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Abstract.An analytical description and numerical investigation of the cylindrical plasma 

columns produced and sustained by а weakly damped surface-wave is presented. This paper 

suggests using a simple magnetic current model in order to obtain a general expression for 

normalized power of surface-wave. This expression can be deduced theoretically from the 

full-wave theory already used for such plasmas. The diagrams of normalized power are 

computed by an iterative procedure known as the fixed-point method. The fixed-point 

method appears as the natural choice for the numerical treatment of formulae that could 

arise in a broad class of physical problems usually recognized as guided surface plasma 

waves. 

 

1. INTRODUCTION 

 

The problem of the propagation of surface-waves along plasma columns had been 

known for years and has been treated by many authors [Trivelpiece 1967, 1959, 

Moisan et al 1977, 1979]. Electron waves on a plasma guide attracted the attention 

of investigators for a long time. A comprehensive review on this topic can be found 

in [Babovic1999]. We have developed software packets which avoid any starting 

approximations and successfully calculate expressions in its full-electromagnetic 

formulations. In this connection, the fixed-point method was completely tested in 

this paper throughout the calculation of the normalized power of surface-wave in 

the plasma column.  

 

2. STRUCTURE OF THE LINE 

 

We consider the propagation of an azimuthally symmetric ( 0=m  mode) surface-

wave along cylindrical structure (Figure 1) consisting of a plasma column 

surrounded by air. Figure 1 shows a sketch of the adopted model. The central part 

of the line consists of a glass tube of radius b , whose interior is filled with a 

homogeneous plasma of radius a . Of course, one could imagine plasma is 

suspended in a glass tube, and we treat the glass wall as a very thin one. The glass 

tube is a dielectric characterized with permittivity  g  (in air 1 r ).  
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                     (a)                                                                       (b) 

 

Figure 1: (a) Geometric characteristic and applied cylindrical system, (b) plasma created by 

the magnetic current. 

 

3. MAGNETIC CURRENT MODEL: FEATURES OF THE FIELD 

The mathematical treatment we begin writing Maxwell's equations in a form 

adapted to our case 

 0 /H E t  =   , (1) 

 0 / = −   − mE H t J . (2) 

where mJ  is the magnetic current density which in the cylindrical coordinate 

system has only azimuthal component and in the form of Dirac delta function is 

given as 

 ( ) ( )mJ U R z   = − . (3) 

The components of the electric field E  are ( , , )zE E E   and magnetic field H

( , , )zH H H  . The so-called H (or TE) field is composed of the group E , H , 

zH  and the E (or TM) field has the components H , E , zE . The typical method 

for finding the solution of wave equation connected to the mentioned problem of 

electromagnetic wave propagation along the plasma waveguide; (first, fairly 

general case wave equation is formed, and, secondly, the wave equation is solved 

in plasma, glass and air respectively; at the end, the boundary conditions were 

applied which is the working framework in [Kovačević 2000]and will be here 

omitted).  

 

4. RESULTS 

We begin with well-known expression for Q  [Aliev 1994] which will be the object 

of our attention: 
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where 
22 2

zE E E= +  is the amplitude of the electric field of axial symmetric 

surface-wave, and 0 i  = − ( i  is the imaginary part of complex plasma 

permittivity). The integration would be over the cross-section which is 

perpendicular to the wave propagation direction. Since we observe two mediums 

(plasma and the dielectric surrounding plasma), we can write 1 2Q Q Q= +  where 

the marks 1 and 2 denote the plasma and glass tube respectively (the assumption of 

infinitely thick dielectric was made). In accordance with the cylindrical system, we 

have 

 ( )22 21
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zQ E d E E d
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where 
2

1 0 0 ( / ) ( / )i p       = − =  and 2 0 0i gtg     = − = − . Here   is 

the collision frequency in the electron-neutral collision, and /i gtg  =  is tangent 

of loss. The equations (5) and (6) can be written in the form 1 1 1zQ Q Q = +  and 

2 2 2zQ Q Q = + . Substituting the function 1zE , E , 2 zE  and 2E  [Kovačević 2000] 

the following expressions are obtained 
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where ( )( )4 2

0 0(1 / ) / 8 1/Q a J  = , / ( )d d a =  .To make the reading of the 

text easier, the meaning of individual abbreviations is: 
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1 0 pu k = −  , 2 2

2 0 gu k = − . 

The total normalized power is  
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 1 2 1 1 2 2z zQ Q Q Q Q Q Q = + = + + + ,  (11) 

The equation (11) was treated by the fixed-point method using the first 

approximation 
1Y  of the dispersion relation [Babović 2002].  

 

 

Figure 2: Normalized power Q  versus normalized wavenumber X a= . 

 

5. CONCLUSION 

An analytical model, known as a magnetic current model, for the axialstructure of 

weakly collisional surface-wave sustained plasma was developed. In order to 

demonstrate the effectiveness of the fixed-point method, the normalized power vs. 

normalized wavenumber was calculated. The normalized power per unit length 

versus normalized phase coefficient for three values of tangent loss was presented. 

We notice that the absorbance of the power has a clearly expressed maximum 

around the point 3X for the given parameters; the magnitude of the maximum 

depends of dielectric losses such that Q  in generally increases as tg increases. 

This characteristic is very important for analyzing surfatron plasma as well as for 

calculation of the attenuation coefficient .  
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