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Abstract. Expressions for surface brightness distribution and for flux density have been
theoretically derived in the case of two simple models of a shell supernova remnant. The
models are: a homogenous optically thin emitting shell with constant emissivity and a
synchrotron shell source with radial magnetic field. Interactive Data Language (IDL) codes
for fitting theoretically derived emission profiles assuming these two models to mean profiles
of shell supernova remnants obtained from radio observations have been written.

1. MODELS OF EMISSION OF SHELL SUPERNOVA REMNANTS

1. 1. HOMOGENOUS OPTICALLY THIN EMITTING SHELL WITH CONSTANT EMISSIV-

ITY

In this paper, we investigated two models of emission of shell supernova remnants
(SNRs). If we consider homogenous emitting shell with emissivity εν = const, for
specific intensity, if the medium is optically thin, we have

Iν =
∫

ενds =

{
εν(r′2+ − r′1+) + εν(r′1− − r′2−), 0 < sin θ < R−Δ

d

εν(r′2+ − r′2−), R−Δ
d ≤ sin θ ≤ R

d ,
(1)

where ds = dr′. Cosine theorems (see Fig. 1)

(R − Δ)2 = d2 + r′21 − 2dr′1 cos θ, (2)

R2 = d2 + r′22 − 2dr′2 cos θ, (3)

give us

r′1± = d cos θ ±
√

(R − Δ)2 − d2 sin2 θ, (4)

r′2± = d cos θ ±
√

R2 − d2 sin2 θ. (5)

Finally, we have

Iν =

{
Cν

(√
sin2 θ2 − sin2 θ −

√
sin2 θ1 − sin2 θ

)
, 0 < θ < θ1

Cν

√
sin2 θ2 − sin2 θ, θ1 ≤ θ ≤ θ2,

(6)
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Figure 1: Radiation from an optically thin homogenous shell with thickness Δ and
radius R, at the distance d from the observer. r′1 and r′2 are the distances from
intersection of the line of sight for a given θ with the inner and outer radius of the
shell, respectively.

where θ1 = arcsin R−Δ
d , θ2 = arcsin R

d and Cν = 2ενd. From the last equation one
can see that I0

ν = 2ενRδ and Imax
ν = 2ενR

√
δ(2 − δ), where δ = Δ/R. Brightness

distribution i.e. specific intensity in units 2ενd given by equation (6), for δ = Δ/R =
0.1 and R/d = 0.01, can be seen in Fig. 2.

For the total flux density we have

Sν =
∫ 2π

0

∫ θs

0

Iν cos θ sin θdθdϕ

= 4πεν

∫ θ1

0

(√
R2 − d2 sin2 θ −

√
(R − Δ)2 − d2 sin2 θ

)
cos θ sin θdθ

+ 4πεν

∫ θ2

θ1

√
R2 − d2 sin2 θ cos θ sin θdθ. (7)

After integration we obtain the expected result

Sν =
4π

3
ενd

[(R

d

)3

−
(R − Δ

d

)3]
=

ενV

d2
=

EνV

4πd2
=

Lν

4πd2
, (8)

where the shell volume is V = 4π
3 fR3, f = 1 − (1 − δ)3 is the volume filling factor,

Eν = 4πεν is total volume emissivity (εν is emissivity per unit solid angle) and Lν is
luminosity.

1. 2. SYNCHROTRON SHELL SOURCE WITH RADIAL MAGNETIC FIELD

If we have a synchrotron shell source with radial magnetic field, emission coefficient
is εν ∝ (B sin θ′)α+1ν−α i.e.

εν = ε̃ν(sin θ′)α+1. (9)
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Figure 2: Brightness distribution for an optically thin homogenous shell-like source
with δ = Δ/R = 0.1 and R/d = 0.01.

Sine theorem (see Fig. 1) gives us

r′

d
=

sin Θ
sin θ′

, Θ = θ′ − θ, (10)

i.e.
r′ = d(cos θ − sin θ cot θ′) (11)

and

ds = dr′ = d sin θ
dθ′

sin2 θ′
(12)

Intensity is then

Iν =
∫

ενds = ε̃νd sin θ

∫
(sin θ′)α−1dθ′ (13)

i.e.

Iν =

⎧⎨
⎩ 2Cν sin θ

∫ μ2−
μ1−

(
1 − μ2

)α−2
2 dμ, 0 < θ < θ1

Cν sin θ
∫ μ2−

μ2+

(
1 − μ2

)α−2
2 dμ, θ1 ≤ θ ≤ θ2,

(14)

where μ = cos θ′, μ1,2± = ∓
√

sin2 θ1,2−sin2 θ

sin θ1,2
and Cν = ε̃νd.

Rather than direct integration we will find flux density through Sν = Lν

4πd2 = EνV
4πd2 ,

where

Eν =
∫

4π

ενdω′ =
∫ 2π

0

∫ π

0

ε̃ν(sin θ′)α+1 sin θ′dθ′dϕ = 2πε̃ν

∫ π

0

(sin θ′)α+2dθ′ (15)
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Figure 3: Radial profile with δ = Δ/R = 0.1 and R/d = 0.01 convolved with a Bessel
function with HPBW=5 × 10−4 rad.

i.e. Eν = 2π
√

π
Γ( α+3

2 )

Γ( α+4
2 )

ε̃ν and the shell volume is as before V = 4π
3 fR3, f = 1−(1−δ)3.

2. IDL CODES

2. 1. DIRECT PROBLEM: SIMULATION OF OBSERVATIONS OF SHELL SUPERNOVA

REMNANTS WITH RADIO TELESCOPE

If we observe a shell SNR with a radio telescope, picture we get is a convolution of
real intensity of radiation of the SNR and power pattern of the telescope, so we get
”convolved” intensity (Fig 3). When simulating this convolution numerically, one
must choose an expression for real intensity and an expression for power pattern of a
radio telescope. In our case, expressions for intensities are (6) and (14), according to
the models. For power pattern Pn (θ), two possible cases have been chosen: Gaussian
approximation and approximation with Bessel function of the first kind. Each pat-
tern has defined half power beam width (HPBW). Usually one takes HPBW=1.02 λ

D
from Bessel function approximation (D is diameter of radio telescope and λ is wave-
length, see Rohlfs and Wilson 1996, Urošević and Milogradov-Turin 2007). Because
of technical limitations, we must consider that power pattern takes zero value for
angles greater than some critical angle θc. In the case of Gaussian approximation of
power pattern, θc of 5 sigmas (σ = HPBW/(2

√
ln 2)), while for the approximation

with Bessel function θc of 8 HPBW has been chosen.
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Expression that is used for numerical simulation of convolution of intensity of radio
emission from a SNR and power pattern of a radio telescope is:

Iconv
ν (θ0) =

∫ ∫
intersection

Iν (θ) Pn(θ
′
) sin θdθdϕ

2π
∫ θc

0 Pn(θ) sin θdθ
. (16)

Angle θ
′
is related to other angular parameters through following relation of spherical

trigonometry:
cos θ

′
= cos θ cos θ0 + sin θ sin θ0 cosϕ. (17)

Region of double integration in numerator of the expression (16) is the intersection
between regions where two convolving functions Iν (θ) and Pn (θ) are defined. That
double integration is performed by the IDL function INT 2D. Integration in denomi-
nator of the expression (16) is performed by the IDL function QROMB. Integrations in
the expression (14) are performed by the IDL functions QROMB and INT TABULATED, as
well as by ”handwritten” function that calculates definite integrals using rectangular
method.

In the case of first model (with constant emissivity), user of the program enters
parameters Cν , θ1, θ2, as well as parameter of antenna HPBW, and the program
performs a convolution. In the case of second model (with radial magnetic field), user
also enters an additional parameter of object - spectral index α.

2. 2. INDIRECT PROBLEM: FITTING MODEL TO OBSERVED PROFILE OF A SUPER-

NOVA REMNANT

Indirect problem is the following: user enters observed radial emission profile of a shell
SNR in the form of a table, as well as the parameter HPBW, and the program should
find the best values for parameters Cν , θ1 and θ2 in the case of first model, or Cν ,
θ1, θ2 and α in the case of second model, by fitting the chosen model to the entered
data. This is performed by the iterative IDL procedure CURVEFIT. To perform this
procedure, user has to estimate initial values for the parameters. That can be done
using observed radial profile and the expression (6) or (14). Initial value for spectral
index α can be taken to be 0.5. This parameter is, however, better to be held fixed
(assuming that it is known from spectra). In addition to finding the best values of
the parameters, the program also calculates their errors (i.e. standard deviations).
Finally, the program calculates the flux density of an SNR.

The program has been tested with artificially generated data. Results of the ap-
plication of the program to the real data will be given elsewhere.
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