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Abstract. We consider possible adelic structure of the Universe. Theoretically this is mainly
motivated by developments in p-adic mathematical physics, and especially in p-adic and
adelic string theory. Phenomenological motivation is related to accelerated expansion of the
Universe, dark matter and dark energy. The main direction of this research is investigation
of the Universe as an adelic physical system and exploration of possible p-adic effects. We
present a brief overview of recent developments in p-adic and adelic cosmology as well as
some new results.

1. INTRODUCTION

It is well known that results of experimental and observational measurements are
some rational numbers. On the field Q of rational numbers any non-trivial norm is
equivalent either to the usual absolute value | · |∞ or to a p-adic absolute value | · |p
(Ostrowski theorem). For a rational number x = pν a

b , where integers a and b are
not divisible by prime number p, by definition p-adic absolute value is |x|p = p−ν

and |0|p = 0. This p-adic norm is a non-Archimedean (ultrametric) one, because
|x + y|p ≤ max{|x|p , |y|p}. As completion of Q gives the field Q∞ ≡ R of real
numbers with respect to the | · |∞, by the same procedure one can construct the fields
Qp of p-adic numbers (p = 2, 3 , 5 · · ·) using | · |p . Any number x ∈ Qp has a unique
canonical representation

x = pν(x)
+∞∑
n=0

xn pn , ν(x) ∈ Z , xn ∈ {0, 1, · · · , p− 1}. (1)

Real and p-adic numbers, as completions of rational numbers, are unified by adeles.
An adele α is an infinite sequence

α = (α∞, α2, α3, · · · , αp , · · ·) , α∞ ∈ R , αp ∈ Qp , (2)

where for all but a finite set P of primes p one has that αp ∈ Zp = {x ∈ Qp : |x|p ≤ 1}.
Zp is the ring of p-adic integers. The set A of all adeles can be presented as

A =
⋃

P
A(P) , A(P) = R×

∏

p∈P
Qp ×

∏

p 6∈P
Zp . (3)
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Endowed with componentwise addition and multiplication A is the adele ring. For a
book on p-adic numbers, adeles and their functions, one can refer to Gel’fand et al.
(1969).

Since 1998, there is a lot of evidence that the Universe is now in the stage of
an accelerated expansion which began about five billion years ago. To explain this
acceleration many models have been proposed but no one of them was generally
accepted. A very natural and the most attractive is the approach with dark energy,
which is a matter with a negative pressure and uniformly distributed in the space.
About 72% of all energy content of the Universe is related to the dark energy, while
about 23% belongs to the dark matter and only 4.6% is made of baryons (protons
and neutrons).

There are many candidate models for the dark energy. The simplest model is the
cosmological constant with w = −1 (p = −ρ = const.). Some other dynamical
scalar field models are: quintessence, braneworld, Chaplygin gas and phantom dark
energy (with w < −1). In spite of many interesting results, neither these nor other so
far proposed models offer satisfactory answers to all questions around the dark energy.
In the equation of state p = wρ, observational value of parameter w is w = −1± 0.2
(for a recent review on dark energy and accelerating the Universe, see e.g. Frieman
et al. 2008)

Dark matter was introduced in 1930’s to explain dynamics of galaxies in clusters
as well as dynamics inside individual galaxies. It is nonbaryonic and gravitationally
clustered (attractive) matter without electromagnetic interaction. Many nonbary-
onic particles (in particular, neutralino and axion) are considered as candidates for
dark matter, but without satisfactory results (for a recent review on dark matter
candidates, see e.g. Taoso et al. 2007).

The nature of dark energy and dark matter is still a big mystery, which presents
one of the greatest problems and challenges of contemporary cosmology and theory
of elementary particles.

Since 1987, p-adic numbers and adeles have been applied in many parts of modern
mathematical physics, making so-called p-adic mathematical physics (for a review,
see Brekke and Freund 1993, as well as Vladimirov et al. 1994). Here we continue
to consider p-adic and adelic aspects of cosmology. Some minisuperspace quantum
models are presented in Djordjević et al. (2002). p-Adic origin of dark energy and
dark matter was conjectured by Dragovich (2006). In this article we present some
results based on this conjecture.

2. SOME SIMPLE EXAMPLES OF ADELIC LIKE
CONTENT OF MATTER IN THE UNIVERSE

Taking string theory seriously there exist not only real but also p-adic strings. Real
and p-adic matter consist of real and p-adic strings, respectively. Even without string
theory, using p-adic quantum-mechanical models one can argue possible existence
of p-adic matter. We start with the exact Lagrangian for the effective field of p-adic
tachyon string, then extend prime number p to arbitrary natural number n, undertake
various summations of such Lagrangians over all n and obtain some scalar field models
with the operator valued Riemann zeta function.

The exact tree-level Lagrangian of effective scalar field ϕ for open p-adic string
tachyon is
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Lp =
m4

p

g2
p

p2

p− 1

[
− 1

2
ϕp

− ¤
2m2

p ϕ +
1

p + 1
ϕp+1

]
, (4)

where p is any prime number, ¤ = −∂2
t +∇2 is the 4-dimensional d’Alembertian. An

infinite number of spacetime derivatives follows from the expansion

p−
¤
2 = exp

(
− 1

2
ln p ¤

)
=

∑

k≥0

(
− ln p

2

)k 1
k!

¤k .

The equation of motion for (4) is

p
− ¤

2m2
p ϕ = ϕp , (5)

and its properties have been studied by many authors (see, e.g. Barnaby et al. 2008
and references therein).

Prime number p in (4) and (5) can be replaced by any natural number n ≥ 2 and
such expressions also make sense. Moreover, taking p = 1 + ε → 1 there is the limit
of (4)

L0 =
m4

g2

[1
2

ϕ
¤
m2

ϕ +
ϕ2

2
(lnϕ2 − 1)

]
(6)

which corresponds to the ordinary bosonic string in the boundary string field theory.
Now we are going to introduce a Lagrangian which incorporates all the above

Lagrangians (4), with p replaced by n ∈ N, and L0 (6). To this end, we take the sum
of all Lagrangians Ln in the form

L =
+∞∑
n=0

Cn Ln = C0 L0 +
+∞∑
n=1

Cn
m4

n

g2
n

n2

n− 1

[
− 1

2
φn

− ¤
2m2

n φ +
1

n + 1
φn+1

]
, (7)

whose explicit realization depends on particular choice of coefficients Cn, string masses
mn and coupling constants gn. To avoid a divergence in 1/(n − 1) when n = 1 one
has to take that Cn mD

n /g2
n is proportional to n − 1. Here we shall consider some

cases when coefficients Cn are proportional to n − 1, while masses mn as well as
coupling constants gn do not depend on n, i.e. mn = m, gn = g. Since this is
an attempt towards effective Lagrangian of an adelic string it seems natural to take
mass and coupling constant independent on particular p or n. To differ this new field
from a particular p-adic one, we use notation φ instead of ϕ. Potential of the above
Lagrangian (7) is V = −L at ¤ = 0.

We have considered three cases, which depend on the choice of coefficients Cn.

Case 1: Cn = n−1
n2+h , n ≥ 1 .

This case is introduced and considered by Dragovich (2008a). The corresponding
Lagrangian is

Lh = C0 L0 +
m4

g2

[
− 1

2
φ ζ

( ¤
2 m2

+ h
)

φ +AC
+∞∑
n=1

n−h

n + 1
φn+1

]
, (8)
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where AC denotes analytic continuation. We see that nonlocality is controlled by the
Riemann zeta function. The equation of motion is

ζ
( ¤

2 m2
+ h

)
φ−AC

+∞∑
n=1

n−h φn − C0
¤
m2

φ− C0 φ ln φ2 = 0 . (9)

Case 2: Cn = n2−1
n2 , n ≥ 1 .

The Lagrangian and equation of motion are:

L = C0 L0 +
m4

g2

[
− 1

2
φ

{
ζ
( ¤

2 m2
− 1

)
+ ζ

( ¤
2 m2

)}
φ +

φ2

1− φ

]
, (10)

[
ζ
( ¤

2 m2
− 1

)
+ ζ

( ¤
2 m2

)]
φ− φ((φ− 1)2 + 1)

(φ− 1)2
− C0

¤
m2

φ− C0 φ ln φ2 = 0 . (11)

Some classical field properties of this Lagrangian are analyzed by Dragovich (2008b).

Case 3: Cn = µ(n) n−1
n2 , n ≥ 1 .

Here µ(n) is the Möbius function, which is defined for all positive integers and has
values 1, 0,−1 depending on factorization of n into prime numbers p. It is defined as
follows:

µ(n) =





0, n = p2m
(−1)k, n = p1p2 · · · pk, pi 6= pj

1, n = 1, (k = 0) .
(12)

Recalling that the inverse Riemann zeta function can be defined by

1
ζ(s)

=
+∞∑
n=1

µ(n)
ns

, s = σ + iτ, σ > 1, (13)

the corresponding Lagrangian is

Lµ = C0 L0 +
m4

g2

[
− 1

2
φ

1

ζ
(

¤
2m2

) φ +
∫ φ

0

M(φ) dφ
]
, (14)

where M(φ) =
∑+∞

n=1 µ(n)φn = φ − φ2 − φ3 − φ5 + φ6 − φ7 + φ10 − φ11 − . . .. The
equation of motion is

1

ζ
(

¤
2m2

) φ−M(φ)− C0
¤
m2

φ− C0 φ ln φ2 = 0 . (15)

This case is introduced recently by Dragovich (2008c).
The above Lagrangians, except L0, belong to the class of nonlinear nonlocal La-

grangians. During last few years relevance for cosmology of some of them has been
considered with growing interest. In the paper of Barnaby et al. (2007), Lagrangian
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(4) is investigated as candidate for cosmic inflation. Approximate inflationary solu-
tions are found, which are compatible with Cosmic Microwave Background (CMB)
observations if gp/

√
p ∼ 10−7 and mp < 10−6MP , where MP is the Planck mass. It

seems that there is a generic feature of nonlocal models that they support inflation
even for the very steep potential. Also nonlocal inflation predicts large non-gaussianity
in the CMB (see Barnaby and Cline 2008). For a recent discussion of nonlocal cos-
mic acceleration, which includes also string field theory nonlocality, one can refer to
Aref’eva (2007).

For cosmology with Friedmann-Robertson-Walker metric it is important to know
homogeneous time dependent solutions φ(t). Note that the corresponding nonlocal
equations of motion contain an infinite number of time derivatives and there is a
problem of initial conditions. Investigation of the initial value problem for dynamics
with infinitely many time derivatives is presented in Moeller and Zwiebach (2002),
and Barnaby and Kamran (2008).

To consider the Friedmann equations one has to know the time dependent energy-
momentum tensor T

(p)
µν for the matter content. For p-adic Lagrangian (4), space-time

dependent T
(p)
µν was constructed by Moeller and Zwiebach (2002), and Yang (2002).

Yang (2002) has constructed Tµν , which can be rewritten in the following form:

T (p)
µν = gµν

m4
p

g2
p

p2

p− 1

[1
2

ϕp
− ¤

2m2
p ϕ − 1

p + 1
ϕp+1

+
ln p

4m2
p

∫ 1

0

dτ
(
¤ p

− τ ¤
2m2

p ϕ
)(

p
− (1−τ) ¤

2m2
p ϕ

)

+
ln p

4m2
p

∫ 1

0

dτ
(
∂αp

− τ ¤
2m2

p ϕ
)(

∂αp
− (1−τ) ¤

2m2
p ϕ

)]

− m2
p ln p

2g2
p

p2

p− 1

∫ 1

0

dτ
(
∂µp

− τ ¤
2m2

p ϕ
)(

∂νp
− (1−τ) ¤

2m2
p ϕ

)
, (16)

where gµν is metric tensor which can be taken flat with signature (−, +,+, +). The
complete Tµν for the adelic like system (7) is

Tµν =
∞∑

n=0

Cn T (n)
µν , (17)

where T
(p)
µν is extrapolated to T

(n)
µν , n ∈ N replacing p by n, and T

(0)
µν corresponds to

Lagrangian L0. Instead of L0 in the above consideration one can take more realistic
nonlocal tachyon Lagrangian from open string field theory (see e.g. Barnaby 2008
and references therein). Note that energy density and the pressure are, respectively:
ρφ = −T00 , pφ = −Tii. Further investigation of cosmological aspects is in progress
and will be presented elsewhere.
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