
Publ. Astron. Obs. Belgrade No. 92 (2013), 99 - 104 Contributed paper

DEVELOPING A TELESCOPE SIMULATOR TOWARDS A

GLOBAL AUTONOMOUS ROBOTIC TELESCOPE NETWORK

N. GIAKOUMIDIS1, Z. IOANNOU2, H. DONG1 and N. MAVRIDIS1

1Department of Computer Engineering, New
York University Abu Dhabi, Abu Dhabi, UAE

E–mail giakoumidis@nyu.edu

2Department of Physics, College of Science, Sultan Qaboos University, Muscat, Oman
E–mail zac@squ.edu.om

Abstract. A robotic telescope network is a system that integrates a number of telescopes to
observe a variety of astronomical targets without being operated by a human. This system
autonomously selects and observes targets in accordance to an optimized target. It dynam-
ically allocates telescope resources depending on the observation requests, specifications of
the telescopes, target visibility, meteorological conditions, daylight, location restrictions and
availability and many other factors. In this paper, we introduce a telescope simulator, which
can control a telescope to a desired position in order to observe a specific object. The system
includes a Client Module, a Server Module, and a Dynamic Scheduler module. We make
use and integrate a number of open source software to simulate the movement of a robotic
telescope, the telescope characteristics, the observational data and weather conditions in
order to test and optimize our system.

1. INTRODUCTION

A robotic telescope is an astronomical telescope that can observe the universe without
being operated by a human (Wang et al. 2006). A robotic telescope system typically
incorporates a number of subsystems, including a detector driving system (telescope
pointing capability and dome control), focusing control system, weather station, etc.
For an accurate observation and to maximize data collection the coordination of
all these subsystems is essential. Moreover, as there is always an observation error
introduced by a human operator, the autonomous robotic telescope can easily provide
a more accurate observation with much higher efficiency. Furthermore, a single robotic
telescope (regardless of its technical character, and construction cost) is limited by a
number of constraints, such as telescope specification, target visibility, meteorological
conditions, daylight, location restrictions, telescope availability etc.

A robotic telescope network normally consists of a number of robotic telescopes,
preferably spaced over long distances in order to overcome location induced limita-
tions. Based on the coordination of the sub robotic telescopes, the telescope network
can be treated as a single observing instrument. Our final objective is to develop a
system that is capable to manage and control a global robotic telescope network.

99



N. Giakoumidis et al.

Figure 1: System architecture diagram

The robotic telescope network can be seen as a distributed sensor network with
optimal estimation. It integrates the observation information from each robotic
telescope. Currently there are a number of robotic telescope networks operating a
wide range of telescope sizes and types (ROTSE, WET, HATNet, Robonet, Monet,
LCGOT) with various degrees of human interaction involved in their operation.

Distributed sensor networks have been researched for many years (Garcia 2011).
Nowadays, they have been successfully applied in forest fire detection (Ma et al. 2008),
volcanoes monitoring (Werner-Allen et al. 2006), ocean measurements (Vasilescu et
al. 2005), etc. While for the optimal estimation, we have many choices, like Kalman
Filtering (Ribeiro et al. 2010), Information Filtering (Olfati-Saber & Shamma 2005),
Viener Filtering (Kumar, Altman & Basar 2012), etc. However, the gap between
the distributed sensor (i.e., single robotic telescope) for automatic optimal estima-
tion is the information fusion. There are many kinds of robotic telescopes and each
telescope’s working condition is different. Here, we focus on how to combine these
robotic telescope systems together. As a first step, we create a telescope simulator to
act as a platform on which we will test our system

2. SYSTEM ARCHITECTURE

The proposed system that is able to manage and control the theoretical global robotic
telescope network consists of three major sub-modules: a Client Module, a Server
Module, and a Dynamic Scheduler Module (see Figure 1).

The following is a brief description of how the system architecture is implemented.
First of all, an observation request is sent by the Client Module to the Dynamic

100



Developing a Telescope Simulator

Scheduler Module. Then, the Dynamic Scheduler Module decides the available robotic
telescopes for this specific observation request by considering the specifications of each
of the telescopes, the target visibility at each telescope location, the meteorological
conditions, etc. Afterwards, the Dynamic Scheduler Module communicates with the
Server Module of each telescope and receives their current status. Once it finds the
specific telescope that meets all the preconditions it then sends the command to the
Server Module of the telescope to start the observation procedure. Later, once the
telescope is on the desired position and has collected the observational data, the
server module sends back to the Dynamic Scheduler Module the observational data.
Finally, the Dynamic Scheduler Module forwards the observation data received from
the Server Module to the Client module.

2. 1. THE CLIENT MODULE

The Client module is an application designed using the programming environment of
Labview. It has as purpose to be the main User Interface (UI) of each client connected
on the telescope network as well as the application, which can provide the observa-
tional data from the telescope (Feedback). The Client module is able to get inputs
through user interface about all the necessary parameters for an observation, such as:
target coordinates (declination, right ascension), desired date and time of observation,
observation time, etc. When the user gives all the necessary parameters for an obser-
vation request to the Client Module following a start command, the Client Module
software starts a TCP communication to the Dynamic Scheduler Module and sends
all the above observation request data. The outputs of the Client module include the
TCP communication data mentioned above, the real time information of the telescope
(telescope position, weather condition, telescope specifications, site information, etc.)
and the observational data. The algorithm of Client Module calculates the data from
the user interface which is in string format, and then create bigger string containing
all the data from the observation request in addition to some other data. This new-
created data assists the Dynamic Scheduler Module algorithm to separate the useful
information and to convert them into numeric values for further processing. After the
data packet is ready, the Client Module opens a predefined network port and sends
the data packet to specific IP address and port in a TCP protocol. In order to make
our system more reliable, when Client Module sends the data, it leaves the same port
open and wait to receive an announcement from Dynamic Scheduler Module success-
fully. We also add text to speech features to the Client Module in order to make a
user-friendlier environment, by calling .NET classes from Windows operating system.

2. 2. THE SERVER MODULE

The Server module is an application designed using the programming environment
of Labview and has a purpose to receive commands from the Dynamic Scheduler,
to control the actual physical telescope, to send telescope status information to the
Dynamic Scheduler and finally to send the Observation Data to the Client module.
The Server Module is connected to the physical hardware of the telescope by using the
AStronomy Common Object Model (ASCOM) driver libraries. The communication
with the telescope hardware is bidirectional, which means that the Server module can
give control commands to the telescope or to other instruments which are connected
to the telescopes, such as cameras, filter focusers, filter wheels, domes, rotators, etc.

101



N. Giakoumidis et al.

In addition, it receives current information for their status, such as telescope position,
weather conditions, site information, dome position, selected filter, etc.

The Server Module as inputs all the necessary parameters to conduct an observa-
tion, such as, the target coordinates (Declination, Right Ascension), desired filter, etc.
The inputs are made through a user interface (local control) or through a network
by using TCP communication protocol (remote control). The outputs of the Server
Module are the physical communication with the telescope hardware as we mentioned
above. The information of the hardware state is transferred through user interface
(local feedback) or through the network (remote feedback). The observation data is
also transferred through user interface or through the network. To incorporate the
ASCOM libraries to our software, we call .NET classes from the ASCOM open source
code.

The Server Module algorithm has two operation modes: the local operation mode,
and the remote operation mode. When the Server Module algorithm works on local
mode, it takes the inputs values from the user interface fields and after some numeric
transformations and calculation, it passes the results to the .NET classes of ASCOM
libraries which communicate directly to the telescope hardware. Also, when the Server
Module sends the slew command to the telescope, it tracks the telescope movement
every 100 ms to make sure that the telescope moves to the right position. When
the desire position is reached, it informs the user through the user interface that the
telescope is on the desired position. When the Server module runs on remote mode,
it opens a specific network port and waits to receive the data from the Dynamic
Scheduler which contains the necessaries values to control the telescope. If the values
are received successfully, it starts the same procedure described above to drive the
telescope to the desired position. Meanwhile, it sends back to the Dynamic Scheduler
module an announcement that the data has been received successfully. When the
telescope is executing a movement the Server Module sends to the Dynamic Scheduler
the current position of the telescope every 200 ms. For all the remote communication
with the Dynamic Scheduler, the Server module sends and receives data by using the
TCP protocol.

2. 3. THE DYNAMIC SCHEDULER MODULE

The Dynamic Scheduler Module is an application designed using the Matlab soft-
ware package. Its purpose is to receive observation requests from the multiple Client
Modules. By considering all the necessary parameters, it decides which telescope is
appropriate for each observation request and makes the connection between the Client
Module and the Server module.

We are experimenting with a host of scheduling algorithms at this stage. The
incoming observation requests are partially specified, allowing for flexibility in their
allocation; for example, a total observation duration might be specified, but within
a flexible time window, and with the possibility for breaking the observation time to
a number of sub-segments, which add up to the total required time. Most impor-
tantly, the scheduler might dynamically reschedule the observation in real time, given
changing weather conditions or technical failures which necessitate the reallocation of
observations that were assigned to telescopes which are now unavailable.

102



Developing a Telescope Simulator

Figure 2: Image processing for adjusting observation images. Before adjustment
(Left), after adjustment (Right)

3. THE SIMULATOR

To fully test our system and make the required experiments and optimization, we add
some simulation features in our software. Those features include telescope movement,
observation and observation image adjustment.

3. 1. TELESCOPE MOVEMENT

The simulation of the telescope movement is built using open source software. The
open source software Stellarium is used to simulate the telescope movement and vi-
sualize the telescope pointing on the sky. When the Server Module receives the slew
command and sends this command to the robotic telescope, the simulator receives
back the actual position of the telescope every 100 ms until the telescope arrives at the
desired position. When the Server Module receives a new position of the telescope, it
transfers a value to the Stellarium software by using the UDP protocol.

3. 2. OBSERVATIONS

To be able to simulate the observation data we use the Digital Sky Survey (DSS)
database from the SkyView Virtual Observatory by incorporating the SkyView Java
interface into our Client Module. When the Client module receives that the virtual
telescope is on the desired position, it runs an open source Java script code, which
has access to the database of DSS images and retrieves the hypothetical observation
data from the specific position of the simulated telescope. The retrieved images are
FITS type images.

3. 3. OBSERVATION IMAGE ADJUSTMENT

To be able to simulate the effects of weather and sky conditions to the simulated sky
images, we employ Gaussian filtering as well as artificial noise floor modulation, in
order to create adjusted images, which correspond to what we would expect to have
seen from the sky given specific telescope characteristics. An example set of images
can be seen in Figure 2.

103



N. Giakoumidis et al.

4. CONCLUSIONS AND FUTURE WORK

In this paper, a simulator was developed. It has the function of positioning to a
desired target based on the client request. In the future we plan to implement a
simulation of real time weather conditions in addition to real time data reduction,
data quality evaluation and real time object classification on every acquired image
with the final goal being to test the system on a real life telescope network.

References

Garcia P.: 2011, IEEE Transaction on Knowledge and Data Engineering, 11, 4
Kumar, D., Altman, E., Basar, T. : 2012, Proceedings of 9th Annual Conference on Wireless

On-Demand Network Systems and Services, 67
Ma, Y., Richards, M., Ghanem, M., Guo, Y., Hassard, J., : 2008 Sensors, 8, 3601
Olfati-Saber, R., Shamma, J.S., : 2005, Proceedings of IEEE International Conference on

Decision and Control, 6698
Ribeiro, A., Schizas, I., Roumeliotis, S., Giannakis, G.: 2010 IEEE Control Systems, 30, 66
Vasilescu, I., Kotay, K., Rus, D., Dunbabin, M., Corke, P., : 2005, Proceedings of the 3rd

International Conference on Embedded Networked Sensor Systems, 154
Wang, J., Mukherji, R., Ficocelli, M., Ogilvie, A., Liu, M., Rice, C. : 2006, Modeling and

simulation of robotic system for servicing HST, Proceedings of IEEE/RSJ International
Conference on Intelligent Robots and Systems, 1026

Werner-Allen, G., Lorincz, K., Welsh, M., Marcillo, O., Johnson, J., Ruiz, M., Lees, J.:
2006, IEEE Internet Computing, 10, 18

104


