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This book, both a monograph and a graduate textbook, is based on my
original research and partly on the materials prepared earlier for the 2007 and
2008 IARS Astrophysics Summer School in Istanbul, AstroMundus course ’Su-
pernovae and Their Remnants’ that was held for the first time in 2011 at the
Department of Astronomy, Faculty of Mathematics, University of Belgrade, and
a graduate course ’Evolution of Supernova Remnants’ that I teach at the afore-
mentioned university. The first part Supernovae (introduction, thermonuclear
supernovae, core-collapse supernovae) provides introductory information and
explains the classification and physics of supernova explosions, while the second
part Supernova remnants (introduction, shock waves, cosmic rays and particle
acceleration, magnetic fields, synchrotron radiation, hydrodynamic and radio
evolution of supernova remnants), which is the field I work in, is more detailed
in scope i.e. technical/mathematical. Special attention is paid to details of
mathematical derivations that often cannot be found in original works or avail-
able literature. Therefore, I believe it can be useful to both, graduate students
and researchers interested in the field.

I would like to thank the referees Dejan Urošević, Srdjan Samurović and
Aşkin Ankay for reading and commenting on the manuscript, as well as my
colleagues and friends: Dragana Ilić, Tijana Prodanović, Dušan Onić, Branislav
Vukotić, Milica Vučetić, Aleksandra Ćiprijanović, Jovana Petrović, Vladimir
Zeković and Marko Pavlović, for numerous stimulating discussions. At the end,
it remains only to thank Ministry of Education, Science and Technological De-
velopment of the Republic of Serbia for a grant towards printing expenses.
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1 Supernovae

1.1 Introduction

Supernovae (SNe) are probably the strongest explosions in the Universe which
mark the endpoint of life for some stars. They are quite rare events. The oldest
records of SNe are found in the ancient Chinese chronicles, and the last two SNe
observed in our Galaxy were discovered by Tycho Brahe and Johannes Kepler
in 1572 and 1604, respectively (Table 1). There are some indications that the
SN of the remnant Cas A, the strongest radio source in the sky, was recorded as
a faint star by the first Astronomer Royal John Flemsteed around 1680 (Green
& Stephenson 2002), but this remains uncertain. Today, there are thousands of
extragalactic SNe discovered (see Barbon et al. 1999). The first, S And, was
discovered by Ernst Hartwig in 1885 in the Andromeda’s galaxy M31, and the
closest was the well-known SN 1987A in the Large Magellanic Cloud. The term
super-novae was introduced only in 1934 by Walter Baade and Fritz Zwicky,
to distinguish this phenomenon from much less spectacular ”classical” novae
(Baade & Zwicky 1934). They suggested that SNe are explosions of stars and
that in these explosions neutron stars are born.

Table 1: Historical supernovae and their remnants (see Green & Stephenson
2002). The last in this table is the first extragalactic supernova S And.

Date Source Constellation Remnant

AD 185? Chinese chronicles Centaurus G315.4-2.3?
AD 1006 Monks in Switzerland and Italy Lupus G327.6+14.6
AD 1054 Chinese chronicles, Arabian astronomers Taurus Crab
AD 1181 Chinese chronicles Cassiopeia 3C58
AD 1572 Tycho Cassiopeia G120.1+2.1
AD 1604 Kepler Ophiuchius G4.5+6.8
AD 1680? Flamsteed? Cassiopeia Cas A
AD 1885 Hartwig Andromeda (S And)

There are actually two main classes of SNe: SNe Ia representing the ther-
monuclear explosion of a white dwarf in a close binary system (CBS), and core-
collapse SNe (II, Ib/c) resulting in the gravitational collapse of massive stars
and believed to leave a compact stellar remnant, a neutron star or a black
hole. Stripped-envelope SNe Ib/c represent a particular class of core-collapse
SNe. They occur with stars stripped of their hydrogen/helium envelope in CBS
and/or due to the strong stellar wind. Recently there were three SNe discovered:
SN 1997ef, 1998bw, 2002ap, which might form a new subclass Ic pec correspond-
ing to the hypernovae, possibly connected to some gamma-ray bursts (Hamuy
2003).

Historically, classification of SNe began by recognizing SNe I, with no hy-
drogen lines, and SNe II which do show hydrogen in their spectra (Minkowski
1941, see Fig. 1). SNe II make a quite heterogeneous class and can be further
classified as SNe II-L whose light curves linearly decrease after maximum, and
SNe II-P with a plateau on the light curves, due to the recombination of H
(Fig. 2). Newer classes are IIb with low H and IIn showing narrow emission
lines and probably interacting with dense circumstellar medium (CSM). There
are also peculiar SN II like SN 1987A and Zwicky’s types III, IV, V. A rather
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homogeneous class SN I was shown later to consist of two spectroscopically
and photometrically distinct subclasses: Ia as the only located in ellipticals and
Ib found in H II regions and spiral arms, which strongly suggested that their
progenitors were massive young stars with their H envelopes stripped. SNe Ic,
discovered later, show no helium lines either, and thus correspond to massive
stars stripped of their H and He envelopes. In addition, SN Ic pec (peculiar
Ic, hypernovae) show smooth spectra with very broad lines due to the high
expansion velocity i.e. high explosion energy.

Figure 1: Classification of supernovae (from Arbutina 2005).

After a brief introduction to SN taxonomy, we shall finish this subsection
with nomenclature i.e. naming conventions. The name is usually formed by
combining the prefix SN, the year of discovery and a one- or two-letter designa-
tion. The first 26 SNe of the year get an upper case letter from A to Z, while the
others get a pair of lower-case letters: aa, ab, ac, etc. SN 1885A and SN 1987A
are thus the first SNe discovered in 1885 and 1987, respectively. The discovery
is reported to the International Astronomical Union (IAU), which after confir-
mation, sends a telegram announcing discovery to the astronomical community.
Nowadays, automated searches and a growing number of discoveries have re-
sulted in the fact that not all SNe (not even the majority, see Gal-Yam et al.
2013) are being reported to IAU, and have lead some groups and projects, such
as Catalina Real Time Survey, Robotic Optical Transient Search Experiment
or Palomar Transient Factory, to develop their own naming conventions with
prefixes such as CSS, ROTSE, PTF.
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evolution of supernova remnants

Figure 2: Up: sketch of light curves in B band for different types of SNe, adapted
from Filippenko (1997) (after Wheeler 1990). Down: supernova spectra (from
Caroll & Ostlie 2006, data by Thomas Matheson, National Optical Astronomy
Observatory, and Alexei Filippenko, University of California, Berkley). t is time
after maximum light and λ is the rest wavelength.
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1.2 Thermonuclear explosions

SNe type Ia are widely used by astronomers as distance indicators or the so-
called ”standard candles”. This is because they are bright, their absolute mag-
nitude at maximum light reaches MV ≈ MB ≈ −19, and they represent a rather
homogenous class when compared to other SN types.1

The standard model for type Ia SN is thermonuclear explosion (Hoyle &
Fowler 1960), i.e. (delayed) detonation or deflagration (in the former case the
nuclear burning front is supersonic, while in the latter case it is subsonic) of a
carbon-oxygen white dwarf in CBS. In this scenario, when the secondary star in
CBS has evolved enough to fill its Roche lobe, it will start to transfer mass to the
white dwarf companion. The accreted matter may form a shell at the surface of
white dwarf and if temperature in the shell rises high enough a thermonuclear
flush may happen. This is the typical mechanism for novae outbursts.

However, if the mass transfer rate is high and the white dwarf has a mass
close to the Chandrasekhar’s limit, M ≈ 1.4 M�, additional mass will cause
instability and collapse which will lead to a rise of temperature and ignition of
carbon and oxygen. In normal, main sequence stars supported by thermal pres-
sure of gas and radiation, the pressure would rise and material would expand
and cool to reestablish equilibrium. But since in the equation of state of degen-
erate gas the pressure is independent of temperature, there is no ”safety valve”
– the rise in temperature will not be followed by the rise in pressure and this
is why nuclear burning processes in degenerate conditions tend to be explosive.
In the case of white dwarfs, this will lead to a complete disruption of star.

Typical SN type Ia release in total the energy of about 1051 ergs. The ex-
plosion is usually so fast (takes about a second) and violent that for a few weeks
the star can outshine its parent galaxy. Type Ia SNe light curves are powered
by the decay of radioactive elements created in nuclear reactions (Arnett 1996),
namely

56Ni→ 56Co→ 56Fe,

which explains the characteristic shape of the light curve, its peak (nickel de-
cay) and tail (decay of cobalt). The initial rise to a peak takes about two weeks,
followed by a gradual decrease over the period of months. Their main spec-
tral characteristic is a strong line of ionized silicon in early spectra, but also
magnesium, sulfur and calcium, and iron in later phases.

Type Ia SNe are the only SNe whose progenitors are old, population II
stars. We know from stellar evolution theory that massive stars mainly occur
and remain in dense environments (such as molecular clouds) owing to their
shorter lifetimes, while the longer-lived lower-mass stars tend, on average, to be
found in less dense environments such as inter-arm regions of spiral galaxies or
high above the galactic plane (see Fig. 3). These are the only SNe located in
gas-deficient elliptical galaxies.

Most commonly used deflagration model for SNe Ia with detailed nucleosyn-
thesis is W7 (Nomoto et al. 1984). The density profile for model W7 one
day after the explosion is given in Fig. 4. The maximum velocity is around
v ∼ 22000 km s−1. The inner part is often approximated by a flat and the outer

1This is not entirely true, because more careful observations have revealed differences
among them. Events that are intrinsically dimmer near maximum light tend to decline more
rapidly, but for most SNe Ia this is quantifiable, though there are some exceptions (Gonzalez
Gaitan 2011).
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Figure 3: Type Ia supernova SN 1994D in spiral galaxy NGC 4526 in Virgo
cluster (NASA/ESA, The Hubble Key Project Team and The High-z Supernova
Search Team).

part by a steep power-law ρt3 ∝ v−n, where v = r/t is mass element’s velocity
and n is usually taken to be 7 for SNe type Ia, but it can also be well approx-
imated with an exponential function ρt3 ∝ e−v/ve , ve being e-folding velocity
(Jeffery 1999).

There is also an alternative model for SN Ia, the so-called double degenerate
scenario (Iben & Tutukov 1984, Webbink 1984), which involves a merger of two
white dwarfs in a CBS, rather than the explosion of one Chandrasekhar white
dwarf in a cataclysmic variable – single degenerate scenario (Whelan & Iben
1973). For example, SN 2007if ejecta might have 2.4 M� (Scalzo et al. 2010).
Compact double white dwarf systems are believed to had gone through two
stages of common envelope phase, during which a more evolved star practically
engulfs its companion. In compact white dwarf systems this phase happens for
the first time when the more massive primary to become a white dwarf engulfs
the secondary star, and for the second time when during the curse of evolution
the secondary expands and engulfs the already formed white dwarf. During the
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Figure 4: Density profile for W7 model 1 day after the explosion: numerical
data and exponential fit.

common envelope phase a more compact star orbiting inside the envelope of
the giant will lose energy due to friction and will slowly spiral-in towards the
giant’s core. This will produce heat and thus the orbital energy of the binary
will practically be used to expel the envelope of the giant, leaving a compact
binary system with two white dwarfs at the end of the second stage. The
system will continue to lose energy due to the emission of gravitational waves or
other mechanisms, and the stars will continue to spiral toward each other and
will ultimately merge. If the total mass of the compact binary is greater than
Chandrasekhar’s mass, the merger can lead to type Ia SN explosion.

It is hard for astronomers to say which model for SN Ia is more favorable.
No progenitor of type Ia SN has been seen so far. If the single degenerate
scenario is correct, we may expect to find a runaway giant close the center of
type Ia supernova remnant (SNR). This search has turned out to be negative for
Kepler SNR which is believed to be type Ia (and some other remnants), at least
for the surviving red giant companion (Kerzendorf et al. 2014). On the other
hand, Krause et al. (2008) detected a light echo of Tycho’s SN and spectrally
confirmed that it was type Ia, while Ruiz-Lapuente et al. (2004) identified the
so-called Tycho G star moving at more than three times the mean velocity of
surrounding stars, as the possible surviving companion of Tycho’s SN.

SNe type Ia are rare events, by human criteria. They make about 25 per
cent of all SNe in spiral and irregular galaxies and the exact rate depends on
galaxy luminosity or mass (Mannucci et al. 2005), but in a galaxy like ours
one SN explodes every few hundred years. Tycho and Kepler SNe were the last
two observed in our Galaxy, but this does not mean that SNe did not happen.
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G1.9+0.3 is the youngest Galactic SNR, believed to be type Ia, only 130 years
old (Reynolds et al. 2008). A large amount of gas and dust toward the Galactic
center where it resides prevented astronomers from seeing this SN explosion.

1.2.1 Cosmological supernovae

Because of their high luminosity, SNe Ia are seen at very large cosmological dis-
tances of thousands megaparsecs. They played a crucial role in the discovery of
acceleration of the Universe in the late 1990s for which Saul Perlmutter (Super-
nova Cosmology Project), Adam Riess and Brian Schmidt (High-z Supernova
Search Team) were awarded the Nobel prize in physics for 2011 (Riess et al.
1998, Perlmutter et al. 1999).

Simply put, if all SNe Ia have nearly the same luminosity or absolute mag-
nitude at maximum light, we can measure their apparent magnitudes and de-
termine distances to their host galaxies. We know from Hubble’s time the
Universe is expanding and that the other quantities that we can measure are
galaxies’ redshifts z. In cosmology we can define distance in multiple ways. If we
use objects whose dimensions are known – the so-called ”standard rulers”, and
measure their angular dimensions, the distance obtained in this way is called
angular-diameter distance dA and it can be shown that Hubble’s law for small
z takes the form

H0 dA =
c

1 + z
(z − 1 + q0

2
z2 + . . .), (1)

where Hubble constant is H0 and deceleration parameter q0 is supposed to
be positive if the Universe is decelerating, which is what we expect if the only
relevant force – the gravity is attractive. If, on the other hand, we use ”standard
candles” like SNe Ia, then we are talking about luminosity distances dL and
Hubble’s law is

H0 dL = c(1 + z)(z − 1 + q0

2
z2 + . . .), (2)

H0 dL ≈ c(z +
1− q0

2
z2 + . . .). (3)

In both cases, for local Universe z → 0, we obtain the well-known linear Hubble’s
law v = z · c = H0 d.

Table 2: Data adopted from Ned Wright’s page∗ (Riess et al. 2007 dataset).

z dL

0.015 0.063
0.033 0.142
0.071 0.321
0.207 1.007
0.322 1.635
0.423 2.338

*http://www.astro.ucla.edu/~wright/sne_cosmology.html

If we use data from Table 2 and perform the least squares fit, we obtain
H0 ≈ 73 km s−1 Mpc−1 and q0 = −0.569 – the negative value suggesting the
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action of some repulsive force commonly known as cosmological constant Λ or
dark energy. Deceleration parameter can be expressed as

q =
1
2
Ωm + Ωr − ΩΛ, (4)

where Ωm, Ωr and ΩΛ are mass-energy contributions from matter (including
dark matter), radiation and dark energy, respectively. For the flat Universe
(curvature constant k = 0) we have

Ωm + Ωr + ΩΛ = 1, (5)

and if we further set Ωr = 0, the last two equations give us ΩΛ ≈ 0.71 and
Ωm ≈ 0.29 which are close to the real values.

1.3 Core-collapse supernovae

Core-collapse SNe are believed to follow the gravitational collapse of massive
stars at the end of their evolution, and the formation of neutron stars and
black holes. This is the most probable scenario for stars with initial masses
M � 8 M� (Nomoto 1984).

Stellar lifetime is primarily based on thermonuclear reactions in their cores.
Massive stars will consume nuclear fuel more rapidly which will result in their
shorter lifetimes. When hydrogen in stellar core is exhausted, a star will succes-
sively burn heavier and heavier elements – a process that for the most massive
stars (M � 12 M�) will end with iron. The collapse is usually triggered when
the core reaches the mass � 1.4 M� that degenerate electrons cannot support.
What follows is the photodisintegration of iron at high temperatures

56Fe + γ → 13 4He + 4 n

and electron capture p + e→ n + ν, on iron-group elements in a core (Fowler &
Hoyle 1964, Woosley & Weaver 1986).

These processes basically cancel out millions of years of chemical evolution,
leading to the loss of pressure support and implosion of the core. The iron core
takes about a second to implode. The subsequent explosion in the envelope is
the process that is still not understood well.

It is quite certain that the explosion is not dominantly thermonuclear, but a
consequence of core collapse. Electron capture by protons will create more and
more neutrons. As the pressure of degenerate neutrons increases, the collapse of
the core is at some point halted and a neutron star is born. At the same time,
the still infalling matter will bounce off the surface of this proto-neutron star
and a strong supersonic shock wave will propagate back through the envelope.
It is, however, questionable whether the shock will have enough energy to reach
the outer layers of the star. In this situation the shock wave can stall, but the
matter will continue to fall onto the neutron star and with enough matter it
can crush into a black hole. Current calculations thus show that core bounce
and shock formation alone are not sufficient to cause an explosion (see Wheeler
2003 and references therein).

However, each electron capture reaction, along with a neutron, creates a
neutrino. Neutrinos will actually carry away most of the binding energy of a
neutron star, ∼ 1053 ergs. While normal matter is transparent to neutrinos,

8
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since they only interact through the weak force, neutron star matter is so dense
that it can trap a small fraction of them and their energy may be enough to
invigorate the shock and yield an explosion. Aside from neutrinos, important
part in core-collapse SN explosions may be played by rotation and magnetic
fields.

The majority of core-collapse SNe are type II with outer hydrogen layers
still preserved. They make around 60 per cent of all SNe in spiral and irregular
galaxies (Mannucci et al. 2005). No SN II has been observed in an ellipti-
cal. Spectroscopically, most SNe II around maximum, along with hydrogen
absorption lines show solar abundances in ejected material approximately. An
important subclass – type IIb, however, show weak hydrogen lines, and another
one – type IIn, show narrow emission lines and other evidence of interaction
with curcumstellar matter shed by progenitor star before explosion. In the
later phases, when ejecta has expanded enough to become optically-thin, type
II SNe show strong emission lines of hydrogen, but also oxygen, magnesium and
calcium, characteristics of the evolved interiors of massive stars.

Photometrically, SNe II can be divided into two main subclasses, type II-P
and type II-L. Their absolute magnitude at maximum light is around MB ≈ −17
to −18 with a large dispersion. The optical light curves of type II-P SNe show
a rise to a peak brightness in a week or two, then a drop followed by period of
a month or two when the light output is nearly constant – the plateau, after
which luminosity goes further down. This photometric behavior is the basis
for the so-called Expanding Photosphere Method (EPM, see Kirshner & Kwan
1974) for distance determination. The plateau is generally considered to be a
consequence of the recombination of hydrogen in the envelope. Ionized hydrogen
has a very high opacity, while neutral hydrogen has a very low opacity (except
at a few special wavelengths). In stars, hydrogen starts to recombine at around
10000 K. In the outer layers of a SN, the densities are considerably lower than
those in the photosphere of a typical star and thereby recombination occurs at
around 6000 K. By a convenient coincidence, density and temperature of the
gas at the opaque/transparent boundary – the effective photosphere – remains
roughly constant. In a typical type II-P SN, thus, there is a period of several
weeks to months during which we see an expanding photosphere of roughly
constant temperature. If we combine equations

R = v · t, (6)

L = 4πR2σT 4, (7)

where σ is Stefan-Boltzmann constant, with photometric relation

M = m + 5− 5 log d, (8)

by measuring v, t and apparent magnitude m, we can obtain luminosity L,
absolute magnitude M and, finally, distance d. From Eq. (7) it is obvious that
for to have such a large luminosity, with a temperature of only few thousands K,
the SN must be huge – which is consistent with type II SNe dominantly being
explosions inside red giants. Unlike type II-P, type II-L SNe after the peak
brightness show a steady (linear) decline, implying a mass loss and expulsion
of a large portion of the H envelope of the progenitor star. Light curves of
both II-P and II-L SNe are powered by deposited SN energy rather than by the

9
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radioactive decay of nickel. Only the long tail subsequent to the decline from
the plateau in type II-P SNe is consistent with the radioactive decay of a small
amount of cobalt.

The brightest SN detected since the invention of telescope was SN 1987A in
the outskirts of the 30 Doradus (or Tarantula Nebula) in the Large Magellanic
Cloud (Fig. 5). This SN is one of the most extensively observed object in the
history of astronomy. It was observed in all wavelengths, from γ-rays to radio,
and for the first time neutrinos were detected from an astronomical source other
than the Sun, a couple of hours before the visible light. SN 1987A was, however,
a very peculiar type II SN. Unlike most type II SNe, its light curve was powered
by radioactive decay, but because only a small amount of nickel is synthesized
in core-collapse SNe, SN 1987A was not very luminous. Furthermore, due to its
proximity it was possible to identify progenitor star in archival images and it
was shown that it was, surprisingly, a blue supergiant. Subsequent observations
have not detected a neutron star either. SN 1987A is surrounded by three bright
rings – inner and two outer rings, ionized by ultraviolet emission from SN. What
we will observe in the following years is the early evolution of SNR – ejected
material interacting with CSM, including the innermost ring already reached by
the shock.

Density profiles of type II SNe can be very different due to their hetero-
geneity. It is sometimes assumed that they can be roughly approximated with
a broken power-law, the outer part being described by a steep power-law with
n = 12, but also with piecewise exponentials (Pizzochero 1990).

1.3.1 Stripped-envelope supernovae

It is important to recall that although stripped-envelope SNe phenomenologi-
cally belong to type I SNe (no hydrogen), they are physically core-collapse SNe
whose progenitors are young stars i.e. population I objects. SNe Ib are those
showing strong helium absorption lines in their early-time photospheric spectra,
whereas SNe Ic are those in which there are very weak or no helium lines at all
(see Filippenko 1997). SNe Ib/c light curves, as the ones for SNe Ia, are believed
to be powered by radioactive decay. However, since type Ia SNe are generally
brighter, they must produce more nickel, of order 1/2−1M�, while for types Ib
and Ic, the amount of nickel required to power the light curve is only ∼ 0.1M�
consistent with the amount synthetized when the shock wave produced during
core-collapse impacts the layer of silicon surrounding the iron core (Wheeler
2003). Absolute magnitude for type Ib/c SNe at maximum light varies, but the
average value corrected for extinction might be MB ≈ −18 (Arbutina 2007).

Since SNe type Ib show no hydrogen and type Ic no helium either, they are
thought to occur with stars stripped of their hydrogen/helium envelope due to
mass loss either because of the strong stellar wind or mass transfer/loss in CBS.
According to Nomoto et al. (1994) the progenitor of type Ic SN might be a mas-
sive CO star in CBS formed after two stages of mass transfer/common envelope
evolution during which both H and He were removed. Similarly, Woosley et al.
(1995) modelled progenitors of type Ib SNe as helium, Wolf-Rayet stars in CBS
– only one phase of mass transfer was invoked.

SN 1993J was a SN observed in the M81 galaxy, showing features typical of
type II SNe near the maximum light, but with the strong helium lines charac-
teristic of type Ib SNe at later times (Schmidt et al. 1993). This implies that
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the progenitor star had an unusually thin hydrogen envelope. Hence, the SN
has been classified as a type IIb, an intermediate class between type II and type
Ib. Since M81 is relatively close, it was possible to identify the progenitor as a K
supergiant star, and later even the presence of the long suspected B supergiant
companion (Maund et al. 2004).

A typical type Ic SN is SN 1994I in the Whirlpool galaxy, M51. In the follow-
ing years there were three SNe discovered: SN 1997ef, 1998bw, 2002ap, which
are now considered to form a new subclass, Ic pec, corresponding to the hy-
pernovae (Paczyński 1998), possibly connected to some gamma-ray bursts (see
Hamuy 2003). These SNe have smooth spectra with broadened lines due to high
expansion velocity i.e. explosion energy ∼ 1052 ergs, at least an order of mag-
nitude higher than usual. Hypernovae and long gamma-ray bursts (GRBs) are
frequently associated with the collapsar model (MacFadyen & Woosley 1999).
A star with a core mass � 10-15 M� (or main-sequence mass � 30-40 M�)
ultimately collapses into a black hole. If such a star is rotating slowly, it will
produce a failed SN, but if the star is rotating fast enough, the accretion disk
will form and powerful jets may be produced. During its propagation through
the star, the jet deposits enough energy to explode, eventually, all the star that
has not already collapsed to the disk. After the jet breaks through the surface
of the star, a highly relativistic flow can emerge. Physical details behind these
processes and observational effects such as inclination i.e. viewing angle can
lead to many possible outcomes, ranging from bright GRBs to faint GRB-SNe
like SN 1998bw.

1.3.2 Some special supernovae

At the lower end of the mass range for core-collapse SNe, M ∼ 8-12 M�,
evolution might look differently than in the standard scenario described in the
previous section. In these stars carbon burns to create neon and magnesium,
but oxygen does not get hot enough to burn. The collapse may thus start before
the iron core had been formed. Such SNe are known as electron-capture SNe,
in which e− capture by Ne and Mg lowers the pressure and inaugurates the
collapse. During the collapse, the remaining nuclear fuels are converted to iron,
so the net result is a collapsing iron core, as before, but there may be some
differences that could affect the explosive outcome (Wheeler 2003). These SNe
are thought to be less energetic, ∼ 1050 ergs, but their observational features
are not completely clarified yet.

At the high-mass end we may see the so-called pair-instability (or pair-
production) SNe which are presumed to be the final stage of the evolution of
extremely massive stars, M > 100M�, in whose cores the temperature is so
high that electron-positron pairs are created from high energy γ-ray photons.
The process will lower the pressure and induce a partial collapse followed by
oxygen ignition. Fusion releases nuclear energy that heats the material further,
which in turn speeds up the fusion, in a runaway reaction. The explosion is
believed to disrupt the whole star (no compact stellar remnant). It would also
form a huge amount of nickel. A good candidate was found in SN 2006gy which
was after hundred days more luminous than the brightest SNe Ia, but afterward
faded too quickly to have been powered by radioactivity. Nevertheless, another
extremely luminous supernova, SN 2007bi, showed the right characteristics and
probably is a pair-instability SN (Gal-Yam 2012). Very massive high metallicity
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stars are probably unstable due to the Eddington limit, so pair-instability SN
are presumed to occur primarily in Population III stars – the first stars in the
Universe.
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2 Supernova remnants

2.1 Introduction

While SN events happen quite suddenly and last for a relatively short time, in
astronomical standards (historical SNe were visible for about a year), SNRs – the
material ejected in an explosion, continue their life through the interaction with
the surrounding interstellar medium (ISM) for thousands, and in extreme cases
up to a million years. SNRs are responsible for enrichment of ISM with heavier
elements produced in nucleosynthesis in stars and for creating turbulence in
ISM from which the second generation stars, like our Sun, have been born. SNe
and SNRs thus might be indirectly responsible for our own, human existence
(as a carbon-based life).

SNRs are generally characterized by the interaction of SN ejecta with the
surrounding ISM. In some cases the ejected material primarily interact with the
dense CSM in the vicinity of the star during the phase known as the radio SN.
The main features of SNRs are strong shock waves, amplified magnetic field,
ultra-relativistic particles (cosmic rays) generation and associated synchrotron
radiation. Synchrotron radiation is dominant at radio frequencies, which is why
most SNRs are identified in radio (Urošević et al. 2005, Green 2014).

In optical search for SNRs we use the fact that the optical spectra of SNRs
have elevated [S II]/Hα emission-line ratios, as compared to the spectra of nor-
mal H II regions. So far, through this technique, more than 1000 optical extra-
galactic SNR candidates have been detected (Vučetić et al. 2015). This emission
ratio has proven to be an accurate means of differentiating between shock-heated
SNRs (ratios > 0.4, but often considerably higher) and photoionized nebulae
(0.4, but typically < 0.2). The physical basis for this is that in typical H II re-
gions, sulfur exists mainly in the form of S III, yielding low [S II] 6717,6731 nm
to Hα emission ratios. After the shock wave from an SN explosion has propa-
gated through the surrounding medium and the material has cooled sufficiently,
a variety of ionization states are present, including S II. This accounts for the
increased ratio [S II]/Hα observed in SNRs (Blair & Long 2004). Generally, the
material in H II regions is too ionized to produce forbidden lines of [O I], [N II]
or [S II], while in SNRs both, models (Allen et al. 2008) and observations show
optical spectra containing these lines (Long 2016).

SNRs can be broadly classified as shell-type or plerions (filled-center). Math-
ewson et al. (1983) classified SNRs into four categories based on their optical fea-
tures: Balmer-dominated, oxygen-rich, plerionic/composite, and evolved SNRs.
It has been suggested (van den Bergh 1988) that Balmer-dominated SNRs are
connected to type Ia SNe – deflagration of a CO white dwarf, and are remnants
with high velocity, non-radiative, collisionless shock interacting with ISM, while
oxygen-rich SNRs originate in the type Ib (Ic) event – explosion of a massive
O or a Wolf-Rayet (W-R) star, and have emission arising from a shock inter-
acting more with the circumstellar material lost by the progenitor in the last
stages of the stellar evolution. Similarly, plerionic/composite SNRs originate
in type II events – explosion of a massive B star, and derive their energy from
the rotational energy losses of a stellar remnant – neutron star (pulsar driven
plerions), plus the shock wave powered shell (in the case of composite type).
All three of these classes eventually become evolved remnants. This picture is
probably oversimplified. Although, in some oxygen-rich SNRs like Pup A and
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Figure 6: Supernova remnant Cas A in radio (Image courtesy of National Ra-
dio Astronomy Observatory / Associated Universities, Inc. Investigators: L.
Rudnick, T. Delaney, J. Keohane and B. Koralesky, image composite by T.
Rector).

Cas A (Fig. 6) radio-quiet neutron stars have been discovered, some do show
pulsars and plerions. It is quite difficult to deduce SN type from observations
of its remnant, and especially to separate type Ib/c and type II SNRs. X-ray
emission lines diagnostics has been a valuable tool in performing this task.

Owing to an increasing number of space observatories in recent decades
(ROSAT, ASCA, Chandra, XMM-Newton), many SNRs have been observed in
X-rays (Fig. 7). A large number of SNRs emit ”soft” X-ray (� 10 keV) thermal
bremsstrahlung radiation (free-free emission). Older remnants evolving in dense
environment (with hydrogen number density nH ∼ 300 cm−3) may also emit
thermal bremsstrahlung in radio domain (Urošević & Pannuti 2005, Onić et al.
2012, Onić 2013). On the other hand, there are considerable efforts nowadays in
detecting and analyzing non-thermal X-rays in younger remnants. Non-thermal
X-rays are likely synchrotron or non-thermal bremsstrahlung emission, while
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Figure 7: Supernova remnants in X-rays. Top-down and left-right: Cas A, Ke-
pler, Tycho, Crab (Chandra X-ray Observatory / Harvard Smithsonian Center
for Astrophysics / NASA).

thermal emission may be bremsstrahlung, recombination continuum (free-bound
emission), and two-photon emission (see an excellent review by Vink 2012).

Morphologically, SNRs in X-rays resemble their radio counterparts and have
a visible emitting shell. There is, however, a special class of SNRs, not com-
pletely understood, the so-called mixed-morphology SNRs with a radio shell
with flat radio spectra and thermal X-rays emitting interior (see Onić 2013).

SNe release about Eo ≈ 1051 ergs in the form of kinetic and thermal energy
(in the case of hypernovae this number is larger, ≥ 1052 ergs).2 Only about one
per cent of this energy is radiated in the form of light and seen as a SN event.
The ejected mass is of order Mo ≈ 1−10M� (or even more) depending on SN
type. Typical SN expansion velocities v2 ∼ Eo/Mo range from a few thousand
to a few tens of thousand km s−1. These are also the initial shock velocities in
SNRs.

2Most of the energy is, of course, taken away by neutrinos, about 1053 ergs, for a typical
core-collapse SN.
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Figure 8: Evolution of supernova remnants (Arbutina 2005).

The standard picture of evolution of SNRs (Figs. 8 and 9), from the explosion
to the end of expansion, involves four different phases3 (Woltjer 1972):

(i) free expansion,

(ii) adiabatic i.e. Sedov’s phase (Sedov 1959),

(iii) radiative phase, and

(iv) dissipation.

During the first phase, after the explosion, ejected material expands practi-
cally in vacuo with the constant velocity v2

s = (dR/dt)2 ∝ Eo/Mo, i.e.

R ∝ (Eo/Mo)1/2t, (9)

where R and t are the radius of SNR and the time since the explosion, respec-
tively, Eo is SN energy and Mo is the mass of the ejecta. In terrestrial explo-
sions we expect a shock wave to form in collisions between the ejected and the
surrounding particles. In space conditions where hydrogen density is as low as
nH ∼ 1 cm−3 and ejected material velocity is typically v ∼ 10 000 km s−1, shock
wave in collision processes would never form. The key role in these collisionless
shock waves is taken over by the magnetic field which serves a massless barrier
between the SN ejecta and the swept-up ISM (Rohlfs & Wilson 2004). The term
free expansion for this first phase of evolution of SNRs is more historical, since
there may be significant deceleration even in this phase. Transition from this
to the subsequent phase in the evolution of SNRs is often described with the
solutions given by Chevalier (1982).

3We shall focus on shell-type SNRs. In the case of plerions, the pulsar presence can
significantly complicate this simple four-phase picture.
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Figure 9: Density profile of supernova remnants in different phases. Adapted
from Shu (1992).

When the shock wave sweeps-up enough space so that the ISM mass many
times exceeds the mass of SN ejecta 4πR3ρo/3 �Mo, a SNR enters the second
phase of evolution. During this phase the shock wave decelerates according to
the law vs = dR/dt = 2R/(5t), i.e.

R = 1.15 (Eo/ρo)1/5t2/5, (10)

which is given in the analytical solution of Sedov (1959), for a point-like ex-
plosion in the uniform medium with density ρo. Sedov phase is approximately
energy-conserving (

∫
(dE/dt)raddt � Eo) i.e. the expansion is nearly adiabatic.
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Figure 10: Trinity test, Alamogordo atomic bomb probe, New Mexico, 1945
(Los Alamos National Laboratory).
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Independently of Sedov, this solution was found numerically by Taylor (1950),
who used it to deduce the energy released in the Alamogordo atomic bomb
probe. In 1950, by analyzing old photographs and applying his blast wave so-
lution, Taylor calculated and published the explosion energy of the first atomic
bomb, which was considered as classified information at the time! From Fig. 10
we estimate that at t = 0.006 seconds the radius of the shock wave was approx-
imately R ≈ 80 meters. From Eo ≈ (R5ρo)/t2 we can estimate Eo ∼ 1021 ergs
∼ 25 kilotons (1 g of TNT = 4 ×1010 erg, air density is about ρo = 1.2 kg m−3).

When the temperature behind the shock drops, the energy losses due to the
thermal radiation become significant and a remnant enters the radiative phase
of evolution. The strict radiative phase last short since the gas cools quickly
and loses all the energy. It is expected in this epoch that SNR undergoes a
phase of dense shell formation. Afterwards the remnant continues to expand on
account of the internal pressure behind the shell, as a pressure-driven snowplow:
R ∝ t2/7 (McKee & Ostriker 1977, Bandiera & Petruk 2004).4

Finally, when the expansion velocity becomes comparable with the sound
speed in the surroundings, v2

s ∼ c2
s = γPo/ρo, the SNR will merge into the

interstellar medium and the evolution ends. If we neglect the radiative losses
(which may have some justification for SNR in low-density ISM) and assume
that all the energy was spent for work against external pressure, 4πR3Po/3 � Eo

can give us some estimate of the largest radius up to which the remnant had
expanded.

A problem in hydrodynamical description of the evolution of SNRs is the fact
that all exact solutions of Euler’s equations are obtained by similarity methods
where we introduce dimensionless variable

ξ = crt−λ, (11)

from which follows the law R ∝ tλ, i.e. v ∝ R1−1/λ. Only for this power law
expansion can we obtain a complete solution for an SNR, from the shock wave
position to the center of explosion. The division into evolutionary phases is thus
a necessity if we want to obtain analytical or semi-analytical results.

2.2 Shock waves

Shock waves are very important in astrophysics. They appear in many astro-
physical objects and phenomena, such as SNe and SNRs, but also in the solar
corona, where they might be responsible for heating, and let us not forget plan-
etary and stellar bow shocks.

We know from standard courses of fluid dynamics that small-amplitude
acoustic disturbances in isentropic (constant specific entropy) fluid will propa-
gate with the adiabatic speed of sound c2

s = γ P
ρ . If magnetic field is present,

equations of ”ideal” magnetohydrodynamics (MHD) (when conductivity σ →
∞)

∂ρ

∂t
+∇ · (ρv) = 0, (12)

4There is a possibility that SNR from the energy-conserving ends in the momentum-
conserving phase 4πR3ρovs/3 = const, as a momentum-conserving snowplow: R ∝ t1/4

(Bandiera & Petruk 2004).
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ρ
Dv
Dt

= −∇P +
1
c
j×B (j =

c

4π
∇×B), (13)

∂

∂t

(
ρ(

1
2
v2 + ε) +

1
8π

B2
)

+∇ · (ρv(
1
2
v2 + h) + S

)
= 0 (14)

(
S =

c

4π
E×B, E = −v

c
×B

)
,

∂B
∂t

= ∇× (v ×B), (15)

will also give rise to Alfvén, fast and slow magneto-acoustic waves. In the last
set of equations we used material or Lagrange derivative: D

Dt = ∂
∂t + (v · ∇),

j is current density, S is Poynting vector, E and B electric and magnetic field,
respectively, ε = u

ρ is energy per unit mass, u = 1
γ−1P energy density (energy

per unit volume) and h = ε+ P
ρ = γ

γ−1
P
ρ the specific enthalpy. Of course, we also

have ∇·B = 0 – the magnetic field lines are closed i.e. the field is ”sourceless”.
Eq. (15) is differential equation form of Alfvén’s theorem that magnetic field
lines are practically ”frozen” in ideal plasma. If B = 0 we get Euler equations.
Energy equation can be replaced with internal energy conservation (the first law
of thermodynamics for adiabatic conditions):

Dε

Dt
+ P

D

Dt

(1
ρ

)
= 0. (16)

Let us go back to sound propagation. If we ignore dissipation (action of
viscosity) acoustic waves having finite amplitude of any waveform will always
steepen. This is because acoustic sine waves are obtained by linearization of Eu-
ler equations (all higher order terms were neglected). Nonlinear acoustic waves
cannot maintain a constant form. A part of the wave that has a density excess
has a sound speed larger than the undisturbed speed of sound c2

s = γPo/ρo, and
a part with the density deficit travels slower. The crest of the wave thus tends to
catch up with the through, which will distort a sine wave, eventually producing
a front – a ”surface” at which density rises almost instantaneously. Of course,
viscosity will make this discontinuity layer to have some finite thickness, but on
the length scale of interest we will not see any smooth variations. High density
(and high pressure) region will continue to push the front ahead faster than the
undisturbed sound speed and eventually front completely overruns the trough
of the wave propagating at supersonic speed through the undisturbed medium.
At the same time, the tail of the wave will begin to lag behind the front, so that
the profile gets stretched.

What we have just described is the steepening of acoustic waves into shock
waves (Shu 1992). Unlike a steady shock wave driven by a constant source of
momentum and energy (such as an airplane), shock waves created by explosion
(an initial input of energy) are usually called blast waves.

There are actually two types of discontinuities in fluids: stationary (tangen-
tial and contact) and shocks. In stationary discontinuities there is no fluid flow
across the surface i.e normal component of fluid velocity is zero. In tangential
discontinuities normal component of magnetic field, with respect to the surface,
is also zero, while in contact discontinuities it is not.
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2.2.1 Adiabatic shocks

Adiabatic shock is actually a misnomer for energy conserving i.e. non-radiative
shock. The term ”adiabatic” refers to ”entropy-conserving”, while entropy is
precisely what is not conserved in strong shocks.

Case B = 0

We will first consider the case when B = 0 and take a look at Euler equations
for one-dimensional stationary flow (ρ, P , v 
= f(t))

∂

∂x

(
ρv

)
= 0 ⇒ ρv = const, (17)

ρv
∂v

∂x
= −∂P

∂x
⇒ ρv2 + P = const, (18)

∂

∂x

(
ρv

(1
2
v2 + ε +

P

ρ

))
= 0 ⇒ 1

2
v2 +

γ

γ − 1
P

ρ
= const. (19)

Let us assume that there is instantaneous jump in density, pressure and velocity
caused by a shock of velocity vs passing through the undisturbed medium at rest,
and that we are working in a frame of reference attached to the shock so that
in this frame the gas is flowing into the shock with velocity v1 = −vs (see Fig.
11). Eqs. (17)–(19) state that mass, momentum and energy must be conserved
across the shock, i.e they must be the same ahead of the shock i.e. ”upstream”
(for which we will use index 1) and behind the shock i.e. ”downstream” (for
which we will use index 2). Thus, we have

ρ1v1 = ρ2v2, (20)

ρ1v
2
1 + P1 = ρ2v

2
2 + P2, (21)

1
2
v2
1 +

γ

γ − 1
P1

ρ1
=

1
2
v2
2 +

γ

γ − 1
P2

ρ2
. (22)

These are the well-known Rankine-Hugoniot jump conditions. They allow us to
find downstream quantities, provided that upstream quantities are known.

If we denote density jump with X and pressure jump with Y , after some
manipulation the last three equations give

X =
ρ2

ρ1
=

(γ + 1)M2
1

2 + (γ − 1)M2
1

, (23)

Y =
P2

P1
=

γ + 1 + 2γ(M2
1 − 1)

γ + 1
. (24)

where Mach’s number M1 = v1
cs

, v1 is equal to shock speed (by absolute value)
and c2

s = γ P1
ρ1

is adiabatic sound speed. If M1 = 1, we have a trivial solution
X = 1, Y = 1. In strong shocks M1 →∞ and X = γ+1

γ−1 → 4 for γ = 5/3, which
is an important result.
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Case B ⊥ v

In the case B ⊥ v jump conditions are

ρ1v1 = ρ2v2 (25)

ρ1v
2
1 + P1 +

1
8π

B2
1 = ρ2v

2
2 + P2 +

1
8π

B2
2 (26)

1
2
v2
1 +

γ

γ − 1
P1

ρ1
+

1
4π

B2
1

ρ1
=

1
2
v2
2 +

γ

γ − 1
P2

ρ2
+

1
4π

B2
2

ρ2
(27)

v1B1 = v2B2. (28)

We immediately see that parallel magnetic field (parallel with respect to the
shock front) is compressed in the same way as the density. One can check that
compression ratio X = ρ2

ρ1
is now

X =
−(1 + γ

2β + γ−1
2 M2

1)±
√

(1 + γ
2β + γ−1

2 M2
1)2 + (γ+1)(2−γ)

β M2
1

(2−γ)
β

, (29)

X ≈ (γ + 1)M2
1

2(1 + γ
2β + γ−1

2 M2
1)
→ (γ + 1)M2

1

2 + (γ − 1)M2
1

if β →∞, (30)

where plasma beta is β = c2
s/v2

A and v2
A = 1

4π
B2

1
ρ1

is the upstream Alfvén speed.

Case B || v

In the case B || v the magnetic field does not play any role since B1 = B2.
The jump conditions are just Rankine-Hugoniot jump conditions.

However, in our analysis we have always assumed that the fluid velocity is
perpendicular to a flat discontinuity surface – the shock front, i.e. that the shock
is not oblique. An oblique shock wave, unlike a normal shock, is inclined with
respect to the incident upstream flow direction. The presence of a magnetic
field additionally complicates the situation. For example, it is possible to have
magnetic field component parallel to the shock front equal to zero behind the
shock (switch-off shock) or ahead of the shock (switch-on shock). The existence
of such cases might have some consequences for the shock propagation parallel
to the magnetic field. Namely, we can have far upstream and far downstream
magnetic fields lying in their original directions, but a switch-on and a switch-off
shock in-between (see Shu 1992).

Case γ1 
= γ2

As we shall see in the next subsection, strong shocks are believed to be the
sites of particle acceleration up to ultra-relativistic energies. Behind the shock
thus we might have a population with different adiabatic index. For the sake
of exercise let us consider a shock with different adiabatic index upstream and
downstream, with B = 0 or B || v. Jump conditions are similar to Rankine-
Hugoniot jump conditions, except γ1 
= γ2.
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Figure 11: Adiabatic i.e. non-radiative (up) and isothermal i.e. radiative shocks
(down). Adapted from Shu (1992).
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The jump in density X is

X−1 =
γ2(M′

1
2 + 1)±

√
M′

1
4 − 2M′

1
2(γ2

2 − γ1)/(γ1 − 1) + γ2
2

(γ2 + 1)M′
1
2 , (31)

where M′
1 = v1/

√
P1/ρ1. For large M′

1

X−1 ≈ M′
1
2(γ2 ± 1) + (γ2 ∓ γ2

2−γ1
γ1−1 )

(γ2 + 1)M′
1
2 , (32)

i.e. for strong shocks (where we should take the square root with minus sign)
X ≈ γ2+1

γ2−1 independent of γ1. For γ2 = 5/3, X → 4, while for γ2 = 4/3, X → 7.

2.2.2 Isothermal shocks

Similarly to the term adiabatic shock, isothermal shock is a term that only
approximately describes what is actually a radiative shock (or a variant of it).
In the case of a radiative shock, between upstream region (1) and downstream
region (3) we have not so thin intermediate region – radiative relaxation layer
(2) where we have energy loss from the system (Fig. 11). If we are not in-
terested in the structure of this layer, we can assume mass and momentum
conservation between upstream and downstream region, and instead of energy
conservation, we may assume that the downstream gas has returned to the tem-
perature T3 not very different from initial equilibrium value, T3 ≈ T1 (hence the
term isothermal).

Jump conditions for isothermal shocks are thus

ρ1v1 = ρ3v3, (33)

ρ1v
2
1 + P1 = ρ3v

2
3 + P3, (34)

P1

ρ1
=

P3

ρ3
(T1 = T3). (35)

From Eqs. (33), (34) and (35) follows

X =
ρ3

ρ1
= M′

1
2
,

Y =
P3

P1
= X,

where isothermal Mach’s number M′
1 = v1

cs
, and c2

s = P1
ρ1

= P3
ρ3

= const is now
isothermal sound speed. We see that in isothermal shocks density jump is not
limited to the value 4, but can be infinitely large, theoretically.

2.3 Cosmic rays and particle acceleration

Strong shock are believed to be the sites of particle acceleration i.e. birthplaces
of Galactic cosmic rays (CRs). A mechanism for particle acceleration was first
proposed by Fermi (1949). The original Fermi mechanism is called type II (A
and B) or the second order Fermi acceleration, because the relative gain in
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particle energy is ΔE/E ∼ (u/c)2, where u is the velocity of an interstellar
medium cloud which acts as a magnetic mirror that reflect particles. Contrary
to this, in type I or the first order Fermi acceleration, ΔE/E ∼ u/c, which is
why it is expected to be a more efficient process.

Let us consider a particle with initial energy E = mc2 +E and velocity v, i.e.
β = v/c circulating in a low-density medium with a turbulent magnetic field.
Consider next a magnetic perturbation of this medium (e.g. a cloud) moving
along the x axis with velocity u. When encountering the cloud, a particle is
reflected by a magnetic mirror and comes back with the same pitch angle θ
and the direction of motion of its guiding center being inverted. Applying the
relativistic transformations between a fixed ’laboratory’ reference frame and
the (primed) reference frame of the cloud, the energy and the momentum of the
particle are respectively E ′ = γu(E + upx) and p′x = γu(px + uE/c2), with γu =
1/

√
1− u2/c2. Using the same relations to come back to the fixed frame, after

changing p′x into −p′x to account for the inversion of the direction of propagation
of the particle, we find

E ′′ = γu(E ′ + up′x) = γ2
u(E + 2upx + u2E/c2), (36)

i.e., since px/E = pcosθ/E = v cos θ/c2,

E ′′
E =

1 + 2(u/c)(v/c) cos θ + (u/c)2

1− (u/c)2
≈ 1 + 2(u/c)(v/c) cos θ + 2(u/c)2. (37)

The probabilities of head-on and trailing collisions are proportional to the
relative velocities of approach of the particle and the cloud, i.e v + u cos θ and
v − u cos θ, respectively (for cos θ > 0). For v ≈ c and 0 < θ < π we can write
this probability as proportional to 1 + (u/c) cos θ, and average the second term
in Eq. (37) to obtain (Longair 2011)

〈2u

c
cos θ〉 =

2u

c

∫ 1

−1 μ(1 + (u/c)μ)dμ∫ 1

−1
(1 + (u/c)μ)dμ

=
2
3

(u

c

)2

, μ = cos θ, (38)

i.e.
〈ΔE/E〉 =

8
3

(u

c

)2

, (39)

where we have not made a distinction between total E and kinetic energy E.
In the interstellar case, the original mechanism proposed by Fermi (type

II) is not very efficient (ΔE/E ∼ (u/c)2) and we would do much better if we
had only head-on collisions (type I, ΔE/E ∼ u/c). Diffuse shock acceleration
(DSA) theory – a modern version of the first order Fermi acceleration was devel-
oped independently by Axford et al (1977), Krymsky (1977), Bell (1978a) and
Blandford & Ostriker (1978). There are two main approaches to the problem:
macroscopic (e.g. Blandford & Ostriker 1978) and microscopic (Bell 1978a). In
the rest of this subsection we will follow the derivation by Bell (1978a) because
it is more intuitive.

2.3.1 Acceleration of ultra-relativistic particles

Let us consider a strong shock moving through the unperturbed ambient medium
with velocity vs (Fig. 12a). In the frame of the shock (Fig. 12b) the upstream
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Figure 12: Diffuse shock acceleration of high energy particles in the vicinity of
a strong shock wave. Adapted from Longair (2011).

gas flows through the shock with velocity u1 = |vs|. We shall assume that the
shock is parallel i.e. the direction of propagation is along the magnetic field lines
B. The equation of continuity requires ρ1u1 = ρ2u2 and Rankine-Hugoniot re-
lations give us ρ2/ρ1 = u1/u2 = X = (γ + 1)/(γ − 1), where γ is the ratio of
specific heats of the gas.

Consider now high-energy particles ahead of the shock (upstream) whose
distribution function is isotropic in the frame of reference in which the gas is at
rest (Fig. 12c). The particles cross the shock front and encounter gas behind
the shock travelling at velocity X−1

X vs. They are scattered by the turbulence
in the downstream region, receiving a small amount of energy ΔE/E ∼ vs/c,
isotropized and ready to move back upstream. A beauty of the mechanism is
that the opposite process of particles diffusing from behind the shock to the
upstream region is exactly the same (Fig. 12d) – when particles cross the shock
front from downstream they now encounter upstream gas moving at velocity
X−1

X vs and again receive a small increase in energy. In the upstream they are
scattered back by Alfvén waves excited by the energetic particles attempting to
escape from the shock. As a result, particles can recross the shock front many
times, each time receiving a small amount of energy – there are no crossings in
which a particle loses energy.

Let us now look at this process in more detail (see Bell 1978a, Longair 2011,
Lequeux 2005). We shall consider test particles with phase-space distribution
function f(x, p, t) injected isotropically into the planar shock with a velocity
v much higher than that of the shock. In order to treat this mechanism ana-
lytically we will choose a reference frame in which shock is stationary, the gas
flows from upstream, (x < 0) with a velocity u1 ≈ |vs|, to downstream where
u2 < |vs|. The problem here is that of diffusion in a fluid moving with different
velocities on either side of the shock described by diffusion-advection equation
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near a discontinuity (Drury 1983, Blandford & Eichler 1987)

∂f

∂t
+ u

∂f

∂x
=

∂

∂x

[
D(x, p)

∂f

∂x

]
+

1
3

∂u

∂x
p
∂f

∂p
+ Q(x, p). (40)

In the first term on the right-hand side

D(x, p) =
λv

3
(41)

is the diffusion coefficient in the x direction for particles with velocity v, where
for the mean free path of particles one usually assumes λ∼rg,

rg =
p⊥
eB

A

Z
(42)

being gyro-radius of particle with atomic mass number A and charge number Z.
Elementary charge is e and perpendicular component of momentum per nucleon
p⊥. The last term in Eq. (40) is the injection term (we shall assume δ-function
injection at the shock).

In the chosen reference frame, it is natural to search for a stationary solution.
Since ∂f/∂t = 0 and ∂u/∂t = 0 outside the shock, and ∂u/∂x = 0 in the
downstream

u2
∂f

∂x
− ∂

∂x

[
D(x, p)

∂f

∂x

]
= 0, (43)

whose general solution, obtained by double integration over x, is

f(x, p) = A(p) + B(p) exp
(∫

u2

D(x′, p)
dx′

)
, (44)

where A and B are the integration constants. D(x′, p) being finite but x extend-
ing to infinity, the second term diverges, unless B = 0. A physical solution there-
fore requires that f(x, p) = A(p) i.e. is constant in space. The flow of particles
away from the shock i.e. the flux density of particles that escape from the shock
far downstream is u2n(x, p)−D(x, p)(∂n/∂x), which is equal to u2n(0, p), where
the number density of particles, for isotropic distribution, is n =

∫∞
0 4πp2f(p)dp.

The flux density, i.e. the rate at which particles are crossing and recross-
ing the shock is

∫ ∫
fvxp′2dp′dΩ =

∫∞
0 2πv(p′)f(p′)p′2dp′

∫ π/2

0 cos θ sin θdθ =
1
2vn

∫ 1

0
μdμ = 1

4vn(0, p), where μ = cos θ and where we assumed f(p′) =
n

4πp2 δ(p − p′), δ(p − p′) being δ-function. The (small) escape probability is
thus

η =
u2n(0, p)
1
4vn(0, p)

= 4
u2

v
. (45)

For very energetic particles (v ≈ c), this probability is independent of energy.
When a particle with energy Ek goes from region 1 to region 2, its energy is

(according to Eq. (36))

E′k ≈ Ek

[
1 + (u1 − u2)

vk1 cos θk1

c2

]
, (46)

where u = u1−u2. When it comes back to region 1 (after finishing k +1 cycle),
its energy is

Ek+1

Ek
≈

[
1 + (u1 − u2)

vk2 cos θk2

c2

][
1 + (u1 − u2)

vk1 cos θk1

c2

]
. (47)
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Particles injected with energy E0 (such that v ≈ c) have an energy after l cycles

El

E0
=

l−1∏
k=0

Ek+1

Ek
, (48)

i.e.

ln
(

El

E0

)
=

l−1∑
k=1

ln
(

1 +
u1 − u2

c
cos θk1

)
+

l−1∑
k=1

ln
(

1 +
u1 − u2

c
cos θk2

)
. (49)

For having a significant energy gain, l must be at least of the order of c/(u1−u2),
and the distribution of ln(El/E0) must be strongly concentrated around the
mean (central limit theorem), so we can treat all particles completing l cycles
as having their energy increased by the same amount and write

ln
(

El

E0

)
= l

[〈
ln

(
1 +

u1 − u2

c
cosθk1

)〉
+

〈
ln

(
1 +

u1 − u2

c
cosθk2

)〉]
. (50)

Expanding the logarithm we find

ln
(

El

E0

)
≈ l

u1 − u2

c
[〈cosθk1〉+ 〈cosθk2〉]. (51)

The number of particles that cross the shock between angles θ and θ + dθ is
proportional to 2πsin θcos θdθ and averaging over angles from 0 to π/2 results
in

〈cosθk1〉 = 〈cosθk2〉 =

∫ 1

0
μ2dμ∫ 1

0 μdμ
=

2
3
, μ = cos θ. (52)

Finally,

ln
(

El

E0

)
=

4
3
l
u1 − u2

c
. (53)

The probability of completing at least l cycles and reaching energy E ≥ El

is given by

Pl =
N(E ≥ El)

No
= ζl, ζ = 1− η, (54)

lnPl = l ln
(
1− 4u2

c

)
≈ −l

4u2

c
= − 3u2

u1 − u2
ln

(
El

E0

)
, (55)

where ζ is the probability of staying in acceleration process after one cycle, N0

is the initial number of particles and N(E ≥ El) the number of particles that
reached E ≥ El. By combining Eqs. (53) and (55) we have

N(E ≥ El) = No

(
El

E0

)1−Γ

=
∫ ∞

El

N(E)dE, Γ =
X + 2
X − 1

, X =
u1

u2
, (56)

i.e. differential energy spectrum

N(E)dE = KE−Γ dE, (57)

where K is constant. In the case of strong shocks, X = 4 so Γ = 2.
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2.3.2 Acceleration of supra-thermal particles

The calculation presented in the previous subsection is, in principle, valid for
ultra-relativistic particles only. It is possible to lift this restriction, but in any
case the initial velocity of the particles must be larger than that of the shock
i.e. the particles must be supra-thermal.

We shall now make a distinction between kinetic E and total energy E =
E + mc2 =

√
p2c2 + m2c4 and transform Eq. (46) into

E ′k ≈ Ek + (u1 − u2)pkcosθk1 = Ek

[
1 + (u1 − u2)

pk cos θk1

Ek

]
, (58)

p′2k ≈ p2
k

[
1 + 2(u1 − u2)

Ek cos θk1

pkc2

]
= p2

k

[
1 + 2(u1 − u2)

cosθk1

vk1

]
. (59)

Instead of Eq. (47) we then have

pk+1

pk
≈

[
1 + (u1 − u2)

cos θk2

vk2

][
1 + (u1 − u2)

cos θk1

vk1

]
. (60)

and, assuming that the particle velocity is large enough i.e. always larger than
the velocity of the shock vk � u1 = |vs| after following the previous derivation,

ln
(

pl

p0

)
=

4
3
l
u1 − u2

v
. (61)

The probability of completing a cycle is ζ = 1 − η = 1 − 4u2/v and for l
cycles, again

lnPl = ln
N(p ≥ pl)

No
= l ln

(
1− 4u2

v

)
≈ −l

4u2

v
= − 3u2

u1 − u2
ln

(
pl

p0

)
, (62)

i.e. differential momentum spectrum is

n(p)dp ∝ p−Γ dp, (63)

with Γ = X+2
X−1 and X = u1

u2
.

The CRs distribution function in momentum space is f(p) = kp−(Γ+2).
Remember that N(E)dE = 4πp2f(p)dp, N =

∫∞
pinj

4πp2f(p)dp =
∫∞

Einj
N(E)dE.

We will now show that:

a) for ultra-relativistic particles N(E)dE = KE−Γ dE and we will find con-
stant K = K(N, Einj), where N = N0 is the total number of particles per unit
volume and Einj = E0 the injection energy.

b) Assuming an equal number of protons and electrons and equal injection
energy Einj � mec

2 we will find proton to electron number ratio at low (Einj <
E � mec

2) and high energies (E � mpc
2).

a) The total number of particles per unit volume is

N =
∫ ∞

pinj

4πp2f(p)dp =
∫ ∞

pinj

4πkp−Γ dp = 4πk
p1−Γ

1− Γ

∣∣∣∞
pinj

= 4πk
p1−Γ
inj

Γ − 1
. (64)
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Constant k then can be expressed as

k =
N

4π
(Γ − 1)pΓ−1

inj . (65)

The relativistic relation p = p(E) is

p2c2 = E2 + 2mc2E, (66)

and

dp =
E + mc2

c
√

E2 + 2mc2E
dE. (67)

We finally have

N(E)dE = 4πp2f(p)dp = 4πp2 N

4π
(Γ − 1)pΓ−1

inj p−Γ−2 E + mc2

c
√

E2 + 2mc2E
dE (68)

= N(Γ − 1)(E2
inj + 2mc2Einj)(Γ−1)/2(E2 + 2mc2E)−(Γ+1)/2(E + mc2)dE,

since p2
inj = E2

inj+2mc2Einj

c2 . This is the differential energy spectrum given by Bell
(1978b). For E � mc2

N(E)dE = N(Γ − 1)(E2
inj + 2mc2Einj)(Γ−1)/2E−Γ dE = KE−Γ dE, (69)

based on which we see the functional dependence K = K(N, Einj).

b) Fig. 13 shows proton and electron energy spectra, assuming an equal total
number of protons and electrons and equal injection energy Einj. If Einj � mec

2

for Einj < E � mec
2, ratio κ′ = Np(E)/Ne(E) ≈ 1. At high energies (E �

mpc
2) electron and proton spectra are parallel and

κ′ = Np(E)/Ne(E) =
(mp

me

)(Γ−1)/2

=
(mp

me

)α

, (70)

where α = (Γ − 1)/2 is the so-called spectral index. For Γ = 2, κ′ ∼ 40, while
for Γ = 2.7, κ′ ∼ 600. The observed ratio for Galactic CRs is κ′ ∼ 100. One
can also check that, given Einj � mec

2, the ratio of proton to electron energy
densities is εp/εe ≈ (mp/me)(3−Γ )/2. In young SNRs shock velocity vs can be
larger than vs ∼ 10000 km s−1, so the injection energy, which is estimated to
be Einj ∼ mpvs, is Einj > mec

2 (Fig. 14).
What would exactly be the energy of supra-thermal particles Einj? Although

most of the particles will go through the shock front, we may assume, for exam-
ple, that a small fraction of them η will be reflected by the shock.5 If we treat
the approaching shock as a ”wall” of particles with mass M � m and consider
only head-on collisions, the conservation of energy and momentum give

1
2
MV 2

1 +
1
2
mv2

1 =
1
2
MV 2

2 +
1
2
mv2

2 , (71)

MV1 −mv1 = MV2 + mv2, (72)

5It is also possible that particles with sufficient energy i.e. momentum (e.g. from the tail of
Maxwell distribution) can escape from downstream back to upstream region and thus become
seed particles for acceleration.
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Figure 13: Proton and electron energy spectra, assuming an equal total number
of protons and electrons and equal injection energy Einj � mec

2.

Figure 14: Proton and electron energy spectra, assuming an equal total number
of protons and electrons and equal injection energy Einj > mec

2.
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and with v1 → 0 and V1 = vs, we obtain for reflected particles

v2 =
2V1

1 + m/M
≈ 2vs, (73)

i.e. Einj = 4 1
2mvs.

It is, however, questionable whether one can assume equal injection en-
ergy for both protons and electrons. If the shock thickness is of the order of
magnitude of gyration radius rg of protons, in order to cross the shock front
unaffected, the electrons should have a similar gyro-radius, implying that it is
more justified to assume injection momentum for protons and electrons to be
the same (Eq. (42)). In this case the ratio of protons to electrons must be
κ′ = Np(p)/Ne(p) ≈ 102 at high momentum (energy) as well as at injection.

2.3.3 Galactic cosmic rays

In 1912 Victor Hess carried out balloon experiments to measure the ionization of
the atmosphere and found an increasing ionization rate with altitude, concluding
that there must be an extraterrestrial source of ionizing radiation producing this
effect. For the discovery of this cosmic radiation – CRs, he was awarded Nobel
prize in physics in 1936.

We can make a distinction between primary CRs coming from above Earth’s
atmosphere, and secondary CRs i.e. air showers or cascades, produced when
primary CRs collide with atoms and molecules in the atmosphere. A distinction
is also made between particles originating outside the solar system and energetic
particles coming from the Sun. In the following text, by CRs we will assume
only primary CRs of non-solar origin. CRs are primarily composed of high-
energy protons (∼90%), α-particles (∼10%) and heavier nuclei. The ratio of
protons to electrons is approximately 100:1. The all particle spectrum is to a
very good approximation a power-law with energy index Γ ≈ 2.7 up to ∼ 1015

eV. This is the so-called ”knee” in the spectrum (Fig. 15) and sources within
our Galaxy, such as SNRs, are likely to be able to produce CR particles up to
this or even higher energy ∼ 1017 eV (Morlino 2016). The CRs distribution in
this energy range is highly isotropic. Below ∼1 GeV, the spectrum is affected
by solar modulation – a diffusive-convective process in which the particles are
scattered by the magnetic irregularities in the solar wind (Grupen 2005, Longair
2011).

Above the ”knee” the spectrum steepens, up to the energy of around 5×1018

eV – the so-called ”ankle”, after which it slightly flattens again. It is believed
that the highest energy CRs are of extragalactic origin. Ultra-high energy CRs
would interact with cosmic microwave background radiation and rapidly lose
energy, producing a cut-off at 5×1019 eV – the Greisen-Zatsepin-Kuzmin (GZK)
effect. If the highest energy CRs are protons, the GZK effect limits the volume
from which these particles must originate to a radius of few tens of megaparsecs
from our Galaxy (Grupen 2005). The observation of several events in excess of
1020 eV (the ”toe” region), therefore, represents a certain mystery.

The CRs propagate from their sources and fill out the Galaxy. Disregard-
ing interaction and energy losses, CRs propagation may be described with a
diffusion-loss equation (Longair 2011)

∂N

∂t
= DΔN − N

τe
+ Q, (74)
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Figure 15: Sketch of the cosmic rays energy spectrum, as in Grupen (2005).
Data are from H4a model (Gaisser 2012).
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where Δ = ∇2 is Laplacian, D is diffusion coefficient, τe is the characteristic
escape time and Q is the source term. If τe → ∞, particles simply diffuse
from their sources to the observer – there is practically no escape, and we
can think about the Galaxy as a certain ”closed box”. If D → 0 and τe =
τe(E) ∝ E−δ (δ > 0) there would be an energy-dependent leakage – higher
energy CRs are more likely to escape out of the Galaxy. In the stationary case
∂N
∂t = 0, N(E) = Q(E)τe(E). The CR particles may still diffuse freely inside
some confinement volume, being reflected at its boundaries. However, in each
encounter with the boundary, there is some probability of escape. This is the
basis for the so-called ”leaky-box” model.

2.3.4 Re-acceleration of cosmic rays

Although re-acceleration of CRs is most commonly assumed to be a diffusive
process in which galactic CRs are re-accelarated through the second order Fermi
acceleration in the interstellar medium (Drury & Strong 2015), we will consider
here a re-acceleration of pre-existing CRs by the shock through DSA. In this case
pre-existing CRs are simply seed particles that are injected in DSA process and
play the role of supra-thermal particles previously discussed. The momentum
distribution function is then

f(p) =
∫ ∞

0

f0(p′)Q(p, p′)4πp′2dp′ =
∫ p

p0

f0(p′)Q(p, p′)4πp′2dp′, p′ < p, (75)

where

f0 =
N

4π
(Γ − 1)

p′−Γ−2

p1−Γ
0

(76)

is the distribution function of pre-existing CRs, N their number per unit volume,
p0 some minimum momentum and Γ energy index, while

Q(p, p′) =
1
4π

3
X − 1

p−3X/(X−1)

p′−3/(X−1)
, p > p′, (77)

is the resulting DSA spectrum for particles injected monoenergetically with
momentum p (for p < p′, Q(p, p′) ≡ 0), into the shock with compression ratio
X .

If CRs are reaccelerated by the same shock (or multiple shocks with the
same X), then Γ = X+2

X−1 and

f(p) =
N

4π
(Γ − 1)2 ln

( p

p0

)p−Γ−2

p1−Γ
0

(78)

(see Bell 1978b). For Γ 
= X+2
X−1

f(p) =
N

4π

3(Γ − 1)
(Γ + 2)(X − 1)− 3X

p−Γ−2

p1−Γ
0

(( p

p0

)Γ+2−3X/(X−1)

− 1
)
. (79)

We can see that at high energies (momenta)

f(p →∞) ∝ p−3X/(X−1), Γ >
X + 2
X − 1

(80)

f(p →∞) ∝ p−Γ−2, Γ <
X + 2
X − 1

.
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2.3.5 Cosmic rays back-reaction

Derivation of accelerated particle spectrum presented earlier in this subsection,
represents the so-called test particle approach or linear DSA which assumes
that the pressure or energy density of high-energy particles is small, so that
their presence does not modify jump conditions i.e. the shock structure. If this
is not the case, then we are talking about CR back-reaction or non-linear DSA
(see e.g. Drury 1983, Malkov & Drury 2001, Blasi 2002, Amato & Blasi 2005).
The most important CR back-reaction effect on the shock is that high-energy
particles diffuse upstream inducing the shock precursor with density, pressure
and velocity gradients, while the jump in these quantities is still present at the
so-called subshock. The total change in density for a modified shock is larger
than the compression ratio at the subshock Xtot > Xsub.

The shock modification in turn changes the distribution of CR particles,
producing the concave-up spectrum. This can be qualitatively explained with,
conditionally speaking, three CR populations: low-energy, intermediate, and
high-energy population (Berezhko & Ellison 1999). Lower-energy CRs will only
experience the jump at the subshock and have power-law index Γ ≈ (Xsub +
2)/(Xsub − 1), while higher-energy particles sample a broader portion of the
precursor velocity profile and experience larger compression ratio, consequently
having flatter power-law index. Since for Γ < 2 the total number of CR particles
would diverge, there must be a cut-off in the spectrum at some maximum energy.
At highest energies, particles are able to escape from the acceleration region,
far upstream.

2.4 Magnetic fields

Magnetic fields in galaxies can be broadly classified into regular and turbulent
fields. One of the most promising mechanisms to sustain magnetic field and
generate large scale regular field from turbulent field in the ISM of galaxies is
the α − Ω dynamo (Beck et al. 1996). It is based on differential rotation (Ω),
expanding gas flows, driven by SN explosions or CRs, carrying magnetic fields
that are twisted by the Coriolis force (α-effect), and on magnetic diffusivity
driven by turbulence. The typical magnetic field strength assumed for our
Galaxy is ∼ 5μG, though galactic fields can be significantly larger (Beck 2016).

Radio polarization studies of SNRs show that in young SNRs, the magnetic
field is largely disordered, with a small radial prevalence, while in older, larger
SNRs, the field is often disordered but sometimes tangential (to the shock front)
(Reynolds et al. 2012). The field strength is at least by an order of magnitude
larger than the typical ISM value. Generally, we can distinguish between com-
pressed and amplified fields. As seen previously, in non-radiative shocks the
radial (parallel, B || v) component should be conserved, while the tangential
(perpendicular, B ⊥ v) component’s compression is limited to X = u1/u2.

The mechanism for additional field amplification is still uncertain. It is
assumed that amplified field is turbulent, produced by CRs streaming ahead
of the shock. Streaming CRs excite MHD turbulence in the upstream region:
resonant Alfvén waves, with a wavelength matching the CR Larmor radius, but
also non-resonant instabilities (Bell 2004). One expects different dependence
on the shock and Alfvén velocities, for resonantly and non-resonantly amplified
magnetic fields (Amato 2011):
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(δB

B0

)
res
≈

√
η

vs

vA
, (81)

(δB

B0

)
Bell

≈
√

η
v3

s

cv2
A

, (82)

where δB = B − B0, B0 being the ambient field, and η being the fraction of
shock ram pressure that is converted into CR energy. From the latter equation,
for B � B0, with vA = B0/

√
4πρ one gets the saturated field energy density

(Bell 2004)

εB =
1
8π

B2 ≈ 1
2

vs

c
εCR, (83)

where CR energy density is assumed to be εCR = ηρv2
s .

In the following text, we will discuss the equipartition i.e. the minimum
energy calculation, a widespread method for estimating magnetic field strength
and energy contained in the magnetic field and cosmic-ray particles by using only
the radio synchrotron emission. Despite its approximate character, it remains
a useful tool, especially when there are no other magnetic field estimates of a
source. Although, the physical motivation to assume equipartition in SNRs is
questionable (Reynolds et al. 2012), there still exists a possibility of a sort of
constant partition between magnetic field and CR energies, and the shock ram
pressure in older remnants

εB ≈ βεCR ≈ βηρv2
s . (84)

2.4.1 Equipartition calculation

The details of equipartition and revised equipartition calculation for radio sources
in general are available in Pacholczyk (1970) and Beck & Krause (2005), respec-
tively. A discussion on whether equipartition of energy is fulfilled in real sources
and how reliable magnetic field estimates from equipartition calculation are can
be found in Duric (1990).

Pacholczyk (1970) provided the following formulas to estimate magnetic field
strength and minimum energy (in magnetic fields and CRs) in a radio syn-
chrotron source:

B = (4.5)2/7(1 + κ)2/7c12(α)2/7f−2/7R−6/7L2/7, (85)

Emin = (1 + κ)4/7c13(α)f3/7R9/7L4/7, (86)

where α = (Γ−1)/2 is the spectral index, R is the source radius, f is the volume
filling factor, L =

∫ ν2

ν1
Lνdν is the total radio luminosity, ν1 and ν2 define the

frequency range (usually ν1 = 107 Hz, ν2 = 1011 Hz) and κ is the ratio of heavy
particles to electrons energy. The constants are

c12 =
√

c1

c2
· 2α− 2
2α− 1

· ν
(1−2α)/2
1 − ν

(1−2α)/2
2

ν1−α
1 − ν1−α

2

,

c13 = 0.921 · c4/7
12 , c1 =

3e

4πm3
ec

5
, c2 =

2e4

3m4
ec

7
, (87)
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where e and me are electron’s charge and mass, respectively. All quantities are
in cgs units.

We will be relying on Bell’s theory of diffusive shock acceleration (Bell
1978a,b) and his assumption concerning the injection of particles into the accel-
eration process to derive a slightly modified equipartition i.e. minimum-energy
calculation applicable to ”mature” SNRs (vs � 6000−7000 km s−1) with spec-
tral index 0.5 < α < 1 (energy index 2 < Γ < 3) (Arbutina et al. 2011).
Then we will incorporate the dependence ε = ε(Einj) which will make formula
applicable to the younger i.e. all SNRs (Arbutina et al. 2012).

A simple approach

Following Bell (1978a,b) we will assume that a certain number of particles
have been injected into the acceleration process all with the same injection
energy Einj ≈ 4 1

2mpv
2
s .6 If we assume that the shock velocity is low enough

so that Einj � mec
2 (and pe

inj � mec), for energy density of a CR species
(assuming power-law momentum distribution) we have7

ε =
∫ p∞

pinj

4πkp−Γ (
√

p2c2 + m2c4 −mc2)dp

≈
∫ ∞

0

4πkp−Γ (
√

p2c2 + m2c4 −mc2)dp

= 4πkc(mc)2−Γ

∫ ∞

0

x−Γ (
√

x2 + 1− 1)dx, x =
p

mc

= K(mc2)2−Γ Γ(3−Γ
2 )Γ(Γ−2

2 )
2
√

π(Γ − 1)
. (88)

The total CR energy density is then

εCR =
Γ(3−Γ

2 )Γ(Γ−2
2 )

2
√

π(Γ − 1)

(
Ke(mec

2)2−Γ +
∑

i

Ki(mic
2)2−Γ

)

=
Γ(3−Γ

2 )Γ(Γ−2
2 )

2
√

π(Γ − 1)

(
Ke(mec

2)2−Γ + Kp(mpc
2)2−Γ

∑
i

ni

np

(mi

mp

)(3−Γ )/2
)

=
Γ(3−Γ

2 )Γ(Γ−2
2 )

2
√

π(Γ − 1)
Ke(mec

2)2−Γ ·

·
(

1 +
n

ne

(mp

me

)(3−Γ )/2 ∑
i

ni

n

(mi

mp

)(3−Γ )/2
)

= Ke(mec
2)2−Γ Γ(3−Γ

2 )Γ(Γ−2
2 )

2
√

π(Γ − 1)
(1 + κ), (89)

where

κ =
(mp

me

)(3−Γ )/2
∑

i A
(3−Γ )/2
i νi∑
i Ziνi

, (90)

6We assume fully ionized, globally electro-neutral plasma.
7One should not confuse energy index Γ with the Gamma function Γ(z).
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ne =
∑

i Zini, νi = ni/n are ion abundances (
∑

i νi = 1), Ai and Zi are
mass and charge numbers of elements and we assumed that at high energies
Kp/Ke ≈ (np/ne)· (mp/me)(Γ−1)/2. Note that we have neglected energy losses.

Emission coefficient for synchrotron radiation is, on the other hand (see the
next subsection),

εν = c5Ke(B sin Θ)(Γ+1)/2
( ν

2c1

)(1−Γ )/2

, (91)

where c1, c3 and c5 = c3Γ(3Γ−1
12 )Γ(3Γ+19

12 )/(Γ + 1) are defined in Pacholczyk
(1970).8 We will use the flux density which is defined as

Sν =
Lν

4πd2
=

4π
3 R3fEν

4πd2
=

4π

3
ενfθ3d, (92)

where f is volume filling factor, θ = R/d is angular radius and d is the distance.
If we assume isotropic distribution for the orientation of pitch angles (Longair

2011), we can take for the average 〈(sin Θ)(Γ+1)/2〉
1
2

∫ π

0

(sin Θ)(Γ+3)/2dΘ =
√

π

2
Γ(Γ+5

4 )
Γ(Γ+7

4 )
. (93)

For the total energy we have

E =
4π

3
R3f(εCR + εB), εB =

1
8π

B2, (94)

E =
4π

3
R3f

(
Ke(mec

2)2−Γ Γ(3−Γ
2 )Γ(Γ−2

2 )
2
√

π(Γ − 1)
(1 + κ) +

1
8π

B2

)
. (95)

Looking for the minimum energy with respect to B, dE
dB = 0 gives

dKe

dB
(mec

2)2−Γ Γ(3−Γ
2 )Γ(Γ−2

2 )
2
√

π(Γ − 1)
(1 + κ) +

1
4π

B = 0, (96)

where (by using Eqs. (91), (92) and (93))

dKe

dB
= − 3

4π

Sν

fθ3d

1
c5

( ν

2c1

)−(1−Γ )/2 (Γ + 1)Γ(Γ+7
4 )√

πΓ(Γ+5
4 )

B−(Γ+3)/2, (97)

i.e. the magnetic field for the minimum energy is

B =
( 3

2π

(Γ + 1)Γ(3−Γ
2 )Γ(Γ−2

2 )Γ(Γ+7
4 )

(Γ − 1)Γ(Γ+5
4 )

Sν

fdθ3

·(mec
2)2−Γ (2c1)(1−Γ )/2

c5
(1 + κ)ν(Γ−1)/2

)2/(Γ+5)

, (98)

or

B [Ga] ≈
(
6.286 · 10(9Γ−79)/2 Γ + 1

Γ − 1
Γ(3−Γ

2 )Γ(Γ−2
2 )Γ(Γ+7

4 )
Γ(Γ+5

4 )
(mec

2)2−Γ (99)

× (2c1)(1−Γ )/2

c5
(1 + κ)

Sν [Jy]
f d[kpc] θ[arcmin]3

ν[GHz](Γ−1)/2
)2/(Γ+5)

,

8Namely, c1 = 6.264 · 1018 and c3 = 1.866 · 10−23 in cgs units.
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where mec
2 ≈ 8.187 · 10−7 ergs. We also have

EB =
Γ + 1

4
ECR, Emin =

Γ + 5
Γ + 1

EB . (100)

A more general derivation

We shall now provide a more general formula for κ. Let us start again with
equation (88)

ε ≈
∫ ∞

pinj

4πkp−Γ (
√

p2c2 + m2c4 −mc2)dp

= 4πkc(mc)2−Γ

∫ ∞

pinj
mc

x−Γ (
√

x2 + 1− 1)dx, x =
p

mc

= 4πkc(mc)2−Γ I
(pinj

mc

)
. (101)

Integral I(x) can be expressed through Gauss hypergeometric function 2F1 (for
Γ > 2)

I(x) =
Γ(3−Γ

2 )Γ(Γ−2
2 )

2
√

π(Γ − 1)
− x1−Γ (1− 2F1(− 1

2 , 1−Γ
2 , 3−Γ

2 ;−x2))
Γ − 1

, (102)

but we will try to find a more simple approximation. Note first that

I(x) ≈ Γ( 3−Γ
2 )Γ( Γ−2

2 )

2
√

π(Γ−1)
− x3−Γ

2(3−Γ ) + x5−Γ

8(5−Γ ) − . . . , x → 0, (103)

I(x) ≈ x2−Γ

Γ−2 , x →∞. (104)

So we can try an approximation (2 < Γ < 3)

I(x)approx =
Γ( 3−Γ

2 )Γ( Γ−2
2 )

2
√

π(Γ−1)
− x3−Γ

2(3−Γ ) + F (Γ )x5−Γ

1 + F (Γ )(Γ − 2)x3
(105)

which has correct limits when x → 0 and x → ∞. We shall find F (Γ ) from
matching condition I(1) = I(1)approx:

F (Γ ) =
1

2(3−Γ ) −
1− 2F1(− 1

2 , 1−Γ
2 , 3−Γ

2 ;−1)

Γ−1

1− (Γ − 2)(Γ( 3−Γ
2 )Γ( Γ−2

2 )

2
√

π(Γ−1)
− 1− 2F1(− 1

2 , 1−Γ
2 , 3−Γ

2 ;−1)

Γ−1 )
. (106)

Since the last expression also involves a hypergeometric function, by trial and
error we found an approximation

F (Γ )approx =
17

1250
(2Γ + 1)Γ

(Γ − 2)(5− Γ )
. (107)

From now on we will assume I(x) = I(x)approx and F (Γ ) = F (Γ )approx (relative
error is less than 3.5%).

Total CRs energy density is then

εCR = εe + εion = Ke(mec
2)2−Γ I

( pe
inj

mec

)
+

∑
i

Ki(mic
2)2−Γ I

( pi
inj

mic

)
, (108)
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where (because pi
inj

mic
� 1)

εion ≈
∑

i

Ki(mic
2)2−Γ

×
(

Γ(3−Γ
2 )Γ(Γ−2

2 )
2
√

π(Γ − 1)
− 1

2(3− Γ )

(√
E2

inj + 2mic2Einj

mic2

)3−Γ)

≈ Kp(mpc
2)2−Γ

∑
i

ni

np

(pi
inj

pp
inj

)Γ−1(mi

mp

)2−Γ

×
(

Γ(3−Γ
2 )Γ(Γ−2

2 )
2
√

π(Γ − 1)
− 1

2(3− Γ )

(
2Einj

mic2

) 3−Γ
2

)

≈ Kp(mpc
2)2−Γ

∑
i

[
ni

np

(mi

mp

) 3−Γ
2 Γ(3−Γ

2 )Γ(Γ−2
2 )

2
√

π(Γ − 1)

− 1
2(3− Γ )

(
2Einj

mpc2

) 3−Γ
2

ni

np

]

≈ Kp(mpc
2)2−Γ n

np

[
Γ(3−Γ

2 )Γ(Γ−2
2 )

2
√

π(Γ − 1)

∑
i

A
3−Γ

2
i νi

− 1
2(3− Γ )

(
2Einj

mpc2

) 3−Γ
2

]
. (109)

Finally,

εCR = Ke(mec
2)2−Γ

[
I

(√
E2

inj + 2mec2Einj

mec2

)

+
1∑

i Ziνi

(mp

me

)2−Γ ( 2mpc
2Einj

E2
inj + 2mec2Einj

)Γ−1
2

×
(

Γ(3−Γ
2 )Γ(Γ−2

2 )
2
√

π(Γ − 1)

∑
i

A
3−Γ

2
i νi − 1

2(3− Γ )

(
2Einj

mpc2

) 3−Γ
2

)]

= Ke(mec
2)2−Γ Γ(3−Γ

2 )Γ(Γ−2
2 )

2
√

π(Γ − 1)
(1 + κ), (110)

where

κ = I

(√
E2

inj + 2mec2Einj

mec2

)(
Γ(3−Γ

2 )Γ(Γ−2
2 )

2
√

π(Γ − 1)

)−1

+
1∑

i Ziνi

(mp

me

)2−Γ( 2mpc
2Einj

E2
inj + 2mec2Einj

)Γ−1
2

(111)

×
(∑

i

A
3−Γ

2
i νi − 1

2(3− Γ )

(
2Einj

mpc2

) 3−Γ
2

(
2
√

π(Γ − 1)
Γ(3−Γ

2 )Γ(Γ−2
2 )

))
− 1.
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Figure 16: Proton to electron energy density ratio as a function of injection
energy in our approximation (dashed line) and exact ratio (solid line) for Γ =
2.5. Data points are from Bell (1978b).

In the above derivation we used the fact that (Bell 1978b):

Ki/Kp =
ni

np

(pi
inj

pp
inj

)Γ−1

≈ (ni/np) · (mi/mp)(Γ−1)/2 (112)

and

Kp/Ke = (np/ne)
(E2

inj + 2mpc
2Einj

E2
inj + 2mec2Einj

)Γ−1
2 ≈ (np/ne) ·

( 2mpc
2Einj

E2
inj + 2mec2Einj

) Γ−1
2

.

(113)
Eq. (111) has the correct limit (90) when Einj � mec

2 � mpc
2. It can be shown

that for low Einj CR energy density is almost constant (independent of Einj)
and the use of Eq. (90) is justified. When shock velocity can be estimated, one
should calculate injection energy Einj ≈ 4 1

2mpv
2
s and use Eq. (111). Formulae

(99) and (100) for magnetic field and minimum energy remain the same.9 In
Fig. 16 we give proton to electron energy density ratio as a function of injection
energy in our approximation compared to the same data from Bell (1978b).
Agreement is quite good despite the approximative character of our formulae.

Even if strict equipartition does not apply, but εB/εCR = β = constant is
somehow known (independent information about CR electrons can come from

9Note that κ is no longer ions to electrons energy ratio but a suitable parameter introduced
to make new formulae same as the old ones.
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X-ray data – inverse Compton scattering, or about CRs from gamma rays –
bremsstrahlung or pion decay), the magnetic field may be recalculated as

B′ =
( 4β

Γ + 1

)2/(Γ+5)

B, (114)

where B is the field corresponding to the minimum energy.

Cases α = 0.5 and α = 1

Generalization to cases α = 0.5 and α = 1 (energy indices Γ = 2 and Γ = 3)
can be found in Arbutina et al. (2013). If Γ is exactly 2, the integral for CR
energy density diverges and one has to set an upper limit for particle energy. A
similar situation arises in the case α = 1 – the integral for CR energy density
diverges unless a lower limit for particle energy, i.e. Einj, is set.

Let us start with the energy density of a CR species with Γ = 2 (α = 0.5)

ε =
∫ p∞

pinj

4πkp−2(
√

p2c2 + m2c4 −mc2)dp (115)

= K

∫ x∞

xinj

x−2(
√

x2 + 1− 1)dx, x =
p

mc
, K = 4πkc,

= K I2(x)|x∞xinj
= K

( 1
x
−
√

x2 + 1
x

+ arcsinh x
)∣∣∣x∞

xinj

,

where k and K are constants in the momentum and energy distribution func-
tions, respectively. When x → 0, I2(x) ≈ x/2 while for x → ∞, I2(x) ≈ lnx.
Total CR energy density εCR = εe + εion is then

εCR = Ke

(
I2

(
pe∞
mec

)− I2

(
pe
inj

mec

))
+

∑
i

Ki

(
I2

(
pi∞
mic

)− I2

(
pi
inj

mic

))

≈ Ke

{
ln

( Ee∞
mec2

)− I2

(√E2
inj+2mec2Einj

mec2

)
+

1∑
i Ziνi

·
√

2mpc2Einj
E2

inj+2mec2Einj

(∑
i

√
Aiνi ln

( Ep
∞

mpc2

)−
√

Einj

2mpc2

+
∑

i

√
Ai ln

(
Zi
Ai

)
νi

)}
. (116)

where we used Eqs. (112) and (113) and assumed Einj � mpc
2, p∞ ≈ E∞/c

for all CR species. Ai and Zi are mass and charge numbers, respectively, and
νi represent ion abundances. Assuming Bohm diffusion and synchrotron losses
for electrons, for maximum electron energy we use Ee

∞ = 3
8

m2
ec3vs√
2
3 e3B

(Zirakashvili

& Aharonian 2007) and for ions Ei
∞ = 3

8
vs

c ZieBR (see Bell et al. 2013 and
references therein), where R is SNR radius. Both formulae are in cgs units. In
reality, of course, we do not expect a sharp break in the energy spectra, but
rather some steepening, especially in the case of electrons (Blasi 2010).
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For the total energy we have E = 4π
3 R3f(εCR + εB), εB = 1

8π B2. Looking
for the minimum energy with respect to B, dE

dB = 0 gives

dKe

dB

[
ln

( Ee
∞

mec2

)− I
(√E2

inj+2mec2Einj

mec2

)
+

1
3

+
1∑

i Ziνi

·
√

2mpc2Einj
E2

inj+2mec2Einj

(∑
i

√
Aiνi ln

( Ep∞
mpc2

)−
√

Einj

2mpc2

+
∑

i

√
Ai ln

(
Zi
Ai

)
νi − 2

3

∑
i

√
Aiνi

)]
+

1
4π

B = 0. (117)

where (by using Eqs. (91), (92) and (93))

dKe

dB
= −3

2
Ke

B
= − 9

4π

Sν

fθ3d

1
c5

( ν

2c1

)1/2 Γ(9
4 )√

πΓ(7
4 )

B−5/2. (118)

In order to find magnetic field, Eq. (117) has to be solved numerically. When
one finds B, minimum energy can be obtained from

Emin =
(
1 +

4
3
{. . .}
[. . .]

)
EB , EB =

4π

3
R3f εB, (119)

where {. . .} and [. . .] are expressions in the corresponding brackets in Eqs. (116)
and (117), respectively.

In the situations when Γ = 3 (α = 1), the energy density of a CR species is

ε =
∫ p∞

pinj

4πkp−3(
√

p2c2 + m2c4 −mc2)dp (120)

=
K

mc2
I3(x)|x∞xinj

, x =
p

mc
, K = 4πkc2,

=
K

mc2

(1−√x2 + 1
2x2

− 1
2

ln
(1 +

√
x2 + 1
x

))∣∣∣x∞
xinj

.

When x → 0, I3(x) ≈ 1
2 lnx, while when x → ∞, I3(x) ≈ − 1

2x . Total CR
energy density is then

εCR =
Ke

mec2

(
I3

(
pe∞
mec

)− I3

(
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inj

mec

))
+

∑
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(
I3

(
pi∞
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)− I3

(
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inj
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))

≈ Ke
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{
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2

2Ee∞
− I3

(√E2
inj+2mec2Einj
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)− 1∑
i Ziνi

· mec2Einj
E2

inj+2mec2Einj

(∑
i

Ai

Zi

mpc
2

Ep∞
νi +

1
2

ln
(2Einj

mpc2

)

− 1
2

∑
i

ln(Ai)νi

)}
, (121)

where we have used the same assumptions as in the derivation of Eq. (116).
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Derivative of the total energy with respect to B gives

1
mec2

dKe

dB

[
− 3mec

2

8Ee∞
− I3

(√E2
inj+2mec2Einj

mec2

)− 1∑
i Ziνi

· mec2Einj
E2

inj+2mec2Einj

(3
2

∑
i

Ai

Zi

mpc
2

Ep∞
νi +

1
2

ln
(2Einj

mpc2

)

− 1
2

∑
i

ln(Ai)νi

)]
+

1
4π

B = 0. (122)

where (see Eqs. (91), (92) and (93))

dKe

dB
= −2

Ke

B
= − 9

8π

Sν

fθ3d

1
c5

ν

c1
B−3. (123)

To find magnetic field more precisely, Eq. (122) has to be solved numerically.
Nevertheless, unlike the case α = 0.5, the solution will only weakly depend
on the upper limits for energy, so the terms containing Ee

∞ and Ep
∞ could, in

principle, be neglected. When one finds B, minimum energy can be obtained
from

Emin =
(
1 +

{. . .}
[. . .]

)
EB, EB =

4π

3
R3f εB, (124)

where now {. . .} and [. . .] are expressions in the corresponding brackets in Eqs.
(121) and (122), respectively.

We have implemented our modified equipartition calculation by developing
a PHP calculator available at http://poincare.matf.bg.ac.rs/~arbo/eqp/.

2.5 Synchrotron radiation

Whenever we have ultra-relativistic electrons in a strong magnetic field, we also
expect the synchrotron radiation or magneto-bremsstrahlung (as opposed to
thermal or non-thermal bremsstrahlung or ”breaking” radiation). Synchrotron
radiation is thus evidence of particle acceleration in strong shocks (electrons,
at least) and magnetic field amplification. As we will soon see, for a power-law
electron distribution N(E) ∝ E−Γ , the resulting radio spectrum will also be a
power law Iν ∝ ν−α, where spectral index is α = (Γ − 1)/2. For Γ = 2 one
obtains a typical spectral index for strong shocks α = 0.5. Let us first find
specific intensity Iν and flux density Sν of a thin shell and then we will move
on to emission coefficient for synchrotron radiation.

2.5.1 Radiation from a thin shell

Let us consider an infinitely thin homogenous shell (or, in other words, homoge-
nous optically thin sphere). Flux of radiation energy (power) is by definition

dFν = Bν cos θ′dΩ′dσ′dν, (125)

where Bν 
= Bν(Θ, ϕ) is the surface brightness of the sphere,

dσ′ = R2 sinΘdΘdϕ (126)
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Figure 17: Radiation from an infinitely thin homogenous shell.

is elementary surface and

dΩ′ =
dσ cos θ

r′2
(127)

is the corresponding solid angle in which radiation is emitted by this surface
and received by the collector of the surface area dσ. Radius of the sphere is R,
distance to the observer is d = r, for the definition of r′, θ′, θ, θs and Θ see Fig.
17.

Flux density is now

dSν =
dFν

dσdν
=

Bν cos θ′ cos θ

r′2
R2 sin ΘdΘdϕ. (128)

Let us first consider radiation from the front side (0 ≤ Θ ≤ Θs). We shall prove
the familiar result

dSν = Bν cos θdΩ, dΩ = sin θdθdϕ, (129)

which comes from the fact that specific intensity of radiation Iν = Bν is constant
(independent of distance) if there are no sources or sinks along the path of the
”ray of light” (one consequence of this is the reversibility theorem).

We will start with the trivial equality

z = r − Z, (130)

where z is measured from observer towards the source, while Z is measured
from the center of the sphere (source) towards the observer. From Eq. (130) we
have

r′ cos θ = r −R cosΘ. (131)

On the other hand, from cosine theorem

r′2 = r2 + R2 − 2rR cosΘ (132)

we have

r′2 = r2 + R2 − 2r(r − r′ cos θ)
= R2 − r2 + 2rr′ cos θ, (133)
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r′dr′ = rdr′ cos θ − rr′ sin θdθ

= − rr′ sin θdθ

1− r
r′ cos θ

. (134)

Directly from (132), however,

r′dr′ = rR sin ΘdΘ. (135)

Combination of the last two equations gives

R2 sinΘdΘ =
r′R sin θdθ
r
r′ cos θ − 1

. (136)

Two other cosine theorems

r2 = R2 + r′2 + 2Rr′ cos θ′, (137)

R2 = r2 + r′2 − 2rr′ cos θ, (138)

added together give

cos θ′ =
r cos θ − r′

R
. (139)

From (136) and (139) we have:

dS+
ν = Bν cos θ sin θdθdϕ, (0 ≤ θ ≤ θs). (140)

For the rear side (Θs ≤ Θ ≤ π) we have, similarly,

dSν =
dFν

dσdν
=

Bν cos(180◦ − θ′′) cos θ

r′2
R2 sinΘdΘdϕ

= −Bν cos θ′′ cos θ

r′2
R2 sin ΘdΘdϕ, (141)

i.e. (after following the same procedure with θ′ replaced by θ′′)

dS−ν = −Bν cos θ sin θdθdϕ, (θs ≤ θ ≤ 0),
= Bν cos θ sin θdθdϕ, (0 ≤ θ ≤ θs). (142)

The contribution from the front and the rear side is thus equal and

dSν = dS+
ν + dS−ν = 2Bν cos θ sin θdθdϕ. (143)

For the total flux density we have

Sν =
∫ 2π

0

∫ θs

0

2Bν cos θ sin θdθdϕ

= 2π sin2 θsBν = 2π(1− cos θs)(1 + cos θs)Bν

= 2BνΩs

(
1− Ωs

4π

)
, (144)

where Ωs = 2π(1− cos θs).
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Figure 18: Radiation from an optically thin homogenous shell with thickness Δ
and radius R, at the distance d from the observer.

Now, let us consider a homogenous emitting shell with emissivity εν = const
and thickness Δ. For specific intensity, if the medium is optically thin, we have

Iν =
∫

ενds =

{
εν(r′2+ − r′1+) + εν(r′1− − r′2−), 0 < sin θ < R−Δ

d

εν(r′2+ − r′2−), R−Δ
d ≤ sin θ ≤ R

d ,
(145)

where ds = dr′. Cosine theorems (see Fig. 18)

(R−Δ)2 = d2 + r′21 − 2dr′1 cos θ, (146)

R2 = d2 + r′22 − 2dr′2 cos θ, (147)

give us

r′1± = d cos θ ±
√

(R −Δ)2 − d2 sin2 θ, (148)

r′2± = d cos θ ±
√

R2 − d2 sin2 θ. (149)

Finally, we have

Iν =

{
2εν

(√
R2 − d2 sin2 θ −

√
(R −Δ)2 − d2 sin2 θ

)
, 0 < sin θ < R−Δ

d

2εν

√
R2 − d2 sin2 θ, R−Δ

d ≤ sin θ ≤ R
d .

(150)
From the last equation one can see that I0

ν = 2ενRδ and Imax
ν = 2ενR

√
δ(2− δ),

where δ = Δ/R. Therefore, for an optically thin homogenous shell we have a
sort of ”limb-brightening” (Fig. 19).

For the total flux density we have

Sν =
∫ 2π

0

∫ θs

0

Iν cos θ sin θdθdϕ

= 4πεν

∫ θ1

0

(√
R2 − d2 sin2 θ −

√
(R −Δ)2 − d2 sin2 θ

)
cos θ sin θdθ

+ 4πεν

∫ θ2

θ1

√
R2 − d2 sin2 θ cos θ sin θdθ, (151)

49



bojan arbutina

Figure 19: Brightness distribution for an optically thin homogenous shell-like
source with δ = Δ/R = 0.1 and R/d = 0.01.

where θ1 = arcsin R−Δ
d and θ2 = θs = arcsin R

d . After integration we obtain the
expected result

Sν =
4π

3
ενd

[(R

d

)3

−
(R −Δ

d

)3]
=

ενV

d2
=
EνV

4πd2
=

Lν

4πd2
, (152)

where the shell volume is V = 4π
3 fR3, f = 1 − (1 − δ)3 is the volume filling

factor, Eν = 4πεν is total volume emissivity (εν is emissivity per unit solid
angle) and Lν is luminosity.

If we had a source with uniform surface brightness Σν = Iν = const. we
would have

Sν =
∫ 2π

0

∫ θs

0

Σν cos θ sin θdθdϕ = Σνπ sin2 θs = Σν
R2π

d2
, (153)

i.e. average surface brightness of the shell-like source is Σν = 4
3Rfεν .

If all the swept-up ISM in the shell were compressed to a value X = ρ/ρ0 = 4,
then

ρ =
M

V
=

ρ0

f
, since M =

4πρ0R
3

3
, V =

4πR3f

3
(154)

and the volume filling factor f = 1/X = 0.25, i.e. relative thickness is δ =
Δ/R ≈ 10%. In this case f = const, during the evolution. If, on the other
hand, Δ = const, f = 1− (1 −Δ/R)3 ≈ 3Δ/R for large R.

If we have a synchrotron shell source with a radial magnetic field, the emis-
sion coefficient is εν ∝ (B sin θ′)α+1ν−α (see the following text) i.e.

εν = ε̃ν(sin θ′)α+1. (155)
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Of course, the field cannot extend all the way to the center, since ∇ · B = 0.
Sine theorem (see Fig. 17) gives us

r′

d
=

sin Θ
sin θ′

, Θ = θ′ − θ, (156)

i.e.
r′ = d(cos θ − sin θ cot θ′) (157)

and

ds = dr′ = d sin θ
dθ′

sin2 θ′
. (158)

Intensity is then

Iν =
∫

ενds = ε̃νd sin θ

∫
(sin θ′)α−1dθ′, (159)

i.e.

Iν =

{ ε̃νd sin θ
( ∫ μ1+

μ2+
(1 − μ2)(α−2)/2dμ +

∫ μ2−
μ1−

(1 − μ2)(α−2)/2dμ
)

= 2ε̃νd sin θ
∫ μ2−

μ1−
(1− μ2)(α−2)/2dμ, 0 < sin θ < R−Δ

d

ε̃νd sin θ
∫ μ2−

μ2+
(1− μ2)(α−2)/2dμ, R−Δ

d ≤ sin θ ≤ R
d ,

(160)

where μ = cos θ′ and

μ1± =
d2 − (R−Δ)2 − r′21±

2(R−Δ)r′1±
= ∓

√
(R −Δ)2 − d2 sin2 θ

R−Δ
= ∓

√
sin2 θ1 − sin2 θ

sin θ1
,

(161)

μ2± =
d2 −R2 − r′22±

2Rr′2±
= ∓

√
R2 − d2 sin2 θ

R
= ∓

√
sin2 θ2 − sin2 θ

sin θ2
. (162)

We immediately see from (160) that unlike the case εν = const, here Iν = 0
when θ = 0.

Rather than by direct integration we will find flux density through

Sν =
Lν

4πd2
=
EνV

4πd2
, (163)

where

Eν =
∫

4π

ενdω′ =
∫ 2π

0

∫ π

0

ε̃ν(sin θ′)α+1 sin θ′dθ′dϕ = 2πε̃ν

∫ π

0

(sin θ′)α+2dθ′

(164)

i.e. Eν = 2π
√

π
Γ( α+3

2 )

Γ( α+4
2 )

ε̃ν and the shell volume is as before V = 4π
3 fR3, f =

1− (1− δ)3.

2.5.2 Synchrotron emissivity

In the following paragraphs we will present a detailed derivation of the emission
coefficient for synchrotron radiation. For even more details, consult Shu (1991),
Rybicki & Lightman (2004) or Longair (2011).
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Let us start by finding the motion of an electron of mass me and charge e
in a magnetic field using the correct relativistic equations10

d

dt
(γmev) =

e

c
v ×B (165)

d

dt
(γmec

2) = ev ·E = 0. (166)

This last equation implies that γ = const or that |v|= const. Therefore, it
follows that

meγ
dv
dt

=
e

c
v ×B. (167)

Separating the velocity components along the field v‖ and in a plane normal to
the field v⊥ we have

dv‖
dt

= 0,
dv⊥
dt

=
e

γmec
v⊥ ×B. (168)

It follows that v‖ = const, and, since the total |v| = const, also |v⊥| = const,
so the particle has a helical motion with frequency of the gyration

ωB =
eB

γmec
=

ωo

γ
, (169)

and gyro-radius rg = v sin Θ/ωB, Θ being the pitch angle.
To obtain emissivity of synchrotron radiation we shall start from Liénard-

Wiechert potentials
φ =

[ e

κR

]
, (170)

A =
[ ev
cκR

]
, (171)

where brackets denote retarded times t′ (t = t′+R(t′)/c), κ = 1−n·β, β = v/c,
n = R/R, R = r− r0 (vector ro marks position of the particle).

The fields are

E(r, t) = e
[ (n− β)(1− β2)

κ3R2

]
+

e

c

[ n
κ3R

× (
(n− β)× β̇

)]
≈ e

c

[ n
κ3R

× (
(n− β)× β̇

)]
, (172)

B(r, t) =
[
n×E(r, t)

]
, (173)

in the radiative zone.
Energy per unit frequency per unit solid angle corresponding to radiation

field of a single particle is

dW

dωdΩ
=

c

4π2

∣∣∣ ∫ [
RE(r, t)

]
eiωtdt

∣∣∣2
=

e2

4π2c

∣∣∣ ∫ [ n
κ3
× (

(n− β)× β̇
)]

eiωtdt
∣∣∣2

=
e2

4π2c

∣∣∣ ∫ [ n
κ2
× (

(n− β)× β̇
)]

eiωtdt′
∣∣∣2

10Do not confuse adiabatic index γ with γ = (1 − β2)−1/2.
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Figure 20: Coordinate system adopted for calculating electron’s synchrotron
emission. (Rybicki & Lightman 2004)

=
e2

4π2c

∣∣∣ ∫ d
([n

κ
× (

n× β
)])

eiωt
∣∣∣2

=
e2ω2

4π2c

∣∣∣ ∫ [
n× (

n× β
)]

eiω(t′−n·r0(t
′)/c)dt′

∣∣∣2, (174)

where we used identities dt = κdt′, d/dt′
(
κ−1n×(n×β)

)
= κ−2n×(

(n−β)×β̇
)
,

R(t′) ≈ r − n · r0(t′) (r0 � r) and integrated by parts to obtain an expression
involving only β (and not β̇).

Consider the orbital trajectory in Fig. 20 where the origin of the coordinates
is the location of the particle at the origin of retarded time t′ = 0, and a =
v/(ωB sin Θ) is the radius of curvature of the trajectory. The coordinate system
has been chosen so that the particle has velocity v along the x axis at time t′ = 0;
ε⊥ is a unit vector along the y axis in the orbital xy–plane, and ε‖ = n × ε⊥.
We have

v = v cos
(

vt′

a

)
εx + v sin

(
vt′

a

)
ε⊥

= v cos θ cos
(

vt′

a

)
n− v sin θ cos

(
vt′

a

)
ε‖ + v sin

(
vt′

a

)
ε⊥, (175)

i.e.

n× (n× β) = −ε⊥ sin
(

vt′

a

)
+ ε‖ cos

(
vt′

a

)
sin θ, (176)
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where we have set β = 1, and

t′ − n · r(t′)
c

= t′ − a

c
cos θ sin

(
vt′

a

)

≈ t′(1 − v

c
) +

v

c

θ2

2
t′ +

v3

6ca2
t′3

≈ (2γ2)−1

[
(1 + γ2θ2)t′ +

c2γ2t′3

3a2

]
, (177)

where we have expanded the sine and cosine functions for small arguments, used
the approximation (1− β) ≈ 1/2γ2, and set β = 1 (v = c) elsewhere.

Expanding the sine and cosine functions again, we obtain an expression for
the spectrum in the two polarizations states,

dW

dωdΩ
≡ dW‖

dωdΩ
+

dW⊥
dωdΩ

(178)

dW⊥
dωdΩ

=
e2ω2

4π2c

∣∣∣∣
∫

ct′

a
exp

[
iω

2γ2

(
θ2

γt′ +
c2γ2t′3

3a2

)]
dt′

∣∣∣∣
2

, (179)

dW‖
dωdΩ

=
e2ω2θ2

4π2c

∣∣∣∣
∫

exp
[

iω

2γ2

(
θ2

γt′ +
c2γ2t′3

3a2

)]
dt′

∣∣∣∣
2

, (180)

where
θ2

γ ≡ 1 + γ2θ2. (181)

Now, making the changes of variables

y ≡ γ
ct′

aθγ
, (182)

η ≡ ωaθ3
γ

3cγ3
, (183)

Eqs. (179) and (180) become

dW⊥
dωdΩ

=
e2ω2

4π2c

(
aθ2

γ

γ2c

)2 ∣∣∣∣
∫ ∞

−∞
y exp

[
3
2

iη

(
y +

1
3
y3

)]
dy

∣∣∣∣
2

, (184)

dW‖
dωdΩ

=
e2ω2θ2

4π2c

(
aθγ

γc

)2 ∣∣∣∣
∫ ∞

−∞
exp

[
3
2

iη

(
y +

1
3
y3

)]
dy

∣∣∣∣
2

, (185)

where little error is made in extending the limits of integration from −∞ to ∞.
The last integrals may be expressed in terms of the modified Bessel functions
of order 1/3 and 2/3 (Abramovitz & Stegun 1972):

K 1
3
(η) =

√
3
∫ ∞

0

cos
[
3
2

η

(
y +

1
3
y3

)]
dy, (186)

K 2
3
(η) =

√
3
∫ ∞

0

y sin
[
3
2

η

(
y +

1
3
y3

)]
dy. (187)
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Therefore we can write

dW⊥
dωdΩ

=
e2ω2

3π2c

(
aθ2

γ

γ2c

)2

K2
2
3
(η), (188)

dW‖
dωdΩ

=
e2ω2θ2

3π2c

(
aθγ

γc

)2

K2
1
3
(η). (189)

These formulas can now be integrated over solid angle to give the energy per
frequency range radiated by the particle per complete orbit in the projected
normal plane. During one such orbit the emitted radiation is almost completely
confined to the solid angle shown shaded in Fig. 21, which lies within an angle
of 1/γ of a cone of half-angle Θ. Thus it is permissible to take the element of
the solid angle to be dΩ = 2π sin Θ dθ, and we can write

dW⊥
dω

=
2e2ω2a2 sin Θ

3πc3γ4

∫ ∞

−∞
θ4

γK2
2
3
(η) dθ, (190)

dW‖
dω

=
2e2ω2a2 sin Θ

3πc3γ2

∫ ∞

−∞
θ2

γθ2K2
1
3
(η) dθ. (191)

The above integrals have been evaluated by Westfold (1959):

dW⊥
dω

=
√

3 e2γ sin Θ
2c

[F (x) + G(x)] , (192)

dW‖
dω

=
√

3 e2γ sin Θ
2c

[F (x)−G(x)] , (193)

where

F (x) = x

∫ ∞

x

K 5
3
(ξ) dξ, K 5

3
(ξ) = −K 1

3
(ξ)− 2K ′

2
3
(ξ), (194)

G(x) = xK 2
3
(x),

and, again x ≡ ω/ωc where

ωc =
3γ2eB sin Θ

2mc
. (195)

To convert this to emitted power per frequency, we divide by the orbital
period of the charge, T = 2π/ωB,

P⊥(ω) =
√

3e3B sin Θ
4πmec2

[F (x) + G(x)], (196)

P‖(ω) =
√

3e3B sin Θ
4πmec2

[F (x) −G(x)], (197)

The total emitted power per frequency is the sum of these:

P (ω) =
√

3e3B sin Θ
2πmec2

F (x), (198)
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Figure 21: Confinement of emitted radiation of an electron with pitch angle Θ
to a small solid angle with θ ∼ 1/γ during one orbit (Rybicki & Lightman 2004)

Asymptotic forms for small and large values of x are:

F (x) ≈ 4π√
3Γ

(
1
3

) (x

2

)1/3

, x � 1, (199)

F (x) ≈
(π

2

)1/2

e−xx1/2, x � 1. (200)

To obtain frequency-integrated emission, or emission from a power-law distribu-
tion of electrons, it is useful to have expressions for integrals over the functions
F (x) and G(x) (Abramowitz and Stegun 1972):∫ ∞

0

xnF (x)dx =
2n+1

n + 2
Γ
(

n

2
+

7
3

)
Γ
(

n

2
+

2
3

)
, (201)

∫ ∞

0

xnG(x)dx = 2nΓ
(

n

2
+

4
3

)
Γ
(

n

2
+

2
3

)
. (202)

The total frequency-integrated power is then

P =
√

3e3B sin Θ
2πmec2

ωc

∫ ∞

0

F (x)dx

=
√

3e3B sin Θ
2πmec2

ωcΓ(2/3)Γ(7/3)

=
2
3

e4B2

m2
ec

3
γ2β2 sin2 Θ, (203)
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since Γ(2/3) = 2π√
3Γ(1/3)

and Γ(z + 1) = zΓ(z) and we have taken into account
that β may not be exactly 1.

For a power-law distribution of electrons N(E)dE = KE−Γ dE, the total
power per unit volume per unit frequency, Ptot(ω), is

Ptot(ω) =
∫ ∞

0

N(E)P (ω)dE ∝
∫ ∞

0

x(Γ−3)/2F (x)dx (204)

=
√

3e3K(B sin Θ)
Γ+1

2

2πmec2(Γ + 1)
Γ
(

Γ

4
+

19
12

)
Γ
(

Γ

4
− 1

12

)(
m3

ec
5 ω

3e

)−Γ−1
2

,

where we switched from E =
(

2m3
ec5 ω

3eB sin Θ

)1/2

x−1/2 to x to perform integration.

Since ω = 2πν, P (ω) ∼ dW
dω = 1

2π
dW
dν , total volume emissivity is Eν = 2πPtot(ν),

while the emission coefficient εν = Eν

4π is

εν = c5K(B sin Θ)(Γ+1)/2
( ν

2c1

)(1−Γ )/2

, (205)

where c1, c3 and c5 are defined in Pacholczyk (1970). Finally, we can integrate
the last expression over the pitch angle Θ, assuming isotropic distribution, to
obtain

1
2

∫ π

0

(sin Θ)(Γ+3)/2dΘ =
√

π

2
Γ(Γ+5

4 )
Γ(Γ+7

4 )
, (206)

which then replaces (sin Θ)(Γ+1)/2 in Eq. (205).
We can also compute the polarization for synchrotron radiation. The degree

of linear polarization for particles of a single energy is

Π(ω) =
P⊥(ω)− P‖(ω)
P⊥(ω) + P‖(ω)

=
G(x)
F (x)

. (207)

For particles with a power-law distribution of energies, the degree of polarization
is

Π =

∫∞
0 G(x)x(Γ−3)/2dx∫∞
0 F (x)x(Γ−3)/2dx

=
Γ + 1

4
Γ(Γ

4 + 7
12 )

Γ(Γ
4 + 19

12 )

=
Γ + 1
Γ + 7

3

. (208)

Thus, for Γ = 2 the degree of polarization would be 69%.

2.6 Hydrodynamic evolution of supernova remnants

The hydrodynamic evolution of SNRs has already been discussed in some detail
in the Introduction to this section. A recent overview of dynamical evolution
and radiative processes can be found in Reynolds (2016). Here we will just
make a brief recapitulation before proceeding to hydrodynamical solutions. The
evolution can be conditionally divided into four different phases:
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(i) free expansion, v2
s = (dR/dt)2 ∝ Eo/Mo = const;

(ii) adiabatic or Sedov phase, R = 1.15 (Eo/ρo)1/5t2/5,

(iii) isothermal or radiative phase, R ∝ t2/7 (or possibly R ∝ t1/4), and

(iv) dissipation, vs ≈ cs.

The evolution during the first two phases can be combined in an approxi-
mative formula (Arbutina 2005)

1
2
v2

s =
k1Eo

k2Mo + 4πR3ρo/3
, vs =

dR

dt
, (209)

where Eo is the explosion energy, Mo mass of the ejecta and ρo ISM density.
Constants k1 and k2 may be interpreted as the fractions of SN energy and mass
in the shell and are determined in such a way so that when R = 0, the velocity
equals some initial velocity, e.g. vs ≈ 20000 km/s, and when R � 0, the velocity
tends toward the Sedov’s solution.

In the later phases, after the thin shell formation, the evolution is expected
to be governed by the internal pressure of the hot interior (Bandiera & Petruk
2004)

d

dt

(
MdR

dt

)
= 4πR2(P − Po),

dM
dR

= 4πR2ρo, (210)

where Po is the external pressure, while the internal pressure is assumed to follow
the adiabatic law PV γ = const. One can check that the solution of the above
equation will have the asymptotic behaviour at large radii, R ∝ t2/(2+3γ) ∝ t2/7,
for γ = 5/3. When the right hand side of Eq. (210) is zero, we will have
momentum conservation 4πR3ρovs/3 = const, i.e. R ∝ t1/4.

It is important to keep in mind that the division into phases is somewhat
artificial – the transition between the phases is, of course, smooth, i.e the real
evolution of the shock R = R(t) is a continuous function of time.

2.6.1 Chevalier’s solutions

As we already said, there may be significant shock declaration even during the
so-called free expansion phase. An intermediate phase between the free expan-
sion and the subsequent Sedov phase is sometimes described by the solutions of
Chevalier (1982). Young SNR is assumed to be made of two shells (compressed
SN material and swept-up ISM) separated by the contact discontinuity, with
forward and reverse shocks. The outer part of the ejecta has a density profile

ρ = t−3(r/tg)−n, (211)

the ambient density profile is
ρ = qr−s. (212)

and contact discontinuity advances with time as

Rc = (Agn/q)1/(n−s)t(n−3)/(n−s), (213)

where n is integer (n > 5), s ∈{0, 2} – for s = 0, q = ρo, while case s = 2
corresponds to steady circumstellar wind (e.g. in radio SNe) i.e. q = Ṁ

4πvW
, Ṁ

is the mass loss rate and vW is the wind velocity.
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Table 3: Ro/Rc, Ri/Rc and A for s = 0 and different n from Chevalier (1982).

n 6 7 8 9 10 12 14
Ro/Rc 1.256 1.181 1.154 1.140 1.131 1.121 1.116
Ri/Rc 0.906 0.935 0.950 0.960 0.966 0.974 0.979

A 2.4 1.2 0.71 0.47 0.33 0.19 0.12

Constant g depends on Eo andMo. It can be found by considering two parts
of the freely expanding ejecta (v = r/t) with density profiles ρδ = t−3(r/th)−δ

and ρn = t−3(r/tg)−n. Integrating to obtain the total mass and energy gives:

Mo =
∫ R(ut)

0

4πr2ρδdr +
∫ ∞

R(ut)

4πr2ρndr

=
∫ ut

0

4πv2−δhδdv +
∫ ∞

ut

4πv2−ngndv, (214)

Eo =
∫ R(ut)

0

4πr2 1
2
ρδv

2dr +
∫ ∞

R(ut)

4πr2 1
2
ρnv2dr

=
∫ ut

0

2πv4−δhδdv +
∫ ∞

ut

2πv4−ngndv, (215)

i.e.

Mo =
4πhδ

3− δ
u3−δ

t +
4πgn

n− 3
u3−n

t , (216)

Eo =
2πhδ

5− δ
u5−δ

t +
2πgn

n− 5
u5−n

t . (217)

At the transition point v = ut, ρδ = ρn so(ut

h

)−δ

=
(ut

g

)−n

. (218)

From the last three equations we find

gn =
1

4π(n− δ)

(
2(5− δ)(n− 5)

)(n−3)/2

(
(3− δ)(n− 3)

)(n−5)/2

(Eo)(n−3)/2

(Mo)(n−5)/2
. (219)

It is often assumed that the inner part of the ejecta is flat, δ = 0, and that
n = 7 is typical for SNe Ia, while SN II are more likely to have n ≈ 12. The
real profiles are much more complicated and can sometimes, as we have seen, be
better approximated by exponential functions than by power-laws. Nevertheless,
if δ = 0 and n = 7 then from Eq. (219) g7 = 25

21π
E2

o

Mo
.

We can also find the transition velocity ut between flat and power-law region
of the ejecta. In the case δ = 0, instead of hδ we should introduce another
constant h0, and by eliminating gn and h0 between Eqs. (216) – (218) we find

u2
t =

10(n− 5)
3(n− 3)

Eo

Mo
. (220)
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Figure 22: The complete hydrodynamic solution for the case s = 0, n = 7 from
Chevalier (1982).

Figure 23: The complete hydrodynamic solution for the case s = 2, n = 12 from
Chevalier (1982).
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Table 4: Ro/Rc, Ri/Rc and A for s = 2 and different n from Chevalier (1982).

n 6 7 8 9 10 12 14
Ro/Rc 1.377 1.299 1.267 1.250 1.239 1.226 1.218
Ri/Rc 0.958 0.970 0.976 0.981 0.984 0.987 0.990

A 0.62 0.27 0.15 0.096 0.067 0.038 0.025

The complete solutions are obtained by solving Euler equations and are given
in Figs. 22 and 23 for cases s = 0, n = 7, and s = 2, n = 12 (see Chevalier
1982). Table 3 and Table 4 list the parameter A and position of the outer,
forward shock R = Ro and the inner, reverse shock Ri, with respect to the
contact discontinuity, for different n, and s = 0 and s = 2, respectively. The
solution for the radius of the forward shock R = R(t) for s = 0 and n = 7 is

R = 1.06 (E2
o/(Moρo))1/7t4/7. (221)

Both, forward and reverse shocks are assumed to be strong, i.e. the compression
at the shocks is X = 4. The pressure at the contact discontinuity is continuous
and there is no mixing between fluids in this model. In reality, because the
compressed ejecta is enriched with heavier elements and it has larger specific
weight compared to compressed ISM (mostly hydrogen and helium), the contact
discontinuity is subjected to Rayleigh-Taylor instability.

2.6.2 Sedov solution

When the shock wave sweeps-up enough space so that the ISM mass many
times exceeds the mass of the SN ejecta, a SNR enters the second phase of
evolution described by the analytical solution of Sedov (1959) for a point-like
explosion in the uniform medium, the so-called blast wave. Euler equations allow
similarity solutions with variable ξ = crt−λ introduced, from where R ∝ tλ.
We can use dimensional analysis to guess the solution for R = R(t) i.e. the
constant c and parameter λ. Let us assume that the SNR has ”forgotten” the
exact initial conditions of SN explosion, so that only parameters Eo and ρo

are important. Dimensionally Eo = [erg] = [g][cm2][s−2], while ρo =[g][cm−3].
Eliminating [g] we have Eo×[cm−2][s2] = ρo×[cm3], i.e. [cm5] = (Eo/ρo) [s2],
so R ∝ (Eo/ρo)1/5t2/5 and λ = 2/5.

To find the complete solution, we will write a similarity variable in the form
(Landau & Lifshitz 1987):

ξ = r/R(t), R(t) = β(Eo/ρo)1/5t2/5, (222)

where we have to solve Euler equations to find β.

Self-similar form of Euler equations

Let us assume that we can express density, pressure and velocity as:

ρ = A(t)F (ξ),
P = B(t)G(ξ), (223)
v = C(t)U(ξ).
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At the shock front (ξ = 1) we shall set boundary conditions F (1) = G(1) =
U(1) = 1 so that from the Rankine-Hugoniot jump conditions for strong shocks

ρ2 =
γ + 1
γ − 1

ρ1, (224)

P2 =
2

γ + 1
ρ1(v1 − vs)2, (225)

v2 = vs +
γ − 1
γ + 1

(v1 − vs), (226)

we have (with ρ1 = ρo, Rs = R, vs = Ṙ and v1 ≡ 0 in laboratory frame)

A(t) =
γ + 1
γ − 1

ρo, (227)

B(t) =
2

γ + 1
ρoṘ

2, (228)

C(t) =
2

γ + 1
Ṙ. (229)

Since all dependent variables depend on ξ and R (R = R(t), Ṙ = Ṙ(R)) we can
rewrite partial derivatives as

∂

∂t
= Ṙ

( ∂

∂R
− ξ

R

∂

∂ξ

)
, (230)

∂

∂r
=

1
R

∂

∂ξ
. (231)

We are now ready to move on to Euler equations in spherical symmetry

∂ρ

∂t
+

1
r2

∂

∂r

(
r2ρv

)
= 0, (232)

ρ
Dv

Dt
= ρ

∂v

∂t
+ ρv

∂v

∂r
= −∂P

∂r
, (233)

D(Pρ−γ)
Dt

=
∂

∂t

(
Pρ−γ

)
+ v

∂

∂r

(
Pρ−γ

)
= 0. (234)

Continuity equation (232) can be rewritten as

∂ρ

∂t
+ v

∂ρ

∂r
+ ρ

∂v

∂r
+

2
r
ρv = 0. (235)

With the help of Eqs. (230) and (231) we have

−(γ + 1)ξF ′ + 2UF ′ + 2FU ′ +
4
ξ
FU = 0, (236)

where f ′ = df
dξ , f = {F, G, U}. The last equation can be transformed to

(U

ξ
− γ + 1

2

)
ξ
F ′

F
+ U ′ +

2
ξ
U = 0, (237)
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(
V − γ + 1

2

)d lnF

d ln ξ
+

dV

d ln ξ
+ 3V = 0, (238)

where we used U ′ = d(ξV )
dξ = dV

d ln ξ + V and V = U/ξ.

Let us move to momentum equation. By using

Ṙ
∂Ṙ

∂R
= R̈ and 2RR̈ = −3Ṙ2 (239)

from Eq. (233) we obtain

−3U − 2ξU ′ +
4

γ + 1
UU ′ + 2

γ − 1
γ + 1

G′

F
= 0, (240)

ξ
[( 4

γ + 1
U

ξ
− 2

)
U ′ − 3

U

ξ

]
+ 2

γ − 1
γ + 1

G′

F
= 0, (241)

[( 4
γ + 1

V − 2
)( dV

d ln ξ
+ V

)
− 3V

]
+ 2

γ − 1
γ + 1

1
Fξ

dG

dξ
= 0, (242)

(
V − γ + 1

2

) dV

d ln ξ
+ V

(
V − 5

γ + 1
4

)
+

γ − 1
2

1
Fξ

dG

dξ
= 0. (243)

Finally, the entropy equation (234) can be rewritten as

∂P

∂t
− γ

P

ρ

∂ρ

∂t
+ v

(∂P

∂r
− γ

P

ρ

∂ρ

∂r

)
= 0. (244)

From Eqs. (230), (231), (239) and (244) we have

−3− d lnG

d ln ξ
+ γ

d lnF

d ln ξ
+

2
γ + 1

U

ξ

(d lnG

d ln ξ
− γ

d lnF

d ln ξ

)
= 0, (245)

i.e.
d ln(GF−γ)

d ln ξ
=

3
2

γ + 1
V − γ+1

2

. (246)

On the other hand, Eq. (238) can be rewritten as

(
V − γ + 1

2

)d lnF

d ln ξ
+

d(V − γ+1
2 )

d ln ξ
+ 3

(
V − γ + 1

2

)
+

3
2
(γ + 1) = 0, (247)

d lnF

d ln ξ
+

d ln(V − γ+1
2 )

d ln ξ
+

3
2

γ + 1
V − γ+1

2

+ 3 = 0, (248)

which in combination with Eq. (246) gives

d lnF

d ln ξ
+

d ln(V − γ+1
2 )

d ln ξ
+

d ln(GF−γ)
d ln ξ

+ 3 = 0, (249)

or
GF 1−γ

(
V − γ + 1

2

)
= const · ξ−3. (250)
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From boundary conditions we have const = 1− γ+1
2 = 1−γ

2 so, finally,

GF 1−γ
(
V − γ + 1

2

)
=

1− γ

2ξ3
. (251)

Instead of any of the Eqs. (232)–(234) we could use the energy equation11

∂

∂t

(
ρ
(1
2
v2 + E)) +

1
r2

∂

∂r

(
r2ρv

(1
2
v2 + E +

P

ρ

))
= 0. (252)

With E = u
ρ , u = 1

γ−1P and using Eq. (239) we obtain

−3(FU2 + G)− ξ
d

dξ

(
FU2 + G

)
+

2
γ + 1

1
ξ2

d

dξ

(
ξ2U(FU2 + γG)

)
= 0, (253)

− d

dξ

(
ξ3(FU2 + G)

)
+

d

dξ

(
ξ2 2U

γ + 1
(FU2 + γG)

)
= 0, (254)

−ξ3(FU2 + G) +
2ξ2U

γ + 1
(FU2 + γG) = const. (255)

From boundary conditions const = 0 and

U

ξ

(
U2 + γ

G

F

)
=

γ + 1
2

(
U2 +

G

F

)
. (256)

The last equation can also be written as

V
(
V 2 + γ

G

Fξ2

)
=

γ + 1
2

(
V 2 +

G

Fξ2

)
. (257)

In the subsequent derivation we will replace the momentum equation in self-
similar form (243), as it appears to be the most complicated, with Eq. (257).

First integral via energy conservation

Eq. (252) (and Eq. (232)) is in the form of the generic conservation law
corresponding to conservation of quantity with density f and flux density F:

∂f

∂t
+∇ · F = 0. (258)

If the surface enclosing a given volume is static, we can apply the Gauss theorem
and obtain the integral form of the conservation law (258):

∂

∂t

∫
V

fdV +
∮

S

F · n dS = 0, (259)

11In fact, we can treat internal energy equation (under adiabatic conditions)

DE
Dt

+ P
D

Dt

(
1

ρ

)
= 0,

as a combination of continuity, momentum and energy equations, which then, if u = 1
γ−1

P ,

produce Eq. (234).
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where n is the unit vector orthogonal to the surface.
If, however, the surface S is moving (expanding) with velocity u, it ”sweeps

up” f and the additional flux into S is fu · n. Hence, the conservation law is
now

∂

∂t

∫
V

fdV +
∮

S

F · n dS =
∮

S

fu · n dS, (260)

i.e.
∂

∂t

∫
V

fdV +
∮

S

(F− fu) · n dS = 0. (261)

Let us now consider a moving surface with ξ = const. Energy within this
surface is

E(ξ) =
∫ r(ξ)

0

ρ
(1

2
v2 + E

)
4πr2dr

=
8π

γ2 − 1
ρoṘ

2R3

∫ ξ

0

(
FU2 + G

)
ξ2dξ

=
32π

25(γ2 − 1)
β5Eo

∫ ξ

0

(
FU2 + G

)
ξ2dξ, (262)

where we used the fact that Ṙ2R3 = 4Eo

25ρo
β5.

Since this energy is independent of time, it follows from Eq. (261) that it
must be F = fu, i.e.

ρv
(1
2
v2 + E +

P

ρ

)
=

(
ρ
(1
2
v2 + E))Ṙξ, (263)

or after some simplifications

U

ξ

(
U2 + γ

G

F

)
=

γ + 1
2

(
U2 +

G

F

)
, (264)

which is identical to Eq. (256).

Final solution

Finally, we have three equations for three unknowns (Eqs. (238), (251) and
(257)): (

V − γ + 1
2

)d lnF

d ln ξ
+

dV

d ln ξ
+ 3V = 0, (265)

GF 1−γ
(
V − γ + 1

2

)
=

1− γ

2ξ3
, (266)

V
(
V 2 + γ

G

Fξ2

)
=

γ + 1
2

(
V 2 +

G

Fξ2

)
. (267)

From the last two equations we have

G

Fξ2
=

1− γ

2
1

ξ5F 2−γ(V − γ+1
2 )

=
V 2(1− 2

γ+1V )
2γV
γ+1 − 1

, (268)
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i.e.

F 2−γ =
γ2 − 1

4
1

ξ5V 2

2γV
γ+1 − 1

(V − γ+1
2 )2

, (269)

and

(2− γ)
d lnF

d ln ξ
= −5− 2

d lnV

d ln ξ
+

2γ
γ+1

2γV
γ+1 − 1

dV

d ln ξ
+

2
γ+1
2 − V

dV

d ln ξ
. (270)

The last equation, in combination with Eq. (265), gives

(2−γ)
( dV

d ln ξ
+3V

)
+

(γ + 1
2

−V
)[

5+
( 2

V
−

2γ
γ+1

2γV
γ+1 − 1

− 2
γ+1

2 − V

) dV

d ln ξ

]
= 0.

(271)

After somewhat long but straightforward algebra, one can show that Eq.
(271) simplifies to

V 2 − γ+1
γ V + γ+1

2γ

V (V − γ+1
2γ )(5

2 − 3γ−1
γ+1 V )

dV

d ln ξ
= 1. (272)

To integrate the last expression we will first separate the left-hand side into
three terms (C3

V
+

C2

V − γ+1
2γ

+
C1

5
2 − 3γ−1

γ+1 V

) dV

d ln ξ
= 1, (273)

where constants are found to be

C3 = −2
5
,

C2 =
γ − 1
2γ + 1

, (274)

C1 =
13γ2 − 7γ + 12
5(γ + 1)(2γ + 1)

.

Integration is now trivial

ln ξ =
1
5

lnC − 2
5

lnV +
ν2

5
ln

(
V − γ + 1

2γ

)
+

ν1

5
ln

(5
2
− 3γ − 1

γ + 1
V
)
, (275)

where constant of integration (from boundary condition at ξ = 1) is

C =
( 2γ

γ − 1

)ν2(2(γ + 1)
7− γ

)ν1

, (276)

and

ν2 =
5(γ − 1)
2γ + 1

, (277)

ν1 = − 13γ2 − 7γ + 12
(3γ − 1)(2γ + 1)

. (278)
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The final solution, given implicitly through V , is (see Eqs. (268), (269) and
(275)):

ξ5 =
1

V 2

[γ + 1
γ − 1

( 2γ

γ + 1
V − 1

)]ν2[γ + 1
7− γ

(
5− 2

3γ − 1
γ + 1

V
)]ν1

, (279)

F =

[
γ2 − 1

4
1

ξ5V 2

2γV
γ+1 − 1

(γ+1
2 − V )2

] 1
2−γ

, (280)

G =
γ − 1

2
F γ−1

ξ3(γ+1
2 − V )

, (281)

U = ξ V. (282)

Since ν4 < 0 and ν2 > 0 (for γ > 1) when ξ → 0, V → γ+1
2γ , and we have

approximately

F ≈
[

4γ4

(γ + 1)4
[(γ + 1

2γ

)2( (7− γ)γ
(γ + 1)(2γ + 1)

)ν1] 1
ν2

] 1
2−γ

ξ
3

γ−1 , (283)

G ≈ γ

γ + 1

[
4γ4

(γ + 1)4
[(γ + 1

2γ

)2( (7− γ)γ
(γ + 1)(2γ + 1)

)ν1] 1
ν2

] γ−1
2−γ

, (284)

U ≈ γ + 1
2γ

ξ. (285)

Parameters of the solution

If we take for the moving surface ξ = 1 (shock front), Eq. (262) will give us
the total energy of explosion Eo as the sum of the kinetic and internal energy:

Eo = To + Uo

=
∫ R

0

ρ
(1

2
v2 + E

)
4πr2dr

=
32π

25(γ2 − 1)
β5Eo

∫ 1

0

(
FU2 + G

)
ξ2dξ, (286)

This enables us to find β:

β−5 =
32π

25(γ2 − 1)

∫ 1

0

(
FU2+G

)
ξ2dξ =

32π

125(γ2 − 1)

∫ 1

γ+1
2γ

(
FV 2+

G

ξ2

) dξ5

dV
dV.

(287)
The last integral can be integrated numerically. However, since it contains a
removable singularity at V = γ+1

2γ , we can proceed by separating it into two
integrals (with arbitrary ξ0 � 1)

β−5 =
32π

25(γ2 − 1)

[ ∫ ξ0

0

(
FU2+G

)
ξ2dξ+

1
5

∫ 1

V (ξ0)

(
FV 2+

G

ξ2

) dξ5

dV
dV

]
, (288)
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Figure 24: Complete solution for γ = 5/3.

Table 5: Some parameters of the solutions for different gammas.

γ β To/Eo Uo/Eo Pc/P2

5/3 1.152 0.283 0.717 0.306
7/5 1.033 0.219 0.781 0.365
4/3 0.995 0.197 0.803 0.383

and use approximate expressions (283)–(285) for the first one. We see that
density and velocity drop to zero at the center of explosion (F (0) = U(0) = 0),
while Eq. (284) gives us the ratio of central to shock pressure G(0) = Pc/P2.

Some parameters of the solutions for different gammas are given in Table 5,
while the complete solution for γ = 5/3 is shown in Fig. 24.

2.6.3 Blast waves with cosmic rays

Blast waves with CRs i.e. with an additional component with power-law number
density distribution function N(p) ∝ p−Γ , were already discussed by Chevalier
(1983a,b), Toptygin (2000), Petukhov et al. (2006) and more recently by Bell
(2015). As in Chevalier’s papers, we will assume that CRs are accelerated
at the shock front and that they adiabatically cool in the downstream region.
However, we will extend the analysis by using slightly modified jump conditions
and analyze solutions with different energy indices (Arbutina 2015).
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Equation of state

Let us assume that CRs have a power-law number density distribution
N(p) ∝ p−Γ , i.e. that the distribution function in momentum space is f =
kp−Γ−2, where k is a constant. By definition, pressure and internal energy
density per unit volume are

P =
∫ p∞

p0

4πp3 ∂E
∂p

fdp, (289)

u =
∫ p∞

p0

4πp2(E −mc2)fdp, (290)

where energy is given by the relativistic expression E2 = p2c2 + m2c4, m is
particle mass, c speed of light, and p0 and p∞ are lower and upper limits for
momentum, respectively.

For pressure we then have

P =
∫ p∞

p0

4πk

3
p2−Γ c2 1√

p2c2 + m2c4
dp. (291)

By performing integration by parts, internal energy density is

u =
∫ p∞

p0

4πkp−Γ (
√

p2c2 + m2c4 −mc2)dp

=
3

Γ − 1
P +

4πk

Γ − 1

[
p1−Γ
0 (

√
p2
0c

2 + m2c4 −mc2)−

− p1−Γ
∞ (

√
p2∞c2 + m2c4 −mc2)

]
. (292)

If p0 � mc and p∞ →∞, for 2 < Γ < 3, we have

u ≈ 3
Γ − 1

P. (293)

Since u = 1
γ−1P ,

γ = γCR =
Γ + 2

3
. (294)

We see that CRs with Γ → 2 behave like ultra-relativistic gas (γ = 4/3), while
those with Γ → 3 behave like ordinary gas with γ = 5/3.

Jump conditions

The jump conditions are probably the most problematic part of this analysis.
For the sake of simplicity, we separate the shock into three regions:

(o) far upstream,

(i) near upstream (precursor),

(ii) downstream.
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Conservation of mass, momentum and energy yield Rankine-Hugoniot relations
for strong shocks

ρ2v2 = ρ1v1 = ρ0v0, (295)

ρ2v
2
2 + Pg2 + PCR2 = ρ1v

2
1 + PCR1 = ρ0v

2
0 , (296)

1
2
v2 +

γg

γg − 1
Pg2

ρ2
+

γCR

γCR − 1
PCR2

ρ2
=

1
2
v2
0 . (297)

We have not assumed conservation of energy at the subshock (between regions
(ii) and (i)) and we shall set PCR2 = PCR1, i.e. assume that CR pressure
is continuous – high-energy particles do not see the subshock, but we have
neglected the CRs diffusion and escape.

Conservation of energy can also be written as

1
2
v2 +

γ

γ − 1
P2

ρ2
=

1
2
v2
0 , (298)

where we have defined effective γ, so that

γ

γ − 1
=

γg

γg − 1
β +

γCR

γCR − 1
(1 − β), (299)

where β = Pg2/P2, P2 = Pg2 + PCR2. For total jump in density we then have

Xtot =
ρ2

ρ0
=

γ + 1
γ − 1

(300)

and

Pg2 =
2β

γ + 1
ρ0v

2
s , (301)

PCR2 =
2(1− β)
γ + 1

ρ0v
2
s , (302)

v2 =
2

γ + 1
vs, (303)

where vs = Ṙ = −v0 is shock velocity. We also know from diffuse shock accel-
eration theory that (see Eq. (294))

X =
ρ2

ρ1
=

Γ + 2
Γ − 1

=
γCR

γCR − 1
. (304)

and from momentum conservation we can obtain the relation:

X − 1 = β(Xtot − 1). (305)

By combining Eqs. (293), (294), (298) and (299) we finally have:

β =
1−

√
1− 2 γg−γCR

γg−1

2 γg−γCR
γg−1

, (306)

γ = 1 + 2β(γCR − 1). (307)
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The solution of Euler equations

To find the complete solution, we will again write a similarity variable in the
form:

ξ = r/R(t), R(t) = B(Eo/ρo)1/5t2/5, (308)

where we have to solve Euler equations to find B. If we are dealing just with
an ordinary gas with γg = 5/3, we shall obtain the Sedov solution with R =
1.15(Eo/ρo)1/5t2/5. If similarity is maintained, the introduction of a new, CR
component would not change R = R(t) dependence but only the B value.

By using Eqs. (301)–(304) we can define dimensionless density F , gas pres-
sure G, CR pressure H and velocity U as:

ρ =
γ + 1
γ − 1

ρ0F (ξ) (309)

Pg =
2β

γ + 1
ρ0Ṙ

2G(ξ) (310)

PCR =
2(1− β)
γ + 1

ρ0Ṙ
2H(ξ) (311)

v =
2

γ + 1
ṘU(ξ). (312)

At the shock front (ξ = 1) the boundary conditions are F (1) = G(1) = U(1) = 1.
With these last expressions and partial derivatives

∂

∂t
= Ṙ

( ∂

∂R
− ξ

R

∂

∂ξ

)
, (313)

∂

∂r
=

1
R

∂

∂ξ
, (314)

we are ready to move to Euler equations in spherical symmetry

∂ρ

∂t
+

1
r2

∂

∂r

(
r2ρv

)
= 0, (315)

ρ
Dv

Dt
= ρ

∂v

∂t
+ ρv

∂v

∂r
= −∂Pg

∂r
− ∂PCR

∂r
, (316)

D(Pgρ
−γg )

Dt
=

∂

∂t

(
Pgρ

−γg

)
+ v

∂

∂r

(
Pgρ

−γg

)
= 0, (317)

D(PCRρ−γCR)
Dt

=
∂

∂t

(
PCRρ−γCR

)
+ v

∂

∂r

(
PCRρ−γCR

)
= 0, (318)

where D
Dt is Lagrange or substantial derivative.

Continuity equation (315) gives us

(U

ξ
− γ + 1

2

)
ξ
F ′

F
+ U ′ +

2
ξ
U = 0, (319)

while the entropy equations (317) and (318), with the help of Eq. (315), can be
integrated to give:

GF 1−γg

(U

ξ
− γ + 1

2

)
=

1− γ

2ξ3
, (320)
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HF 1−γCR

(U

ξ
− γ + 1

2

)
=

1− γ

2ξ3
. (321)

In all the expressions we have used notation f ′ = df
dξ , f = {F, G, H, U}, as

earlier.
Finally, a self-similar form of momentum equation (316) is

ξ
[( 2

γ + 1
U

ξ
− 1

)
U ′ − 3

2
U

ξ

]
+

γ − 1
γ + 1

1
F

[
βG′ + (1 − β)H ′

]
= 0. (322)

If we use Eqs. (320) and (321) to find G′ and H ′, and insert them into Eq.
(322), with little transformation Eqs. (322) and (319) become

dU

dξ
=

(γ − 1)2

ξ
(323)

×
{

βF γg−2(3
2 (γ + 1)ξ − 2γgU) + (1− β)F γCR−2(3

2 (γ + 1)ξ − 2γCRU)

(γ − 1)2
[
βγgF γg−2 + (1 − β)γCRF γCR−2

]
+ 4ξ2

[
U − γ+1

2 ξ
]3

+
3(γ + 1)ξ3U

[
U − γ+1

2 ξ
]2

(γ − 1)4
[
βγgF γg−2 + (1− β)γCRF γCR−2

]
+ 4ξ2

[
U − γ+1

2 ξ
]3

}
,

dF

dξ
= − F

U − γ+1
2 ξ

(324)

×
{ 3

2 (γ + 1)(γ − 1)2
[
βF γg−2 + (1− β)F γCR−2

]
(γ − 1)2

[
βγgF γg−2 + (1 − β)γCRF γCR−2

]
+ 4ξ2

[
U − γ+1

2 ξ
]3

+
ξU

[
8U − (γ + 1)ξ

][
U − γ+1

2 ξ
]2

(γ − 1)2
[
βγgF γg−2 + (1− β)γCRF γCR−2

]
+ 4ξ2

[
U − γ+1

2 ξ
]3

}
.

These last two equations ought to be solved numerically. The results are shown
in Fig. 25. As we approach the center ξ → 0, if β 
= 1, the velocity becomes
approximately U ≈ γ+1

2γCR
ξ and F ∝ ξ3/(γCR−1), G ∝ ξ3(γg−γCR)/(γCR−1), H ∝

const. If β = 1, we get the Sedov solution results: U ≈ γg+1
2γg

ξ, F ∝ ξ3/(γg−1)

and G ≈ const.

Energy integral

Let us now consider a moving surface with ξ = const. Energy within this
surface is

E(ξ) =
∫ r(ξ)

0

(1
2
ρv2 +

1
γg − 1

Pg +
1

γCR − 1
PCR

)
4πr2dr

=
8πρo

γ + 1
Ṙ2R3

∫ ξ

0

( 1
γ − 1

FU2 +
β

γg − 1
G +

1− β

γCR − 1
H

)
ξ2dξ (325)

=
32πEo

25(γ + 1)
B5

∫ ξ

0

( 1
γ − 1

FU2 +
β

γg − 1
G +

1− β

γCR − 1
H

)
ξ2dξ,

where we used the fact that Ṙ2R3 = 4Eo

25ρo
B5.
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Figure 25: Complete solutions for different energy indices Γ .
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If for the moving surface we take ξ = 1 (shock front), Eq. (325) will give us
the total energy of explosion Eo as the sum of the kinetic, internal gas energy
and CR energy:

Eo = To + Uo,g + Uo,CR

=
∫ R

0

(1
2
ρv2 +

1
γg − 1

Pg +
1

γCR − 1
PCR

)
4πr2dr (326)

=
32π

25(γ + 1)
B5Eo

∫ 1

0

( 1
γ − 1

FU2 +
β

γg − 1
G +

1− β

γCR − 1
H

)
ξ2dξ.

This enables us to find B:

B−5 =
32π

25(γ + 1)

∫ 1

0

( 1
γ − 1

FU2 +
β

γg − 1
G +

1− β

γCR − 1
H

)
ξ2dξ, (327)

as well as the fractions To/Eo, Uo,g/Eo and Uo,CR/Eo (see Table 6).

2.7 Radio evolution of supernova remnants

2.7.1 Theoretical Σ−D relation

SNRs can be detected at many wavelengths, across the entire electromagnetic
spectrum, but they are primarily radio emitters. Investigations in radio domain
have provided a deep insight into SNRs properties, physical processes in them
and their evolutionary characteristics (see Dubner 2016).

The question of radio evolution of SNRs is closely related to the so-called
surface brightness to diameter (Σ−D) relation. The surface brightness is defined
as

Σν =
Lν

π2D2
=

4πd2Sν

π2D2
=

Sν

Ωs
, (328)

where Lν is radio luminosity, Sν is the flux density, d is the distance, D ≈ θd
is diameter of the source, θ is angular diameter and Ωs ≈ θ2π/4 is the source’s
solid angle. As we can see, Σν is the quantity independent of distance and can
be calculated directly, since both Sν and Ωs are directly measurable.

The Σ−D relation is usually assumed to be in the form

Σν = AD−β , (329)

where A and β are approximately constant. As we shall see, this is only fulfilled
for certain phases of evolution and if all other variables involved have power-
law dependence on diameter. The theoretical Σ−D relation was discussed by
Shklovsky (1960a), Lequeux (1962), Poveda & Woltjer (1968), Kesteven (1968),
Reynolds & Chevalier (1981), Duric & Seaquist (1986), Berezhko & Völk (2004)
and others.

Assuming that total number of CR particles N = nV is conserved and
adiabatic conditions apply for CR gas

dU + PdV = 0, (330)

where U = uV is total energy of CRs, P = (γ − 1)u CR pressure and V the
volume, we can find the Σ − D relation for a ”spherically expanding nebula”
(Shklovsky 1960a).
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If we assume a power-law spectrum N(E)dE = KE−ΓdE, for the total
number of particles N and total energy U we have:

N =
N
V

=
∫ ∞

E0

N(E)dE =
∫ ∞

E0

KE−Γ dE = K
E1−Γ

0

Γ − 1
, (331)

u =
U
V

=
∫ ∞

E0

N(E)EdE =
∫ ∞

E0

KE1−ΓdE = K
E2−Γ

0

Γ − 2
. (332)

Then
d lnN − d lnV = d ln K + (1 − Γ )d lnE0 (333)

and
d lnU − d lnV = d lnK + (2− Γ )d lnE0. (334)

Since d lnN = 0, combining Eqs. (333) and (334) gives us d lnU = d lnE0, i.e.

dU
U =

dE0

E0
. (335)

On the other hand, from Eq. (330) we find

dU + PdV = dU + (γ − 1)udV = dU + (γ − 1)Ud lnV = 0, (336)

d lnU + (γ − 1)d ln V = 0, (337)

which, in combination with Eq. (333) gives

d lnK = −(
1 + (Γ − 1)(γ − 1)

)
d lnV, (338)

i.e.
K ∝ D−3(1+(Γ−1)(γ−1)). (339)

Assuming that the magnetic flux is frozen in plasma (Alfvén’s theorem) Φ =
BS = 4πR2B = πD2B= const, we have

B ∝ D−2. (340)

If Eq. (339) applies for CR electrons, from Eq. (294) γ = Γ+2
3 , and with

synchrotron emissivity from Eq. (205), the surface brightness is finally

Σν ∝ D−β ∝ ενD ∝ KB1+αD ∝ D−[Γ+3+(Γ−1)2]. (341)

For α = 0.5 (Γ = 2α+1 = 2), the slope β = 6 in the first Σ−D relation obtained
by Skhlovsky (1960a). Of course, SNRs are not simple spherical nebulae whose
expansion is driven by CR pressure, so this relation is of historical interest only.

Assuming CRs ”energy conservation”

dU = 0, (342)

instead of adiabatic conditions (330), since d lnN = 0 and d lnU = 0, Eqs.
(333) and (334) give d lnK = −d lnV , i.e.

K ∝ D−3. (343)
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Assuming, further, constant partition between magnetic field and CRs energy
densities

uB =
1
8π

B2 ∝ u, (344)

we obtain B2 ∝ u = U/V ∝ K ∝ D−3, i.e.

B ∝ D−1.5. (345)

Finally, from Eq. (341)
Σ ∝ D−(7+3α)/2, (346)

and if α = 0.5, β = 17/4 which is the slope of the theoretical relations obtained
by Reynolds & Chevalier (1981).

By using the same assumptions, we can also derive Sν− t relation, assuming
for ambient density ρ ∝ R−s and that shock propagation as R ∝ tm. Flux
density for synchrotron radiation is

Sν ∝ ενV ∝ KB1+αν−αV. (347)

Assuming again constant partition between magnetic field, CR energy and ther-
mal energy i.e. shock ram pressure, we have:

K ∝ u ∝ uB =
1
8π

B2 ∝ ρv2
s . (348)

where vs is the shock velocity. With Γ = 2α + 1

Sν ∝ K(5+Γ )/4V ∝ t−{2(5+Γ )−m[(2−s)(5+Γ )+12]}/4, (349)

i.e. for the case s = 2 and m = (n− 3)/(n− s) → 1 (e.g. radio SNe, Chevalier
1984):

Sν ∝ t−(5+Γ−6m)/2 ∝ t−α. (350)

If s = 0 and m = 2/5 (as in Sedov’s solution) we have

Sν ∝ t−3(α+1)/5. (351)

Duric & Sequest (1986) based their theory on Bell’s (1978a,b) formulation
of DSA, evolution of amplified turbulent magnetic field proposed by Gull (1973)
and Fedorenko (1983), and the hydrodynamic solution of Sedov (1959).

According to Eq. (69):

K ∝ nH(Γ− 1)(E2
inj + 2mec

2Einj)(Γ−1)/2, (352)

where nH is hydrogen number density, Einj ≈ 2mpv
2
s injection energy, vs shock

velocity, and me and mp electron and proton mass, respectively. With B ∝ D−δ,
δ = 1.5− 2, Duric & Seaquist (1986) find:

β =
{ 6α + δα + δ − 1, v � vo,

3α + δα + δ − 1, v � vo,
(353)

where vo =
√

me/mp c ≈ 7000 km/s. To be more specific, in the Sedov phase,
when we expect vs � vo,

Σν ∝ Eα
o ρ1−α

o D−(3α+δα+δ−1), (354)
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Table 7: Hydrodynamic and radio evolution of SNRs going through different
phases, according to Berezhko & Völk (2004). The parameter β in the last
column is given for α = 0.5.

Phase vs ∝ Σν ∝ β

Early free expansion(Eo/Mo)
1/2 (Eo/Mo)

(3+α)/4ρ
(3+α)/2
o D -1

Late free expansion (E2
o/(Moρo))

1/4D−3/4 (E2
o/Mo)

(3+α)/8ρ
3(3+α)/8
o D−(1+3α)/85/16

Early Sedov’s (Eo/ρo)
1/2D−3/2 E

(3+α)/2
o D−(7+3α)/2 17/4

Late Sedov’s (Eo/ρo)
1/2D−3/2 Eoρ

(1+α)/2
o D−2 2

i.e. for α = 0.5 and δ = 2
Σν ∝ D−7/2. (355)

More recent theory of the radio-synchrotron evolution of SNRs was given by
Berezhko & Völk (2004). In the Sedov phase, their result is similar to the result
of Reynolds & Chevalier (1981), which assumes constant partition of energies
K ∝ B2 ∝ EoD

−3, i. e.
Σν ∝ D−17/4, (356)

for α = 0.5. However, Berezhko & Völk (2004) considered SNRs (primarily
type Ia) going through different phases of evolution, by adopting semi-analytical
hydrodynamical solutions (Chevalier 1982, Sedov 1959), and solved diffusion-
advection equation for CRs numerically. Protons and electrons were assumed to
be injected in the acceleration process with the same momentum and Np/Ne ≈
100. Approximate analytical results are given in Table 7.

During the free expansion K ∝ ρovs, while in the Sedov phase K ∝ ρov
2
s .

The magnetic field evolves as B ∝ K1/2, except in the late Sedov phase, when it
drops to the ISM field value BISM ∝ ρ

1/2
o . The surface brightness is, standardly,

Σν ∝ ενD ∝ D−β .
The main problem in describing the radio evolution of SNRs is the uncertain

physics and a large number of free parameters in the models. In a situation like
this it is difficult to establish a firm theoretical basis for the Σ−D relation i.e.
difficult to decide on a specific model. In the next part we will briefly discuss
the history of the empirical Σ−D relation.

2.7.2 Empirical Σ−D relation

Distance determination is one of the most prominent problems in astronomy.
That is why SNe type Ia and other ”standard candles” (or ”standard rulers”) are
so important to astronomers. Since Σν for an object can be found independently
of its distance, by establishing a reliable empirical Σν−D relation for calibrators
whose distances are known by means of other methods, one can obtain the
object’s diameter and through d = D/θ find the distance.

Empirical Σ −D relations were discussed by Shklovsky (1960b), Poveda &
Woltjer (1968), Milne (1970), Berkhuijsen (1973), Mathewson & Clarke (1973),
Green (1984), Case & Bhattacharya (1998), Urošević (2002), Arbutina et al.
(2004), Arbutina & Urošević (2005), Urošević et al. (2005), Pavlović et al.
(2013, 2014) and many others. For a critical overview of the Σ−D relation and
discussion of the selection effects, see for example Green (1984, 1991, 2014). It
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is clear that any survey for SNRs is limited by sensitivity and angular resolu-
tion. In addition, the sample of Galactic SNRs suffers from poorly determined
distances to known objects. In recent years, more attention is paid to extra-
galactic samples, since all SNRs in galaxies far away from the Milky Way can
be regarded as being practically at the same distance.

Fig. 26 represents a Σ − D plot for radio SNRs in the Milky Way (MW,
Green 2014, Ferrand & Safi-Harb 2012, Pavlović et al. 2014), Large Magellanic
Cloud (LMC, Bozzetto et al. 2017), Small Magellanic Cloud (SMC, Filipović
et al. 2005), M31, M33 (Urošević et al. 2005), NGC4449, NGC1569, NGC4214,
NGC2366 (Chomiuk & Wilcots 2009) and Arp 220 (Batejat et al. 2011).
The data for Galactic SNRs are also available in Green’s (2014) catalogue at
http://www.mrao.cam.ac.uk/surveys/snrs/ and in a catalogue by Ferrand &
Safi-Harb (2012) at http://www.physics.umanitoba.ca/snr/SNRcat/, while
an extragalactic SNRs catalogue by Urošević et al. (2005) is available at http://
astro.matf.bg.ac.rs/dejanurosevic/catalogue/.

Solid, dashed and dash-dotted curves in Fig. 26 represent ”equipartition”
evolution models εCR ≈ 4

Γ+1εB ∼ ηρv2, εB = 1
8π B2, obtained by applying

Eq. (209), and assuming CR proton to electron number 100:1. The volume filling
factor is f = 0.25, while η = 0.33. The first model is applicable to SNe type
Ia, with energy Eo = 1 foe = 1051 erg, ejecta mass Mo = 1.4 M� and ambient
density nH = 1 cm−3. The other two models are more applicable to core-collapse
SNe with Mo ∼ 10 M�, Eo ∼ 1 and 10 foe (in the case of hypernovae) and
densities nH ∼ 10 and 100 cm−3, where the shock first interacts with CSM in
the form of steady circumstellar wind with a mass loss rate Ṁ = 10−5 M�yr−1

and wind velocity vW = 10 km s−1. These toy-models are similar to those of
Reynolds & Chevalier (1981) and Berezhko & Völk (2004), in a sense that the
slopes during the Sedov’s phase are approximately β = 7+3α

2 = 4.265− 4.280.
If luminosity Lν = f(D) = const, during the evolution, the slope of the Σ−D

relation would be β = 2. This is the so called ”trivial relation”. The problem
with this relation is that even if �f : D → Lν , i.e. there is no physical relation
at all, we can still obtain β = 2 empirically simply because the inverse square
dependence on D is implied by the definition of surface brightness. This seems
to be the case with the Milky Way and most extragalactic relations, except
perhaps with the M82 galaxy relation, if standard vertical-offset fitting were
used (Arbutina et al. 2004). For the discussion on orthogonal fitting procedure
see e.g. Urošević et al. (2010) and Pavlović et al. (2013). It is still quite
unlikely that any of the relations obtained thus far represents an evolutionary
track. The role of the Σ − D relation would hence, at best, be similar to the
role of the main sequence on the H-R diagram.

Additionally, early studies of the Σ−D relation did not make any distinction
between different classes of remnants, mainly due to the lack of observational
data, leading to the assumption that all properties, or parameters, of the radio
(surface brightness) evolution (such as SN energy, mass of the ejecta or density
of ISM) are, practically, the same for all remnants. However, later studies have
shown that these properties may substantially differ from remnant to remnant.
Consequently, it has been generally accepted over the years that no single Σ−D
relation can be constructed for all SNRs. The question is whether it is still
possible to construct the relations for some classes of SNRs.

In Tables A1, A2 and A3 we compiled data for SNRs in the dense envi-
ronments of Galactic molecular clouds (GMC), oxygen-rich SNRs, sometimes
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Figure 26: The Σ−D plot for radio SNRs in selected galaxies. Solid, dashed and
dash-dotted curves represent ”equipartition” evolution models εCR ≈ 4

Γ+1εB ∼
ηρv2, εB = 1

8π B2, obtained by applying Eq. (209), and assuming CRs proton
to electron number 100:1. The volume filling factor is f = 0.25, while η = 0.33
is assumed.
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Figure 27: The Σ−D plot for SNRs in the Galactic molecular clouds (GMC),
oxygen-rich and Balmer-dominated/type Ia SNRs.
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linked with SNe Ib/c, and Balmer-dominated/type Ia SNRs. Fig. 27 shows the
Σ−D plot for these three classes of remnants. We have not included in the fig-
ure GMC SNRs G292.0+1.8 and B0540-69.3 that contain pulsars, since pulsar
wind nebulae (PWN) introduce additional complications to radio evolution. As
with oxygen-rich remnants, some do have PWN and were excluded (G292.0+1.8
and B0540-69.3), but most of them (six of eight) seem to be shell-type SNRs
(or with radio-quit neutron stars – Cas A, Pup A). We know from stellar evolu-
tion theory that massive stars mainly occur and remain in dense environments
(such as molecular clouds) owing to their shorter lifetimes, while the longer lived
lower mass stars tend, on average, to be found in less dense environments. SN
Ia progenitors thus have enough time to abandon their birthplaces and explode
in more dispersed environments, and if the radio luminosity of their remnants is
directly proportional to ISM density, they are expected to be, on average, less
luminous than the core-collapse SNe.

In Fig. 27 we have shown ”trivial” relations with β = 2, which shows nothing
more than that the average luminosities (in erg s−1) for Balmer-dominated/ Ia,
GMC and oxygen-rich SNRs are 〈log L1GHz〉B/Ia = 23.38, 〈log L1GHz〉GMC =
23.63 and 〈log L1GHz〉O = 24.37, respectively. For example, it is known that
the flux density and thereby luminosity of G1.9+0.3 is actually rising and can
be reasonably well modeled by an adapted non-linear DSA theory (Pavlović
2017). It is obvious from Fig. 27 that Balmer-dominated/Ia SNRs lie below
other remnants in the Σ−D plane, i.e. are indeed less luminous, although the
dispersion is quite large. It remains uncertain whether lower ISM density is
responsible for their low radio luminosity. This is what is expected based on
the theory of Duric & Sequest (1986), for example, but not based on the work
of Berezhko & Völk (2004) and similar theories, where the differences in radio
luminosities, at least in the early Sedov phase, are mainly due to the dispersion
of explosion energy. These questions remain to be answered in the days to come.

82



Appendix

Tables A1, A2 and A3 present compiled data for SNRs in the dense environ-
ments of Galactic molecular clouds (Huang & Thaddeus 1985, Arbutina et al.
2004), oxygen-rich SNRs (Arbutina & Urošević 2005, Vink 2012), and Balmer-
dominated/type Ia SNRs (Tuohy et al. 1982, Arbutina & Urošević 2005, Vink
2012). References for adopted distances are given in the footnote of each table.
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Filipović, M. D. et al., 2005, Mon. Not. R. Astron. Soc., 364, 217

Fowler, W. A., Hoyle, F., 1964, Astrophys. J. Suppl. Series, 9, 201

Gaensler, B. M., Wallace, B. J., 2003, Astrophys. J., 594, 326

Gaisser, T. K., 2012, Astropart. Phys., 35, 801

Gal-Yam, A., 2012, Scientific American, 306, 44

Gal-Yam, A., Mazzali, P., Manulis, I., Bishop, D., 2013, Publ. Astron. Soc.
Pacific, 125, 749

Green, D. A., 1984, Mon. Not. R. Astron. Soc., 209, 449

Green, D. A., 1991, Publ. Astron. Soc. Pacific, 103, 209

Green, D. A., 2014, Bulletin of the Astronomical Society of India, 42, 47

Green, D. A., Stephenson, F. R., 2002, Historical supernovae and their rem-
nants, Oxford: Oxford University Press

Grupen, C., 2005, Astroparticle Physics, Heidelberg: Springer-Verlag

Gonzalez Gaitan, S., 2001, Ph.D. Thesis, University of Toronto

Gull S. F., 1973, Mon. Not. R. Astron. Soc., 161, 47

Hamuy, M., 2003, Astrophys. J., 582, 905

Hoyle, F., Fowler, W. A., 1960, Astrophys. J., 132, 565

Huang, Y.-L., Thaddeus, P., 1985, Astrophys. J., 295, L13

Iben, I., Tutukov, A. V., 1984, Astrophys. J. Suppl. Series, 54, 335

Jeffery, D. J., 1999, astro-ph/9907015

Kerzendorf, W. E., Childress, M., Scharwächter, J., Do, T., Schmidt, B. P.,
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