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Abstract. The application of the fast convergent Forth-and-Back Implicit Lambda Iteration
(FBILI) method to the solution of the two-level atom line transfer problems in moving media
with low velocity fields is presented. Two astrophysically important problems are solved and
discussed: (a) line formation in a plan-parallel moving slab of finite thickness, and (b) line
formation in a spherically symmetric expanding stellar atmosphere.

1. INTRODUCTION

For the modelling of many astrophysical objects it is necessary to solve the ra-
diative transfer (RT) problem taking into account the motion of the medium. In the
media with low velocity regime the radiative transfer is usually solved in the observer’s
(laboratory) frame of reference. As in the static case, the RT equation ’along the ray’
is an ordinary differential equation, but the opacity and emissivity of the material, as
seen by the observer at rest, depend on the direction of propagation of radiation due
to Doppler effect. Angles and frequencies are coupled together by the Doppler shift.
Using the observer’s reference frame, most numerical techniques developed for static
media can be straightforwardly applied to the RT in moving media with arbitrary
(non-monotonic) velocity fields. Only a wider range of frequencies (due to Doppler
shifts) and a larger number of angles (due to the coupling between the angle and the
frequency) must be used.

For flows with speeds much larger than thermal, radiative transfer is preferably
formulated in the Co-Moving Frame (CMF) of reference, although the disadvantage
of CMF calculations is the imposition of monotonic velocity fields. In the study of
high-speed outflows from stars, supernovae etc., where the velocity gradients greatly
enhance the escape of photons, Sobolev (or the large-velocity gradient - LVG) ap-
proximation is commonly used (Sobolev 1957).

Here we solve the line formation problem in moving (plane-parallel and spherically
symmetric) media by the use of a fast convergent method, Forth-and-Back Implicit
Lambda Iteration (FBILI), developed by Atanacković-Vukmanović et al. (1997).
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2. LINE TRANSFER IN MOVING
MEDIA (IN THE OBSERVER’S FRAME)

We will consider the case of a two-level atom line formation in a spherically symmet-
ric expanding stellar atmosphere (transition to the case of a plane-parallel expanding
slab of finite thickness is straightforward). We shall assume that the physical prop-
erties vary only with radial distance r. The radiative transfer equation (RTE) in the
observer’s frame takes the following form:

µ
∂I(r, ν, µ)

∂r
+

1− µ2

r

∂I(r, ν, µ)
∂µ

= − χ(r, ν, µ) [I(r, ν, µ)− S(r, ν, µ)] . (1)

I(r, ν, µ) is the specific intensity at point r, at frequency ν and in direction µ (cosine of
the angle θ between the local outward radial direction and the direction of propagation
of radiation at radius r). In moving media, the absorption coefficient χ(r, ν, µ) and
the source function S(r, ν, µ), as seen by the observer at rest, depend on the direction
of propagation of radiation.

Instead of solving the RTE as the partial differential equation (1), we can perform
a ray-by-ray computation of the specific intensities along the set of directions tangent
to the spherical layers (like those shown in Fig. 1) using the ordinary differential RTE
in the ’along the ray’ form:

±dI±(x, µ)
dτ(x, µ)

= I±(x, µ)− S(x, µ) . (2)

Here, τ represents the optical distance along a given direction (ray) measured from
the surface, whereas I± are the ingoing and outgoing specific intensities along the
ray. The monochromatic optical distance along a given direction is given by

dτ(x, µ) = −χ(x, µ)dz , (3)

and can be written as
dτ(x, µ) = dτL [β + φ(x, µ)] , (4)

where dz is the corresponding geometrical path length, and χ contains both continuum
and line contributions. β = χC/χL, dτL = −χL(z)dz, and Φ is the line absorption
profile, which is in the case of pure Doppler broadening given as:

φ(x, µ) =
1

δ
√

π
e−(x−µV )2/δ2

, (5)

where δ = ∆νD/∆ν∗D is the ratio of the Doppler widths at a local temperature and
at some standard temperature T ∗.

In the case of a two-level atom and assuming the complete redistribution, the
source function can be writen as:

SL = εB + (1− ε)J̄ , (6)

where ε is the photon destruction probability, B is the Planck function and:

J̄ =
1
2

∫ ∞

−∞
dx

∫ 1

−1

dµI(x, µ)φ(x, µ) (7)
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is the scattering integral. The total source function is:

S(x, µ) =
β

β + φ(x, µ)
SC +

φ(x, µ)
β + φ(x, µ)

SL (8)

Once the line formation problem is defined by Eqs. (2) and (6)-(8), we can look
for its numerical solution.

2. 1. DISCRETIZATION

For the numerical description of the radiation transport through 1D moving spherical
atmosphere, a discrete set of radii {rl}, l = 1, n is needed (Fig.1). Let the radius
r1 corresponds to the upper boundary surface of the atmosphere. The radius rn of
the lower boundary is to be chosen so that the radiation field at that point is highly
isotropic.

The solution of RTE (2) is performed along the set of rays {zk}, k = 1, n tangent
to the spherical layers corresponding to the discrete set of radii {rl}, as well as along a
few additional, so-called core rays {zk}, k = n+1, nt that intersect the inner boundary
surface (see Fig. 1).

Figure 1: Discrete mesh of radii {rl}, l = 1, n and a grid of rays (directions) zk; k =
1, nt that are used for the solution of the RT equation; I±l,i,k denote the in–coming
and out–going specific intensities at frequency i along the direction k at any point l.
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3. FBILI SOLUTION OF THE LINE TRANSFER IN
MOVING MEDIA (IN THE OBSERVERS FRAME)

Although the radiation field is unknown, using two-stream approximation we can
represent its propagation by means of the integral form of the RT for both the in-
going and the out-going specific intensities as follows:

Il = Il−1e
−∆ +

∫ ∆

0

S(t)et−∆dt . (9)

In order to solve this integral, we will assume parabolic behavior of the source function
between two successive depth points. Proceeding in this way we will derive the implicit
linear relation between the mean intensity of the radiation field and the local line
source function:

J̄ = a + bSL . (10)

This relation is implicit as the value of the source function is also unknown. It depends
on the unknown radiation field via scattering processes. By substituting Eq. (10) into
SE equation (6), we get the expression for updating the source function:

SL =
εB + (1− ε)a
1− (1− ε)b

. (11)

The iterative computation of these coefficients and not of the unknown functions
(J̄ and SL) themselves like in the classical Λ iteration, speeds up the convergence
dramatically.

3.1.1. Forward step

We start from the lower boundary condition (I−1 = 0) and then solve the integral
(9) for ingoing radiation for l = 2, NL. Then we perform numerical integration over
directions and frequencies, so we get the mean intensity in the form

J̄l
− = ã−l + b̃−l Sl + c−l S′l (12)

where we put all the non-local quantities in coefficient ã−l .

In order to improve the convergence, we can ’pack’ the coefficients differently:

b−l =
ã−l
SL

l

+ b̃−l , (13)

so we have
J̄−l = b−l SL

l + c−l S′Ll . (14)

Now, because ã−l
SL

l

is the ratio of two homologous quantities, it quickly gets its exact
value speeding up the convergence of the whole iterativeprocedure. The coefficients
b−l and c−l are stored for the use in backwards step.

3.1.2. Backward step

Now, we proceed from the bottom layer where the out-going specific intensities are
known. For the rays with k > n we use the diffusion approximation or we simply take
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that I+
n,i,k>n = Sn,i,k, whereas for k = n the condition I+

n,i,n = I−n,i,n is to be used. At
all other upper points l = n−1, 1, we can compute I+

l,i,k using the integral form of the
RTE (eq. (15)) for outgoing intensities. Here we also used parabolic approximation
for the source function between two depth points. Again, after numerical integration,
we will get:

J̄+
l = a+

l + b+
l SL

l (15)

Since we have b−l and c−l , and we know that (with assumption of parabolic be-

haviour of source function) S′Ll = 2SL
l+1−SL

l

∆τ −S′Ll+1, we can now get a−l and b−l . Next,
after computing a+

l and b+
l in the current layer, we can already update the source

function and use this new value for computing the out-going intensities. The whole
procedure is repeated until the convergence criterion is satisfied.

4. TEST PROBLEMS AND RESULTS

In order to test the FBILI method when applied to RT in moving media, we solved
several benchmark problems.

4. 1. LINE FORMATION IN A PLANE-PARALLEL MOVING SLAB

First we solved the problem of RT in plane-parallel expanding slab of finite thickness
(Hummer and Rybicki, 1968). The center of the slab is at rest, whereas the part
of the slab closer to the observer is moving towards and the part that is farther is
moving away from the observer with the velocity normal to the surface. There is
no incident radiation on the boundaries of the slab. This simulates the expanding
emission nebula.

The velocity law is given by:

V (τ) = V0 + τV1,

with three values for the velocity gradient: V1 = 0, V1 = −0.1 and V1 = −0.2. The
parameters describing the slab are as follows: ε = 10−3, B = 1, T = 20, δ = 1.

The results we got are in agreement with those in H&R paper. The plot of intensity
with frequency is presented on fig 2. The variation of maximum relative change with
number of iterations for Jacobi and FBILI method (with and without iteration factor)
is presented in Fig. 3.

Figure 2: Emergent intensity at µ ∼ 1 from an expanding slab (ε = 10−3, B = 1,
T = 20) for three values of the velocity gradient.
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Figure 3: Maximum relative change Rc of the source function between two iterations
as a function of iteration number for Jacobi and FBILI method (with and without
iteration factor) for the case of line formation in a plane-parallel expanding slab.

4. 2. LINE FORMATION IN A SPHERICAL ATMOSPHERE

The use of the FBILI method for the solution of the line transfer in a spherically
symmetric atmosphere is tested on the benchmark problem proposed by Avrett &
Loeser (1984).

We consider a stellar atmosphere consisting of homogeneous spherical shells. We
take that the radius of the first layer r1 = 30 and the last one rn = 1 (in the units of
stellar radius). The opaccity is:

χ(r, x, µ) =
[
120
29

+
30000

29
φ(r, x, µ)

]
1
r2

, (16)

where the line profile φ is given by the Gaussian profile function (5). The velocity
law is given by:

V (r) =
6
π

[
arctan

(
2r − 31

29

)
+

π

4

]
, (17)

so that V = 0 at the bottom and V = 3 at the surface.
The line profile is presented on fig 4, while comparison of maximum relative change

for FBILI and Jacobi method is in Fig 5.

Figure 4: Line profile from an expanding atmosphere with a frequency independent
continuum source function.
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Figure 5: Maximum relative change Rc of the line source function between two itera-
tions as a function of the iteration number for the Jacobi and FBILI method for the
case of line formation in an atmosphere expanding according to the velocity law (17).

5. CONCLUSIONS

The obtained results are in a good agreement with the results from four independent
investigations performed by other authors. Due to the lack of the published results on
the convergence properties of the iterative procedures used by other authors to solve
these benchmark problems, we compared the convergence rate of the FBILI to Jacobi
method, which uses the same formal solver. When applied to a plane-parallel moving
slab, FBILI method is about 2.5-3 times faster. On the other hand, for spherically
symmetric expanding atmosphere, the FBILI method is 1.4-1.8 times faster than the
Jacobi method, which is a bit less than in the static case, where the convergence is
1.7-2 times faster.
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