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Abstract. Gravity causes a stratification of plasma which introduces a possibility for in-
stabilities to set in. In what follows, we assume a stratified plasma with horizontal magnetic
field, prescribed gravity and temperature profile. Several different possible thermodynamic
properties of plasma are taken into consideration in discussions of their influence on distribu-
tions of mass density, and consequently of potential energy, with height, in order to estimate
the free energy of the unperturbed system that might be released through induced plasma
motions if the system is unstable to linear perturbations. Finally, the linear approximation
and normal mode analysis are applied to derive analytical dispersion relation and instability
criterion for a special and commonly used case when perturbations are taken adiabatic while
the magnetized plasma is assumed ideal and acting as a perfect gas.

1. INTRODUCTION

Many features in astrophysical plasmas can be studied by methods of fluid dynamics
when the ionized gas is treated as a continuous medium in which individual particles
lose their identity. Such an approach is physically and mathematically justified when-
ever the considered structure has length and time scales largely exceeding the mean
free path, and time between collisions of plasma particles, respectively. Moreover,
the fluid approximation can often be applied also to collisionless plasmas in magnetic
fields provided the length scale of the observed phenomenon is much bigger than the
Larmour radius of charged particles, and its typical frequency much smaller than
the related cyclotron frequency. Under these conditions, the standard equations of
magneto-hydrodynamics (MHD) are allowed in analytical and numerical treatments
of plasma phenomena.

The problem of stability of magnetic fields in stratified astrophysical plasmas has
been studied for a long time since early papers by Tserkovnikov 1960 and Newcomb
1961 till recent works by Ferrière et al. 1999 and Pinter et al. 1999, and references
therein. Different applications of linear waves and stability can be found among others
in Lemaire 1999, 2001 (the terrestrial magnetosphere), Čadež et al. 1996 (magnetic
arcades in the solar corona), Parker 1979 and Fan et al. 1999 (sunspots).
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2. EQUILIBRIUM BASIC STATE

We shall consider general properties of linear MHD waves in gravitationally stratified
stationary plasmas permeated by a nonuniform and horizontal, azimuthal, magnetic
field ~B0 as usually taken in typical models of stellar/solar coronae and planetary
magnetospheres in equatorial regions. The gravity vector ~g and unperturbed basic
state quantities are assumed functions of the radial coordinate r only. Our basic
state is thus uniform on surfaces of constant gravity or, in other words, it does not
vary neither along the magnetic field lines nor in the perpendicular direction in the
horizontal surface.

The initial equilibrium of forces is now given by:

∇p0 = ρ0~g +~j0 × ~B0 − ρ0(~v0 · ∇)~v0 (1)

where the form of pressure relation p0 = p0(ρ0, T0) depends on the thermodynamic
properties of the plasma assumed in the model. For example, one may use one or a
combination of the following expressions:

p0 = Rρ0T0 - perfect gas pressure,
p0 = a1T

4
0 - radiation pressure,

p0 = a2ρ
n
0 - degenerate gas, polytropic gas pressure,

p0 =
Rρ0T0

1− b1ρ0
− b2ρ

2
0 - Van der Waals gas pressure.

(2)

As for the other physical quantities in Eq(1), we consider a radial gravitational
acceleration ~g = g(r)êr with g(r) = r2

0g(r0)/r2, the magnetic field is toroidal with a
prescribed r-dependent intensity ~B0 = B0(r)êφ while the macroscopic fluid velocities
if taken into an account, are assumed parallel to the magnetic field ~B0(r). This allows
for the following two interesting possibilities: ~v0 = Ωrêφ if effects of solid rotation of
the system are included and ~v0 = v0(r, θ)êφ if a horizontal shear flow exists.

As an example, let us assume a rotating system with plasma obeying the perfect
gas law in which case Eq (1) yields the following initial density distribution:

RT0
dρ0

dr
= −ρ0g

∗ −Rρ0
dT0

dr
− B2

0

µ0r
− B0

µ0

dB0

dr
. (3)

where the gravity g∗ is given by g∗ ≡ g(r) − Ω2r, and the temperature profile T0(r)
is known i.e. assumed initially prescribed.

A simple analysis of Eq(3) now offers a preliminary insight into possible physical
effects of each term on its right-hand side and their contributions to the radial distri-
bution of plasma density. Thus, the gravity term g∗ introduces the intrinsic density
stratification of a compressible fluid in an external gravitational field. If temperature
is constant and magnetic field is absent, the density simply decreases with r according
to the standard barometric formula. Introduction of a temperature gradient alters
the density profile so that, for example, if dT0/dr < 0 the density decrease with r
is reduced meaning that more mass is now laying along the height r i.e. the poten-
tial energy energy of the whole system is bigger than in the case with T0 = const.
Consequently, one can expect instabilities in such a system as a part of the excess
potential energy can be converted into kinetic energy, which indeed happens through
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the known convective instability at super-adiabatic temperature gradients. As to the
magnetic field effects, they are twofold. The negative term −B2

0/(µ0r) arising from
the magnetic field line curvature increases the density fall-off with r and therefore
stabilizes the system i.e. reduces the total potential energy. The second term is pro-
portional to the derivative −dB0/dr meaning that it may have either sign depending
on the existing magnetic field distribution. Clearly, dB0/dr > 0 stabilizes the system
as the density fall-off with r is additionally increased i.e. the potential energy is re-
duced. However, if the magnetic field decreases with r i.e. if dB0/dr < 0, this term
has a destabilizing action on the system and competes with the stabilizing effect of
the magnetic curvature term. The overall effect of a nonuniform toroidal magnetic
field is therefore a resultant of the two actions. For example, if dB0/dr < −B0/r
which is the same as d/dr(log(B0r) < 0, the negative density gradient is reduced and
extra potential energy is available as a possible energy source for instability. The
opposite effect is achieved if d/dr(log(B0r) > 0 in which case the magnetic field tends
to stabilize the system.

The described ad hoc analysis of stability properties can be performed in an anal-
ogous way also for other types of pressure relations and physical conditions listed in
Eq(2).

The full treatment of instabilities and their onset criteria requires a proper ana-
lytical handling of the total set of linearized MHD equations. In a typical example
what follows, we shall restrict the analysis to adiabatic perturbations in a stratified
magnetized plasma having properties of a perfect gas.

3. NORMAL MODE ANALYSIS

Linearized set of MHD equations for small adiabatic perturbations of the assumed
basic state is now given by:

ρ0
∂~v1

∂t
+ 2ρ0

~Ω× ~v1

= −∇p1 + [g(r)− Ω2r]ρ1êr +
1
µ0

(∇× ~B0)× ~B1 +
1
µ0

(∇× ~B1)× ~B0,

∂ ~B1

∂t
= ∇× (~v1 × ~B0),

∂ρ1

∂t
+∇ · (ρ0~v1) = 0,

∇ · ~B1 = 0,
∂p1

∂t
+ ~v1 · ∇p0 = γRT0

[
∂ρ1

∂t
+ ~v1 · ∇ρ0

]

(4)

These equations are treated by a specific semi-local normal mode analysis that is
described in details in Cadez 2005. The obtained dispersion relation has either real
solutions for perturbation frequencies ω or purely imaginary in which case the system
is unstable with amplitudes exponentially growing in time. The instability criterion,
i.e. the condition for the dispersion relation to yield imaginary solutions for ω is given
by the inequality (Cadez, 2005):

0 < V 2
Ak2

‖ < −
(

g − Ω2r − 2V 2
s

r

)
V 2

A

V 2
s

d

dr
ln(B0r)−N2

0 (5)
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where V 2
A and V 2

s are the Alfvén speed and sound speed squared respectively, k‖ is
the wavenumber parallel to the magnetic field, and:

N2
0 ≡ (g − Ω2r)

[
1
γ

d

dr
ln T0 −

(
1− 1

γ

)
d

dr
ln ρ0

]

is the square of Brunt-Väisäläa frequency in a non-magnetized rotating atmosphere
representing adiabatic oscillations of fluid particles about equilibrium levels if N2

0 > 0,
or the standard convective instability growth-rate squared if N2

0 < 0.
As we see, the instability criterion (5) indicates that perturbation with sufficiently

large wavenumber k‖, i.e. whose wavelength λ‖ ≡ 2π/k‖ does not exceed a given
value, are stable. Unstable perturbations are therefore those with large wavelength
λ‖ having a form of rising and sinking undulated magnetic tubes with the magnetic
buoyancy force being the main driving mechanism and the opposing stabilizing force
due to the magnetic field line curvature related to the wavelength λ‖.

The condition (5) also shows that the presence of nonuniform magnetic field can sta-
bilize/destabilize the convective instability in an initially non magnetized atmosphere
with a super-adiabatic temperature gradient when N2

0 < 0. This fact is important in
determining domains of convective zones in stellar interiors among other things.
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