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Abstract. Various kinds of craters exist on solid bodies in the planetary system and some
of them are due to impacts into the surfaces of the objects concerned. Impact craters are
”by default” analyzed within the ”scaling theory”, based on dimensional analysis. The
same problem can be analyzed by using standard laws of condensed matter physics. In this
contribution the two approaches will be compared, and possibilities for future work discussed
to some extent.

1. INTRODUCTION

Surfaces of solid bodies in the solar system are filled with craters of various sizes. Some
of them are of volcanic origin, while others (which are the subject of the present paper)
are the results of impacts of small bodies into the target surfaces. The existence of
impact craters is an expectable consequence of the fact that a multitude of small solid
bodies, remaining from the epoch of formation o the planetary system, is orbiting
the Sun. Their study is attractive for two important reasons: on the fundamental
level, analyzing these craters gives the opportunity of inferring conclusions about the
impactors which made them. The ”applied” interest in impacts and impact craters
is much more important: the impact of a sufficiently large object into a sufficiently
densely populated region on the Earth would provoke a catastrophe. Accordingly,
developing the possibilities of predicting the place of an impact, the size of the possible
crater, heating or melting of the target material or the height of a possible tsunami,
is extremely interesting and important for humanity.

This paper is devoted to a comparison of two approaches to the problem of im-
pacts and the resulting craters: the scaling theory (Holsapple 1993) and the approach
based on standard laws of condensed matter physics (Celebonovic 2013). Each of the
following two sections is devoted to brief outlines of each of these approaches, the
section after to a comparison of their possibilities, and finally the conclusions.
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2. THE SCALING THEORY

The crucial term in this approach is the notion of scaling. Scaling is defined as the
application of some relation (called the scaling law) to predict the outcome of one
event from the results of another. Parameters which are different between the two
events are called scaled variables. It can also mean predicting the dependence of the
outcome of a problem on its parameters (Holsapple 1993).

The form of scaling laws can be determined in three ways: by impact experiments,
analytical calculations and approximate theoretical solutions.

The basic principle of impact experiments is very simple: projectiles of varied
composition and mass are fired with different speeds into targets of differing chemical
composition, and data are measured on the resulting craters. Such experiments are
being performed for decades (some examples are Oberbeck 1971; Fujiwara et al.,
1977; Baldwin et al., 2007; Suzuki et al., 2012) and they have given various interesting
results. However, a common problem with all these experiments is that the projectiles
are launched in them with velocities below those of interest for studies of creation of
large craters. In a similar kind of experiments, solid targets are shock compressed
by the impact of short-lived laser beams. For a recent report on a newly developed
experimental platform for such experiments see, for example, (Gauthier et al., 2014).

Laws of physics needed for theoretical studies of impacts and the formation of
craters are well known; these are the basic laws of classical physics,conservation of
mass,momentum and energy, supplemented by knowledge on the equation of state
(EOS) of the materials of the target and the impactor. However, this kind of work
encounters a problem: lack of detailed knowledge on phase transitions in materials of
ill defined chemical composition. The point here is that if the impactor is sufficiently
massive and the speed of impact sufficiently high, at the moment of impact a transition
solid → plasma occurs; the plasma cools rapidly, and the process ends-up in the
domain of condensed matter physics.

Approximate theoretical solutions are based on a simple idea: the initial phase of
the problem is approximated as a ”point source” of shock waves propagating through-
out the target after the impact. This approach was developed for studies of the effects
of nuclear explosions. For details see (Holsapple 1993; Nellis, 2000) and references
given there.

A good example of a scaling law is the problem of formation of a crater of volume
V , resulting from the impact of an impactor of radius r, speed v and mass density ρ1

into a target (planet) having surface gravity g, material strength X, and mass density
ρ. Material strength is loosely defined as the ability of a material to whitstand load
without failure. All material properties can be expressed as combinations of the
dimensions of stress and mass density. This implies (Holsapple,1993) that the volume
of an impact crater can be expressed as

V = f [{r, v, ρ1} , {ρ,X} , g] (1)

where the first three variables describe the impactor, the following two the material
making up the planet, and the surface gravity of the planet. This expression is
completely general, and scaling models are derived from it by dimensional analysis.
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It follows from equation (1) that
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where m = 4π
3 ρ1r

3 is the mass of the impactor. The quantity on the left-hand side is
the ratio of the mass of the material within the crater to the mass of the impactor.It is
usually called cratering efficiency and denoted by πV . The first term in the function is
the ratio of the lithostatic pressure ρgr to the initial dynamic pressure ρv2 generated
by the impactor. The lithostatic pressure at a certain depth is defined as the pressure
exerted by the material above it. This ratio is denoted by π2; the second term is the
ratio of the material strength to the dynamical pressure, denoted by π3. The final
term is the ratio of the mass densities.

If all the parameters of eq.(2) were known, or could be measured or calculated,
it would not be a particular problem to determine the volume of an impact crater.
As this is far from being the case, solutions of this equation are usually studied in
two limiting cases: the ”strength” regime and the ”gravity” regime. The ”strength”
regime is the situation in which the strength of the surface material is larger than
the lithostatic pressure. Practically speaking, this implies impators with diameters of
approximately one meter.This means that

ρV

m
= f1[

X

ρv2
] (3)

where it was assumed that the ratio of the densities is approximately one. In this
regime, the volume of the impact crater increases linearly with the volume of the
impactor, its mass and its energy. Any dimension of the crater increases with the
radius of the impactor. In the opposite case, when the diameter of the impactor is of
the order of a kilometer or more, the lithostatic pressure is bigger than the material
strength,meaning that

ρV

m
= f1[

gr

v2
] (4)

This is the definition of the ”gravity” regime. Various experiments (discussed in
Holsapple,1993) have been performed on the dependence of πV on π2, the result
being an exact power law. This can be explained, as discussed in (Holsapple,1993) by
the assumption that whenever there is a dependence on the impactor size and speed,
it is actually the dependence on its kinetic energy. This idea was used in the early
sixties, in scaling from a nuclear event called ”Teapot ESS” to the creation of the
Meteor Crater in Arizona.

The idea that the consequences of an impact depend on the kinetic energy of the
impactor is equivalent to the ”point source” approximation. The kinetic energy is
given by 1

2mv2. Taking the cube root, introducing the mass density, and dropping
the numerical factor, one gets the function

C = rρ1/3v2/3 (5)

which can be generalized to
C = rρµvν (6)

65
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Using this, equation (1) becomes

V = f [rρµvν , ρ1, X, g] (7)

It can be shown by dimensional analysis (Holsapple, 1993) that in the strength regime
the volume of a crater is given by

V ∝ m

ρ1
× (

ρ1v
2

X
)3µ/2 × (

ρ

ρ1
)1−3ν (8)

and a similar expression can be derived for the gravity regime. Values of scaling expo-
nents can be determined in impact cratering experiments (such as Suzuki, 2012).Once
they are known for a given material (or materials) calculations referring to the for-
mation of the impact craters become possible.

3. CONDENSED MATTER PHYSICS

Surfaces of objects in the solar system on which impact craters exist are solid. As
the impactors are solid objects, the question is what (if anything) can be concluded
about the impacts by using laws of condensed matter physics. The aim of this section
is to outline these possibilities, using recent results of the present author.

The first step in analyzing impact craters by the use of solid state physics, is
to determine the minimal velocity which a projectile must have in order to form a
crater. This was studied in (Celebonovic and Sochay, 2010), where the condition for
the formation of a crater was defined as the equality of the kinetic energy of a unit
volume of the material of the impactor with the internal energy of the unit volume of
the material of the target. It was shown that this speed is given by

v2 =
π2

5ρ1

(kBT )4

h̄3 (
∂P

∂ρ
)−3/2 (9)

where ρ1 is the mass density of the impactor, T the temperature of the target, and
P, ρ are the pressure and mass density of the material of the surface of the target. The
dimensions of the impactor and of the resulting crater were not taken into account.
As a test,this expression was applied to the case of an impactor made up entirely
of olivine (Mg,Fe)2SiO4. It was shown that the minimal impact speed of such an
object should be 16.3 km/s. For comparison, note that the impact velocity of a real
object, asteroid 99942 Apophis, is estimated to be between 13 and 20 km/s, which
means that two completely different methods: celestial mechanics and condensed
matter physics give very similar results. 99942 Apophis is an interesting object for
such a comparison, because celestial mechanics indicates that there exists a small
but non-zero probability that it collides with the Earth on April 13, 2036 (Giorgini
et.al., 2008). Similar results have been reached for the asteroid 1950DA, for which a
probability of impact exists for March, 2880 (Farnocchia and Chesley, 2014).

The final result of any impact is a crater. If the impact is strong enough (if
the kinetic energy of the impactor is high enough), and if the target has a suitable
value of the heat capacity, a consequence of the impact will be heating of the target.
Depending on the kinetic energy of the impactor, the target may heat enough so as to
melt, and possibly even evaporate at the point of impact. In this regime condensed
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matter physics obviously cannot be applied. Regardless of the amount of heating in
the impact, the outcome is always the same: a certain quantity of material of the
target gets ”pushed aside” at the point of impact, thus creating a crater of given
dimensions. The aim of the calculations outlined here is to draw conclusions about
the impactor using measurable dimensions of the crater and various parameters of the
target. Such an approach corresponds to what has earlier been named ”the inverse”
problem (Holsapple, 2003), where the aim was to deduce the impactor size and speed
by analyzing the volume of impact melt.

Formation of impact craters was recently discussed as the following analogous
problem in condensed matter physics: how big must be the kinetic energy of the
impactor in order to produce a hole of given dimensions in a target material with
known parameters (Celebonovic, 2013)? It was assumed that the material of the
target is a crystal, that one of the usual types of bonding exists in it, and that as a
consequence of the impact the target does not melt, so that condensed matter physics
can be applied. The problem of heating in impacts has recently been discussed in
(Celebonovic, 2012).

This calculation is based on a simple physical idea: the kinetic energy of the
impactor must be greater than or equal to the internal energy of some volume, denoted
by V2, of the material of the target. The kinetic energy of the impactor of mass m1

and speed v1 is obviously

Ek =
1
2
m1v

2
1 (10)

and the internal energy EI consists of three components: the cohesion energy EC ,
the thermal energy ET and EH(T ) - the energy required for heating the material at
the point of impact by an amount ∆T . Therefore,

EI = EC + ET + EH(T ) (11)

and the condition for the formation of an impact crater as a consequence of an impact
is

EI = Ek (12)

The details of the calculation are avaliable in (Celebonovic, 2013) and the final result
for the energy condition which must be satisfied to enable the formation of an impact
crater is given by
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The number N is equal to the ratio of the volume of the crater, and the volume of
the elementary crystal cell, ve: N = V/ve. The meaning of other symbols is: kB

Boltzmann’s constant, T the initial temperature of the target, T1 the temperature to
which the target heats, TD the Debye temperature of the target, ρ1, r1 v1 - mass den-
sity, radius and impact velocity of the projectile, p, n - parameters of the interatomic
interaction potential in the material of the target, ν the number of particles in the
elementary crystal cell, ū the speed of sound in the material of the target and Ωm is
the volume per particle pair.
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Equation (13) may at first sight look very complicated. In fact, it is simply an
expression of the energy conservation law. Its main result is that it links parameters
of the impactor, with those of the material of the target, which was the aim of the
calculation.

This expression was applied to a well known case - the Barringer crater in Arizona,
for which most of the experimental parameters are known. Assuming that the material
of the crater is pure Forsterite (Mg2SiO4 ), and making plausible assumptions about
other parameters of Eq. (13), it was obtained that v1

∼= 41 km/s, which is far larger
than existing estimates. Assuming that only 10 percent of the material is Forsterite,
and keeping all the other parameters constant, gave the value of v1

∼= 15 km/s, for
the impact speed, which is much closer to the results of celestial mechanics. Details
of this calculation are avaliable in (Celebonovic, 2013).

The calculation outlined above was performed using the notion of cohesive energy
of solids. The problem is that the cohesive energy is a very ”impractcal”quantity: it
is defined as the energy needed to transform a sample of a solid into a gas of widely
separated atoms (Marder, 2010). As a consequence of this definition, it is difficult to
measure experimentally and it is not related to the strength of solids measurable in
experiments.

A much more ”practical” notion is the stress. It is defined as the ratio of the
force applied to a body to the cross section of the surface of a body normal to the
direction of the force. After an impact,a crater will form if stress in the material
becomes sufficiently high for the formation of a fracture.

The critical value of the stress needed for the occurence of a fracture in a material
is given by (Tiley, 2004)

σC =
1
2

(
Eχτ

r0w

)1/2

(14)

where E is Young’s modulus of the material, χ is the surface energy, τ is the radius of
curvature of the crack, r0 the interatomic distance at which the stress becomes zero
and w is the length of a crack which preexists in the material. Defined in this way,
σC has the dimensions of pressure.

At the moment of impact, the kinetic energy of the impactor is used for fracturing
and heating the material of the target. Therefore:

Ek = σCV + CV V (T1 − T0) (15)

where V is the volume of the crater formed as a result of the impact, CV is the
heat capacity of the target material and T0 the initial temperature of the target. In
accordance with recent experiments (Suzuki et al.,2012) the volume of the crater is
approximated by

V =
1
3
πb2c (16)

where b is the radius of the ”opening” of the crater and c denotes its depth.
It will be assumed that the impactor is a sphere of radius r1, made up of a material

of density ρ1 having impact velocity v1. Its kinetic energy is given by Ek = 2π
3 ρ1r

3
1v

2
1 .

It follows from Eq. (15) that

T1 = T0 +
1

CV
(
Ek

V
− σC) (17)
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and after some algebra (Celebonovic, 2014)

V =
2π

3
ρ1r

3
1v

2
1

αCV T0 + σC
(18)

where T1 − T0 = αT0. Equation (18) can be expressed as

V =
Ek

αCV T0 + σC
(19)

implying that the crater volume is a linear function of the kinetic energy of the
impactor. On the other hand, raw experimental data on crater volumes and the
impactor energies in (Suzuki et al., 2012), can be fitted by an equation of the form
V [m3] = V0 × Exp[E[J ]/c], with V0 = (4 ± 2) × 10−7m3 and c = (583 ± 56)J . For
sufficiently low energies E, this exponential expression reduces to the form V − V0

∼=
(V0/c)E. Combining with results of the calculations reported here, it follows that
V0/c = 1/(αCV T0+σC) The implication is that the results of the calculations reported
here are relevant to low kinetic energies of the impactors.

Experiments such as (Grady and Lipkin, 1980) have shown that measured data
for various materials can be fitted by an expression of the form σC = aε̇n where ε̇
is the strain rate, and a, n are material dependent constants. This implies that the
volume of an impact crater also depends on the rate of strain to which the target
material is exposed at the point of impact.

Calculations outlined here open up the possibility of making various estimates of
physical quantities occuring in the equations. Using known experimental data, and
taking that the most abundant mineral at the site of the Barringer crater is SiO2 it
was shown in (Celebonovic, 2014) that at the moment of impact the site heated up to
T1 ≈ 1300K. For another terrestrial entity, the Kamil crater on the border of Egypt
and Sudan, it was shown that σC

∼= 1.56× 108 J/m3.

4. COMPARING THE TWO APPROACHES

In this contribution we have outlined to some extent two approaches to the problem
of the impact craters on the surfaces of solid bodies in the planetary system. One is
the so called scaling theory and the other is standard condensed matter physics. Both
approaches have a similar goal: using avaliable experimental data, and relevant laws
of physics, draw as much conclusions as possible on the impacts and the impactors.

Scaling theory aims at linking the craters of ”celestial” origin with those resulting
from man made,classical or nuclear explosions. Scaling in such a way gives encour-
aging results. This approach is very general,which is excellent, but there exists the
problem of treatment of phase transitions. However,the main method of work with
scaling theories is dimensional analysis. One of the results of the scaling approach is
that the volume of a crater formed after an impact depends also on the mass den-
sity of the target. The same conclusion can be reached within the condensed matter
physics approach (Celebonovic, 2014).

The approach based on condensed matter physics is rigorously based on well known
physical laws. However, by its very nature, this approach has an inherent limitation:
it can treat either slow impacts of ”not very massive” projectiles, or the final phase
(in which heating effects have cooled down). Future work in this approach could go
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along two lines: including in more details the effects of heating, and thus enabling the
study of the ”hot phase” of the formation of a crater, and exploring the upper mass
limits of this approach and introducing (if it turns out to be necessary) some possible
new factors which influence the final outcome.
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