta 2004), it appears clearly the existence of
different points of view. It is therefore important to define what we consider a gener-
alization of Arnold diffusion. In our papers (Lega et al. 2003, Froeschlé et al. 2005,
Guzzo et al. 2005) we considered as Arnold diffusion any exponentially slow diffusion
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process occurring on a system which satisfies both the KAM and Nekhoroshev theo-
rems. We find useful to list the definitions we use through the paper as introduced in
(Guzzo et al. 2005):

i) We strictly refer to quasi–integrable systems, i.e. to Hamiltonian systems with
Hamilton functions of the form:

H(I, φ) = h(I) + εf(I, φ) , (1)

or to symplectic maps:

I = I ′ +
∂S

∂φ
(I ′, φ)

φ′ = φ +
∂S

∂I
(I ′, φ) (2)

where:
S(I ′, φ) = h(I ′) + εf(I ′, φ) (3)

is a generating function, with action–angle variables (I, φ) defined on the open bounded
domain B × Tn ⊆ Rn × Tn.

ii) The functions h, f are such that the Hamiltonian system (1) and the map (2)
satisfy the hypotheses of both KAM and Nekhoroshev theorems (for the KAM and
Nekhoroshev theorems for quasi–integrable maps see Kuksin 1993, Kuksin and Pöschel
1994, Guzzo 2004) for suitably small ε. It is sufficient that h and f are analytic and
h satisfies a suitable geometric condition, such as quasi–convexity or steepness.

iii) We consider values of the perturbing parameter ε so small that both KAM and
Nekhoroshev theorems apply. This implies that the phase space is almost filled with a
set of invariant tori K. Any motion with initial condition on K is perpetually stable,
so that instability can occur only on the complementary set of K, called Arnold
web. Moreover, the Nekhoroshev theorem implies that any eventual instability of the
actions occurs only on very long times, which increase exponentially with a positive
power of 1/ε.

iv) We will investigate the possibility that the actions I explore macroscopic regions
of a given action domain B. By Nekhoroshev theorem this is non trivial and can
require very long times as soon as ε is small (so that condition (iii) is satisfied and the
diameter of the set B is bigger than the local fast oscillations of the actions which are
allowed by the theorem). To fix ideas, we say that a motion (I(t), φ(t)) is ’unstable’
if there exists a time t such that:

‖I(t)− I(0)‖ ≥ diamB
2

(4)

It is evident that for small ε the existence of unstable motions is not a trivial fact
as soon as diamB >

√
ε.

v) We say that the N motions (I(j)(t), φ(j)(t)), j = 1, ...N , diffuse in the action space
if the the average evolution of the squared distance of the actions from their initial
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value (I(j)(0), φ(0)(t)) grows linearly with time. In other words there exists a constant
D > 0 such that:

S(t) =
1
N

N∑

j=1

[I(j)(t)− I(j)(0)]2 ∼ D t (5)

for all t.

vi) Any diffusion of motions for a system satisfying conditions 1, 2 and 3 will be called
Arnold diffusion. For instance, the model studied in (Wood et al. 1990) is not in the
form (3) and therefore the slow diffusion detected is not Arnold diffusion in the sense
stated above.

3. THE FAST LYAPUNOV INDICATOR

It is well known (see, for example, Morbidelli 2002) that the different diffusion mech-
anisms which possibly exist in a dynamical system are mainly determined by the
geometry of resonances: the Chirikov’s one is characterized by resonance overlapping,
while Arnold’s mechanism for quasi–integrable systems is used when KAM theorem
applies, so that the phase space is filled by a large number of invariant tori and
the resonances are arranged as a regular web, the so–called Arnold web. A precise
numerical detection of the Arnold web (Froeschlé et al. 2000) is possible with the
Fast Lyapunov Indicator whose definition (Froeschlé et al. 1997) is related to the
Lyapunov exponent theory.

Given an n–dimensional map M , an initial condition x(0) ∈ Rn, and an initial tan-
gent vector ~v(0) ∈ Rn of norm one, let us define the FLI function FLI(x(0), v(0), T ),
T > 0, as:

FLI(x(0), v(0), T ) = sup
0<t≤T

log ||v(t)|| , (6)

where v(t) is the tangent vector at time t, which can be computed by the tangent
map of M :

{
x(t + 1) = M(x(t))
v(t + 1) = ∂M

∂~x (x(t)) v(t) .
(7)

The same definition holds for a continuous flow defined by a differential equation:

ẋ = F (x) , x ∈ Rn , F (x) ∈ Rn (8)

and the evolution v(t) of tangent vectors is obtained by integrating the linear varia-
tional equation of 8.

In the specific case of interest, i.e. the study of quasi-integrable Hamiltonian sys-
tems of the form (1) for any initial condition (I(0), ϕ(0)) and any initial tangent vector
(vI(0), vϕ(0)), the FLI at time t is:

log ‖(vI(t), vϕ(t))‖ . (9)

In order to kill non significant fluctuations of (9), in formula (6) we have considered
the supremum of the logarithm of the norm of the tangent vector. A running average
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could also have been used. Actually, as far as the mathematical development is
concerned, we drop these averaging procedures, which however are useful in numerical
computations. For ε = 0 it is evidently:

v0
I (t) = vI(0) , v0

φ(t) = vφ(0) +
∂2h

∂2I
(I(0))vI(0)t .

If ε is small we can estimate the evolution of ||~v|| with Hamiltonian perturbation
theory. Following (Guzzo et al. 2002) , if the initial condition is on a KAM torus
then the norm ||vε(t)|| satisfies:

||vε(t)|| =
∥∥∥∥

∂2h

∂2I
(I(0))vI(0)

∥∥∥∥ t +O(εαt) +O(1) , (10)

with some α > 0. As a consequence, the FLI takes approximately the value of the
unperturbed case on all KAM tori. Instead if the initial condition is on a regular
resonant motion then it is (Guzzo et al. 2002):

||vε(t)|| = ‖CΛΠΛortvI(0)‖ t +O(εβt) + tO(ρ2) +O(
√

εt) +O(
1√
ε
) (11)

with some β > 0, Λort being the linear space orthogonal to an integer lattice Λ (the
integer lattice Λ ⊆ Zn defines the resonance, for details see (Guzzo et al. 2002) and
CΛ is a linear operator depending on the resonant lattice Λ and on the initial action
I(0).

It is important to remark that the FLI on regular resonant motions is different
at order O(1) from the unperturbed case on regular resonant motions. In fact, the
linear operator CΛΠΛort is different from the Hessian matrix of h at order O(1), i.e.
CΛΠΛort does not approach ∂2h

∂I2 as ε approaches to zero. In this way, we detect the
presence of the resonances because the value of the FLI is different from the uniform
value assumed on the KAM tori. Finally, for initial conditions on chaotic resonant
motions the FLI is higher (since the tangent vectors growth exponentially with time)
than the value characterizing KAM tori. As a consequence the resonance structure
of the phase space can be detected computing the FLI with the same v(0) and the
same time interval t on a grid of regularly spaced initial conditions.

4. THE MODEL PROBLEM

In the following we consider either the quasi-integrable model Hamiltonian studied in
(Froeschlé et al. 2000, Guzzo et al. 2002), which is defined by:

H =
I2
1

2
+

I2
2

2
+ I3 + ε f , f =

1
cos(φ1) + cos(φ2) + cos(φ3) + 3 + c

, (12)

where I1, I2, I3 ∈ R, φ1, φ2, φ3 ∈ T, c > 0, or the quasi–integrable symplectic map
studied in (Guzzo et al. 2005, Froeschlé et al. 2005, Guzzo et al. 2006) and defined
by:

φ′1 = φ1 + I1 , φ′2 = φ2 + I2
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I ′1 = I1 + ε
∂f

∂φ1
(φ′1, φ

′
2) , I ′2 = I2 + ε

∂f

∂φ2
(φ′1, φ

′
2) (13)

where f = 1/(cos(φ1) + cos(φ2) + 2 + c), I1, I2 ∈ R, φ1, φ2 ∈ T, c > 0.
In both cases, when the parameter ε is suitably small, the KAM and Nekhoroshev

theorems (see Kuksin 1993, Kuksin and Pöschel 1994, Guzzo 2004 for the Nekhoroshev
theorem for maps) apply.

The crucial parameters to set in both models are ε and the value of constant c
appearing in the denominator of the perturbation. In fact, any Fourier harmonic εfk =
ε
∫

f(φ) exp(−i
∑

i kiφi)dφ of the perturbation f is proportional to ε and decreases
(asymptotically) exponentially with c

∑
i |ki|. The values of the two parameters must

be balanced so that ε is smaller than the value for the transition from the KAM
regime to the Chirikov regime (determined with numerical methods, see Froeschlé et
al. 2000, Guzzo et al. 2002) and the value of c is not too large so that harmonics
with large order

∑
i |ki| produce measurable effects on the finite time scale of our

numerical computations. We found suitable values for our experiments c = 1 for the
Hamiltonian and c = 2 for the map.

Finally, we choose such a perturbing functions because the Fourier spectrum of the
perturbation contains all harmonics at order ε. Any Hamiltonian or map satisfying
this requirement would be equivalent while a simple trigonometric potential could not
be sufficient to detect numerically the diffusion.

4. 1. THE FLI FOR DETECTING THE GEOMETRY OF RESONANCES

The geometry of resonances of (12) and (13) can be conveniently represented in the
two–dimensional plane I1, I2. Indeed, each point on this plane individuates univocally
the frequency of an unperturbed torus, and the resonances correspond to all the
straight lines k1I1 + k2I2 + k3 = 0 for (12), k1I1 + k2I2 + 2πk3 = 0 for (13), with
(k1, k2, k3) ∈ Z3\0.

Of course, the set of all resonances is dense on the plane. However, one can expect
that resonant orbits surround each resonance line up to a distance which decreases at
most as

√
ε/|k|τ , with τ > 0 suitable constant.

Fig. 1 shows the FLI chart of Eq. 12 for t = 4000 for a grid of 500 × 500 ini-
tial conditions regularly spaced on the action plane for ε = 0.003 (the other ini-
tial conditions are φ1 = 0, φ2 = 0, φ3 = 0, I3 = 1, the initial tangent vector is
(vφ1 , vφ2 , vφ3) = (0.5(

√
5− 1), 1, 1) and (vI1 , vI2 , vI3) = (1, 1, 1)).

The FLI is reported with a gray scale: the dark lines correspond to regular resonant
motions while the white lines correspond both to chaotic resonant motions or to
regular orbits very close to a separatrix. The orbits having a FLI value of about
log(t) constitute the background of KAM tori. It is therefore clear that in Fig. 1
the phase space is mainly filled with KAM tori. Therefore, the FLI chart shown in
the figure provide the important indication that for the considered values of ε the
system is in a regime of validity of the KAM and Nekhoroshev theorems. Also the
transition from this regime to the Chirikov one can be detected using the FLI, as we
did in (Froeschlé et al. 2000), and the identification of the transition value can be
refined (see Guzzo et al. 2002) using a sophisticated analysis of Fourier representations
(Guzzo and Benettin 2001).
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I1

I2

Figure 1: FLI values computed at t = 4000 on a grid of 500× 500 initial conditions,
for Hamiltonian (12), regularly spaced on the action axes I1 and I2 for ε = 0.003.
The other initial conditions are I3 = 1, φ1 = φ2 = φ3 = 0, (vφ1 , vφ2 , vφ3) = (0.5(

√
5−

1), 1, 1) and (vI1 , vI2 , vI3) = (1, 1, 1). The gray scale range from black (FLI≤ 3) to
white (FLI≥ 4.5). From Lega et al. 2003.

In the following section we focus the attention on a neighborhood of a specific
resonance, mainly the I1 = 2I2 (box in Fig. 1).

5. LOCAL AND GLOBAL ARNOLD’S DIFFUSION

5. 1. LOCAL ARNOLD’S DIFFUSION

In this section we describe the numerical experiment published in (Lega et al. 2003)
concerning the Hamiltonian of Eq. 12. Fig. 2 shows enlargements of the FLI chart of
the action space around I1 = 0.3, I2 = 0.15 for different values of ε. Figs. 2(top) cor-
respond to the box drawn in Fig. 1 for ε = 0.003. In these pictures the region between
the two white lines is the resonance associated to I1 − 2I2 = 0, and the two white
lines correspond to its hyperbolic border where diffusion is confined. These charts
provide us the possibility of choosing initial conditions in this hyperbolic border and
to follow their evolution by considering only the points of the orbits which intersect
the section of the phase space: S = {(I1, I2) ∈ R2, I3 ∈ R, φi = 0, i = 1, 2, 3}. Of
course this can be done numerically by selecting the points satisfying the conditions
σ = |φ1|+ |φ2| ≤ 0.05, φ3 = 0 (reducing the tolerance 0.05 reduces only the number
of points on the section, but does not change their diffusion properties). Let us re-
mark, that in such a way we minimize all projection effects and fast quasi-periodic
movements. What remains is a very slow drift along the border of the resonance.
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We have taken a set of 100 initial conditions in the small interval 0.303 ≤ I1 ≤
0.304, 0.143 ≤ I2 ≤ 0.144 corresponding to orbits of the FLI charts having FLI values
larger than 1.2 log(t), t = 1000, i.e. corresponding to chaotic orbits in the border of
the resonance. Such initial conditions are chosen far from the more stable crossings
with other resonances. We have plotted on the FLI charts all the points in the double
section described above. Let us remark that such points will appear on both sides of
the resonance (in fact the two white lines are connected by an hyperbolic region in
the six dimensional phase space).

Fig. 2 (top, left) shows the successive intersections with σ ≤ 0.05, φ3 = 0, up to
a time t = 107, while Fig. 2 (top, right) extends to t = 108. Diffusion along the
resonant line appears clearly, with speed of the fastest orbits of about 10−11, even for
this value of the perturbing parameter, which is one order of magnitude lower than
the threshold ε0. We have decreased ε and observed diffusion along the resonance
with smaller and smaller speed, up to ε = 0.001.

Increasing ε to 0.007 (Fig. 2 (middle, left) for t = 106, Fig. 2 (middle, right) for
t = 2.4 107) the situation does not change, except for the speed of the fastest orbits,
which is about 10−9. Instead, for ε = 0.02 (Fig. 2 (bottom, left) for t = 1.6 104, Fig.
2 (bottom, right) for t = 5105) there is still diffusion along the resonance, but the
higher order resonances intersecting the main one become evident and consequently
the region of diffusion extends a little also on the direction transversal to the reso-
nance. This happens because the value of the perturbing parameter is approaching
the transition value. The speed of the drift is of the order of 10−8. At the transition
value we expect that the region of the diffusive orbits almost replaces the region of
invariant tori. We remark, that even in this critical situation we still appreciate the
diffusion along the resonance on a time t = 105, with a speed of 4 10−7, while for an
higher value of ε = 0.04 let us emphasize that the set of orbits considered already
explores the regions between the resonances in a time t = 5 104.

5. 2. MEASURE OF THE DIFFUSION COEFFICIENT

In order to measure the local diffusion along the resonance, it is more efficient to
replace the definition of S(t) (given in Eq. 5) with a quantity S̃(t) which is adapted
to the specific resonance, such as:

S̃(t) =
1
N

N∑

j=1

[I(j)
2 (t) + 2I

(j)
1 (t))− (I(j)

2 (0) + 2I
(j)
1 (0))]2

which corresponds to the average of the Euclidean projection of (I(j)(t) − I(j)(0))
along the resonant line. The estimates of D versus 1/ε are reported in Fig. 3,left
in a logarithmic scale. Clearly, data are not well fitted with a linear regression,
which would correspond to a power law D(ε) = C(1/ε)m. Indeed, if we define 3
different sets of data, the first containing the values of D for 1/ε ≤ 55, the second for
62 ≤ 1/ε ≤ 250 and the third for 1/ε ≥ 330, and we perform local regression for each
set, we find the three different slopes m1 = −4.5, m2 = −6.9 and m3 = −8.8. This
is sufficient to exclude a global power law and the changes of slope are in agreement
with the expected exponential decrease of D, although an exponential fit of the form
D(ε) = C ′ exp(−κ/ε)α needs a larger interval of measure in ε. Using the map of
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Figure 2: Diffusion along the resonant line I1 = 2I2 for ε = 0.003 (top), ε = 0.007
(middle), ε = 0.02 (bottom) of a set of 100 initial conditions taken in the hyperbolic
border of the resonance in the interval 0.303 < I1 < 0.304 and 0.143 < I2 < 0.144.
The black points are the intersections of the orbits on the double section |φ1|+ |φ2| ≤
0.05, φ3 = 0. The integration times are respectively: t = 107 (top, left), t = 108 (top,
right), 106 (middle, left), 2.4 107 (middle, right), 1.6 104 (bottom, left), 5 105 (bottom,
right). The grey scale range from black to white. From Lega et al. 2003.
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Eq. 13, we have measured the variation of the local diffusion coefficient for orbits
diffusion along the same resonant line I1 = 2I2. Again, we have defined three sets
of data, performing a local regression for each of them, and found three different
slopes. The first set contains the values of D for ln(1/ε) ≤ 0.92, the second for
1.17 ≤ ln(1/ε) ≤ 2.28 and the third for ln(1/ε) ≥ 2.43, and the corresponding slopes
are respectively m1 = −4.2, m2 = −8.5 and m3 = −13.3. Such changes of slope are
in agreement with the expected exponential decrease of D, as for the Hamiltonian
case (Lega et al. 2003).

As usual, maps are more suited for numerical experiments and the result obtained
for the map span almost 2.5 order of magnitude in ε while they span only 1.5 order
of magnitude in ε for the Hamiltonian. It would be natural at this point, at least for
the map, to check if the exponential upper bound D(ε) < exp−(1/ε)b expected from
Nekhoroshev theorem can be obtained from our data, and in particular if one can
provide a numerical estimate of b. Indeed, an exponential fit of our data would give
the value b = 0.28 (Fig. 3, right) with apparently very good correlation coefficient of
about 0.99. However, how much this computation is meaningful is a delicate matter:
the apparently good correlation coefficient is due mainly to the small interval in ε
used for the exponential fit (Fig. 3); there are not theoretical predictions to compare
to the detected value; numerical studies (Benettin and Fassó 1999) have shown that
the exponential upper bounds found by perturbation theories are indeed only upper
bounds, while the true exchange of energy among the different degrees of freedom with
respect to a perturbing parameter typically follows more complicated functional laws.
For these reasons, we think it is necessary in the future to perform more numerical
studies of the problem.

Figure 3: Measure of the diffusion coefficient as a function of 1/ε. Left: For the
Hamiltonian model. From Lega et al. 2003. Right: for the map. From Froeschlé
et al. 2005 The change of slope of the three power law fits is in agreement with the
expected exponential decrease of D.
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5. 3. GLOBAL ARNOLD’S DIFFUSION

As it is usual, the numerical experiments with maps provide the possibility of exploring
the dynamics on much longer integration times with respect to the numerical exper-
iments with the continous flows. Therefore, for a long–term exploration of Arnold
diffusion, we focus our attention on the quasi–integrable symplectic map of Eq. 13
studied in Guzzo et al. 2005 for ε = 0.6. We have chosen twenty initial conditions
near (I1, I2) = (1.71, 0.81), i.e. far from resonance crossings and we have computed
numerically the map up to 1011 iterations.

The results are reported in Fig. 4: on the FLI chart of the action plane (I1, I2)
we plotted as black dots all points of the orbits which have returned after some time
on the section defined by |φ1| ≤ 0.005 and |φ2| ≤ 0.005. Fig. 4a shows only the
location of initial conditions (inside the circle), and Fig. 4b shows the result after
the intermediate (but already long) time t = 2.109. Figs. 4c,d show the result after
much longer times. To properly display such long term evolutions we needed to use
a zoomed out map of the action plane.

In both cases, the orbits filled a macroscopic region of the action plane whose
structure is clearly that of the Arnold web. The orbits have moved along the single
resonances, and avoided, in many cases, the center of the main resonance crossings,
in agreement with the theoretical results of Nekhoroshev 1977 which predict longer
stability times for motions in these regions. The larger resonances (which correspond
to the smallest orders |k|) are practically all visited, while this is not the case for
the thinnest ones (which correspond to the highest orders |k|). This is in agreement
with the theoretical results of Morbidelli and Giorgilli 1995, which predict that the
speed of diffusion on each resonance becomes smaller for resonances of high order.
Therefore, the possibility of visiting all possible resonances is necessarily limited by
finite computational time.

On average, the drift behaves as a diffusion process. In fact, in the case of the
map, the average evolution of the squared distance of (I1, I2) from the initial datum
increases almost linearly with time (Fig. 5), so that we can measure a diffusion
coefficient D ∼ 1.7 10−10 . The same qualitative behaviour appears when dealing
with Hamiltonian (12). The results (Guzzo et al. 2005) are more striking with
the map for obvious computational reasons. We remark that this diffusion coefficient
characterizes the global diffusion process, while diffusion coefficients measured in Lega
et al. 2003 (and reported in the previous Section) characterized local diffusion along
a specific resonance.

The described diffusion phenomenon is very different from Chirikov diffusion, where
the overlapping of resonances allows diffusion in macroscopic regions of phase space
in relatively short time scales and without apparent peculiar topological properties of
the stochastic region. For comparison with the Chirikov diffusion regime, in Fig. 6
we plot the evolution of 20 orbits for a high value of ε such that the system is in the
Chirikov regime.

It is also interesting to remark that the Largest Characteristic Indicator (whose
limit for t going to infinity is the largest Lyapunov exponent) computed on two orbits
with very close initial conditions (taken at a distance d = 10−4) in the Nekhoroshev
regime are different (Fig. 7, Froeschlé et al. 2005) and also they do not show clear
convergence up to t = 1011 iterations. Of course convergence can occur on a much
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Figure 4: The four panels correspond to the FLI map of the action plane (I1, I2) for
the map 13, with initial condition on the section S , with different magnifications.
The white region corresponds to the chaotic part of the Arnold web. Moreover, on
panel (a) we mark with a circle the location of the twenty initial conditions; on panel
(b,c,d) we mark with a black dot all points of the twenty orbits which have returned
after some time on the section S. We consider 2 109 iterations for panel (b); 2 1010

iterations for panel (c) and 1011 iterations for panel (d). From Guzzo et al. 2005.
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Figure 5: Average evolution of the squared distance of (I1, I2) from the initial datum
for the map, measured for the points on the section S. The total computation time
t = 1011 iterations has been divided in 103 intervals. For each initial condition, and
for each interval [(n − 1)108, n108], we have computed the average of the squared
distance of (I1, I2) from the initial datum, taking into account only points that in the
interval [(n− 1)108, n108] are on the section S. Then, we averaged over all particles.
From Guzzo et al. 2005.

Figure 6: Evolution on section S (black dots) of 20 orbits for the map (2) on a time
t < 2109 iterations for ε = 1.6. This figure as to be compared with Fig. 4b,c,d
showing clearly the fundamental differences between the diffusion of Arnold’s type
and that of Chirikov type. In the left upper corner we plotted, for reference the FLI
map. The white gray corresponds to chaotic orbits. The basic texture of the FLI
chart shows that the phase space is almost completely chaotic apart for the regular
resonant strips corresponding to I1 = 0 and I2 = 0 and their 2π periodic repetitions.
From Guzzo et al. 2005
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Figure 7: Evolution with time of the Largest Characteristic Indicator of two orbits
diffusing on the Arnold web and having close initial conditions (initial distance ∼
10−4). From Froeschlé et al. 2005

longer integration time. The same quantity, when computed on a single stochastic
region, as it is in the Chirikov regime, converges to the largest Lyapunov Exponent.
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