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Abstract. The aim of this paper is to investigate the conditions for the coexistence of phases
in a Lennard Jones fluid. The calculation has been performed within the virial development
method, and as a result, a simple approximate relation has been obtained between the
number densities of two coexisting phases and the interparticle interaction potentials in them.
The results of this work could have implications for modelling of giant planet interiors. This
has become important, due to the discovery of more than 300 extrasolar planets.

1. INTRODUCTION

In the last 5-6 years of the XX century, interest in planetology has drastically risen.
This is due partially to results obtained within our planetary system, but even more
so to discoveries of extrasolar planets. Until the end of November 2008., according to
data at http://exoplanet eu, 329 exoplanets have been detected and 269 of them have
masses M ≤ 5MJ where MJ is the mass of Jupiter. This testifies about the interest
of modelling the internal structure of the giant planets. For a recent study see, for
example, (Vorberger et al. 2007 or Nettlemann et al. 2008).

The aim of this contribution is to present preliminary results on the conditions
under which two phases in a Lennard-Jones (L-J) fluid can be in equilibrium. Phases
are defined as regions of the parameter space within which properties of a material
are uniform. The condition for their equilibrium is the equality of pressures, tem-
peratures and chemical potentials. In this contribution only the equality of pressures
and temperatures will be considered; accordingly the results will be only preliminary.
The equality of chemical potentials will be included in future work.

2. METHOD

The virial development of the equation of state is a method in which the equation
of state (EOS) of a fluid can be expressed as a power series in the density, and the
coefficients take into account the interactions present in the system, in which an
increasing number of particles takes part (e.g. Reichl 1988).
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The mathematical form of the EOS of a fluid within the virial development is

pv

kBT
=

∞∑

l=1

al(T )(
λ3

v
)l−1 (1)

All the symbols on the left side of Eq. (1) have their standard meanings, while on
the right hand side, al are the so called virial coefficients, λ is the thermal wavelength
and v is the inverse number density of the system v = V/N . The thermal wavelength
is given by (e.g. Reichl 1988)

λ = (
2πh̄2

mkBT
)1/2 (2)

where h̄ is Planck’s constant and m the particle mass. The L-J model potential has
the form

u(r) = 4ε
[
(
σ

r
)12 − (

σ

r
)6

]
(3)

The symbol ε denotes the depth of the potential, while σ is the diameter of the
molecular ”hard core”. The first coefficient in Eq. (1) is al = 1, while the second one
is given by

a2(T ) = −(2/3)πNAβ

∫ ∞

0

exp(−βu)(
∂u

∂r
)r3dr (4)

(Maitland et al. 1987). In this and other expressions β = 1/kBT , T is the temperature
and kB is the Boltzmann constant. It can be shown that the second virial coefficient
for the Lennard-Jones potential is given by

a2(T ∗) = b0

∞∑

j=0

γj(1/T ∗)(2j+1)/4 (5)

where

γj =
−2(j+1/2)

4j!
Γ(

2j − 1
4

) (6)

T ∗ =
1
βε

(7)

and b0 = (2π/3)NAσ3, where NA is Avogadro’s number. The chemical potential of a
fluid is given by (Hill 1987):

µ

kBT
= ln(nλ3) +

n

kBT

∫ 1

0

dγ

∫ ∞

0

dr4πr2u(r)g(r) (8)

where n is the particle number density and g(r) is the radial distribution function. The
problem with the calculation of µ is the determination of g(r), which is a complicated
task in statistical mechanics. In the future, it will be attempted to insert the form of
g(r) proposed in Morsali et al. (2005) into Eq. (8).
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3. THE CALCULATION

In order to render the EOS within the virial development physically applicable, the
power series in Eq. (1) has to be convergent. This means that the results are appli-
cable only under the condition

λ3

v
= nλ3 ≺ 1 (9)

Inserting Eq. (2) into Eq. (9), it follows that the virial development is applicable
under the conditions

n ≺
( m

2π

)3/2
[
(kBT )1/2

h̄

]3

(10)

Denote the two mutually non-interacting phases which make up the system by ”1”
and ”2”. Applying Eq. (1), gives

p1 = n1kBT1

∞∑

l=1

al(T )(
λ3

1

v1
)l−1 (11)

and

p2 = n2kBT2

∞∑
r=1

cr(T )(
λ3

2

v2
)r−1 (12)

Inserting the conditions of the equality of pressures and temperatures needed for the
coexistence in equilibrium of the two phases, one gets the following expression for the
ratio of densities in them

n1

n2
=

∑∞
r=1 cr(T )(n2λ

3
2)

r−1

∑∞
l=1 al(T )(n1λ3

1)l−1
(13)

Taking into account that the equality of the temperatures implies the equality of the
thermal wavelengths, this expression can be transformed into the following form

∞∑

l=1

al(T )nl
1λ

l−1 =
∞∑

r=1

cr(T )nr
2λ

r−1 (14)

Limiting the sums to the first two terms, it follows that

a1n1 + a2n
2
1λ = c1n2 + c2n

2
2λ (15)

Taking into account that the first virial coefficient is 1, and introducing n1 − n2 = x,
the last expression can be solved to give

x = (1/2λa2)
[
−1− 2λa2n2 +

√
1 + 4a2n2λ(1 + c2n2λ)

]
(16)

This result is mathematically simple, but physically interesting. It gives the difference
between the number densities of two phases coexisting in equilibrium, expressed in
terms of the density of one of the phases, the thermal wavelength and the second
virial coefficient in both of them. Expression (16) can further be transformed to give
finally
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n1 = − 1
2λa2

[
1−

√
1 + 4a2n2λ(1 + c2n2λ)

]
(17)

which is positive for 4a2n2(1 + c2n2λ) Â 0.
This result is even more physically interesting. It represents a link (of second

order, because only the second virial coefficients are taken into account) of the number
densities in two phases of a L-J fluid, expressed as a function of the temperature and
the interaction potentials in both of them. This result is general, in the sense that
virial coefficients for any potential can be inserted in it.

Turning to the case of a L-J fluid, the values of the first few coefficients γj are:
γ0 = 1.733, γ1 = −2.564, γ2 = −3.466. This means that the explicite expression for
the second virial coefficient is

a2 =
2π

3
NAσ3

[
1.733(

ε

kBT
)1/4 − 2.564(

ε

kBT
)3/4 − 3.466(

ε

kBT
)5/4 + ...

]
(18)

Inserting Eq. (18) into Eq. (17), one would obtain an expression ”linking” the
number densities of the two phases coexisting in equilibrium with the parameters of
interparticle potentials in them. How could this result be applied in studies of the
interiors of the Jovian planets? Within any celestial body, the particle number density
increases with increasing depth. Therefore, the parameters of the L-J potential would
also be density dependent, which implies that the virial coefficients would also be
depth (an density) dependent. This means that the possibility of phase coexistence
would be density dependent. A closely related problem is the density dependence of
the phase transition pressure in a system with a L-J potential. These and other issues
related to problems of the behaviour of a L-J fluid under high density will be studied
in future work.
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