TRANSPORT COEFFICIENTS FOR ELECTRON SCATTERING IN MIXTURES OF CF₄, Ar AND O₂

ŽELJKA NIKITOVIĆ, VLADIMIR STOJANOVIĆ and ZORAN Lj. PETROVIĆ
Institute of Physics, Pregrevica 118, 11080 Belgrade, Serbia
E-mail: zeljka@ipb.ac.rs

Abstract. We present transport coefficients for electrons in mixtures of CF₄ with Ar and O₂ for ratios of the electric field to the gas number density $E/N$ from 1 Td to 1000 Td (1Td=10⁻²¹ Vm²). We then add a certain percentage of radicals produced by dissociation of CF₄. Our analysis of non-conservative collisions revealed a range of $E/N$ where electron attachment introduced by radicals significantly changes electron kinetics obtained for mixtures without dissociation of CF₄ gas. Results are obtained by using a simple, two term solutions for Boltzmann’s equation and by a Monte Carlo simulations.

1. INTRODUCTION

Carbon tetrafluoride is commonly used for plasma etching in today's semiconductor industry. It is primarily applied for etching of SiO₂. It is also important for formation of fluorinated polymer films.

CF₄ has a role in other technological applications such as development of gaseous circuit breakers Hunter et al. (1985) and for development of particle detectors (James et al. 1980, Kopp et al. 1982, Yamashita et al. 1992) CF₄ belongs to freons that have a global warming potential of over 50 000. Because of all these arguments it is important to continue research related to the kinetics of CF₄ in ionized gases in order to improve plasma etching applications and facilitate removal of this gas from the atmosphere by applying gas discharges (e.g. by focused microwave radiation Bzenić et al. (1995)). Pure CF₄ plasmas are rarely used in material processing and instead are diluted with Ar and O₂ to control electron energy, production of fluorocarbons and provide selectivity in etching.

Oxygen plasmas are widely used in material processing such as photo resist aching, surface modification, chemical vapor deposition and oxidation. In oxygen plasma, the density of atomic oxygen and its distribution are significant since the processing speed and the process uniformity in a wafer depend on the flux distribution of atomic oxygen onto a wafer. Kitajima et al.(2006) showed that the density of metastable atomic oxygen O (¹D) increases in highly Ar diluted oxygen CCP- capacitively coupled plasma.
2. MONTE CARLO CODE AND TWO TERM APPROXIMATION

Requirement to establish reliable transport coefficients for CF$_4$ plasmas is especially demanding for conditions that include many reactive species. Free radical species, such as CF$_y$ (y=1-3) and fluorine atoms, need to be included to represent properly the realistic conditions in plasma processing. We calculated electron transport coefficients for a ternary mixture of 80 % Ar with 10% of O$_2$ and CF$_4$. This is mixture is usual in plasma etching applications. In order to determine the role of radicals, we added up 1 % of radical X species (X= F, F$_2$, CF, CF$_2$ and CF$_3$) replacing the equivalent amount of CF$_4$. Calculations were made for conditions overlapping with those found in plasma technologies for semiconductor device manufacturing.

![Figure 1: Electron impact cross sections for scattering on CF$_4$](image)

**Figure 1:** Electron impact cross sections for scattering on CF$_4$ (1-el. mom. transfer, 2-vib.exc. v=1, 3-vib.exc. v=3, 4-excitation v=4, 5-electronic excitation, 6-dissociation to products CF$_3$, 7-dissociation to products CF$_2$, 8-dissociation to products CF, 9-dissociative attachment (F), 10- dissociative attachment (CF$_3$), 11-CF$_2^{2+}$ + 2F + 2e (ionization), 12-CF$_3^{+}$ + F + 2e, 13-CF$_3^{2+}$ + F + 3e, 14-CF$_2^{+}$ + 2F + 2e, 15-CF$^+$ + 3F + 2e, 16-C$^+$ + 4F + 2e, 17-F$^+$ + CF$_3$ + 2e.

Electron kinetics in CF$_4$ is well described by the set of cross sections of Kurihara et al. (2000) extended by Georgieva et al. (2003) and also by Donko (2006). Complete cross section set is shown in Fig. 1. Set of cross sections for O$_2$ is from Phelps (2009) and for Ar modified cross section set of Hayashi (1992) as used in Raspopović et al. (2005).

Transport coefficients are obtained by using a Two Term approximation (TTA) to the electron Boltzmann equation Morgan and Penetrante (1990) and by a Monte Carlo simulations Petrović and Stojanović (1998).
3. RESULTS AND DISCUSSION

A ternary mixture Ar/CF\textsubscript{4}/O\textsubscript{2} mixture consisting of 80 % Ar and 10 % CF\textsubscript{4} and 10% O\textsubscript{2} is the object of our calculations. Electron drift velocity in mixtures Ar/CF\textsubscript{4}/O\textsubscript{2} as a function of $E/N$ (E-electric field, N-gas density) are shown in Fig. 2.

![Figure 2](image1.png)

**Figure 2:** a) Drift velocity and b) longitudinal diffusion coefficients as a function of $E/N$ for Ar/CF\textsubscript{4}/O\textsubscript{2} mixture. We also show results for the pure CF\textsubscript{4}.

![Figure 3](image2.png)

**Figure 3:** Ionization coefficients for mixture of 80% Ar with 10% CF\textsubscript{4} and 10% O\textsubscript{2}.

In Fig. 2.b) we show longitudinal diffusion coefficients in the Ar/CF\textsubscript{4}/O\textsubscript{2} mixture obtained both by Monte Carlo and two term approximation. In Fig. 3, we
show ionization coefficients with 80 % of Ar, 10 % CF₄ and 10% O₂ obtained by TTA.

We have also made calculations of transport coefficients where up to 1% of CF₄ was replaced by the corresponding amount of radicals that are commonly found in plasma processing equipment. Dissociative attachment cross sections in CF₄ and O₂ have high thresholds and three body attachments in oxygen are not effective at typical plasma etching pressures. Thus even a small amount of radicals with low attachment thresholds will change the rates for attachment considerably and will change the nature of the plasma to electronegative. In plasma modeling it is thus necessary to include radicals even when their effect on the mean energy and most transport properties is negligible.

Acknowledgements

Work at the Institute of Physics is supported by the MNTRS, under grants 141025.

References

Phelps, A. V. 2009, ftp://jila.colorado.edu/collisiondata/electronneutral/electron.txt