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Abstract. Methods of the analysis of the atmospheres of hot stars are discussed with the
emphasize to simultaneous solution of the equations of statistical equilibrium and radiative
transfer both in static and moving media, including mass-loss rates determination.

1. INTRODUCTION

Stellar atmosphere is a layer, usually very thin compared to the radius of the star,
at the outer boundary of the star. Since light is still the most important information
source about stars and since all light from the star must come to us through the stellar
atmosphere, the proper knowledge of processes there is of crucial importance.

In this paper we point out the attention to selected problems of the stellar atmo-
sphere modelling both in static and moving atmospheres.

1. 1. STELLAR ATMOSPHERE PROBLEM

The problem of the construction of a model stellar atmosphere is usually considered
as a task to find spatial distribution of various macroscopic quantities (e.g. temper-
ature T (~r), electron density ne(~r), mass density ρ(~r), etc.). It can also be viewed as
a process of finding different microscopic distribution functions there. While for par-
ticle velocity distribution we usually assume equilibrium (Maxwellian) distribution,
stellar radiation field has never the equilibrium (Planckian) distribution and we have
to solve the radiative transfer equation to obtain the correct solution of the radiation
field. Distribution of internal degrees of freedom (excitation and ionization stages) is
usually assumed to be locally in equilibrium (the so-called LTE), however, in many
situations this approximation is unusable and we have to solve the statistical equi-
librium equations to determine the distribution of these internal degrees of freedom.
The latter option is usually referred to as NLTE. A detailed discussion of LTE/NLTE
options may be found in Hubený (1976) and in Mihalas (1978).
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2. MODELLING OF STATIC ATMOSPHERES

Modelling of static stellar atmospheres has been described in detail, e.g., by Hubeny
(1997). In modelling of static (generally NLTE) atmospheres we need to solve the
equations of radiative transfer, radiative equilibrium, hydrostatic equilibrium, and
statistical equilibrium simultaneously. Below we write these equations for the simplest
case of a plane-parallel atmosphere, where the spatial dependence is restricted only
to the z coordinate. The radiative transfer equation (which determines the specific
intensity of radiation Iµν) for this case is

µ
dIµν(z)

dz
= ην(z)− χν(z)Iµν(z), (1)

where ην is the emissivity, χν is the opacity, and µ = cos θ is the cosine of the angle θ
between the z-coordinate and the direction of propagation of radiation. The equation
of radiative equilibrium (which determines the temperature structure T ) reads

4π

∫ ∞

0

(χνJν − ην) dν = 0, (2)

where Jν is the mean radiation intensity. Introducing the column mass depth dm =
−ρ dz we can write the equation of hydrostatic equilibrium as

dp

dm
= g − 4π

c

∫ ∞

0

χν

ρ
Hν dν (3)

where p is the gas pressure, and Hν is the Eddington flux. Finally, the equations
of statistical equilibrium, which determine populations of individual atomic energy
levels ni (i = 1, ..., NL; NL is the number of explicit levels considered), can be written
as (see Mihalas 1978)

ni

NL∑

l=1
l 6=i

(Ril + Cil) +
NL∑

l=1
l 6=i

nl (Rli + Cli) = 0, (4)

where Ril and Cil are radiative and collisional rates, respectively. Detailed expressions
for rates can be found in Mihalas (1978) and also in Kubát (2009). Opacity χν and
emissivity ην , which appear in equations (1) – (3), may be expressed as

χν =
∑

i

∑

j 6=i

[
ni − gi

gj
nj

]
αij(ν) +

∑

i

(
ni − n∗i e

− hν
kT

)
αik(ν)+

∑

k

nenkαkk(ν, T )
(
1− e−

hν
kT

)
+ neσe (5)
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2hν3
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∑
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∑
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 ,

(6)
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where αij(ν) is a cross-section of the transition i ↔ j, gi is the statistical weight of
the level i, ne is the electron density, σe is the Thomson scattering cross section, and
asterisks denote LTE values.

Since the system of equations (1) – (4) together with the expressions (5) and (6) is
a system of nonlinear integro-differential equations, analytical solution of such system
is impossible and we have to use some kind of numerical procedure.

We usually discretize the depth dependence of the atmosphere to ND depth points
and the frequency spectrum is usually being represented by NF frequency points. If
the statistical equilibrium equations are being solved for NL atomic energy levels and
if we add temperature T and number particle density N , then the atmosphere at each
depth point d may be represented by a vector ~ψd = (J1, . . . , JNF , N, T, n1, . . . , nNL).

There are several methods how to solve such system of equations. Very efficient
and robust method, a complete linearization method, was introduced by Auer and
Mihalas (1969). This iterative method has been implemented for a solution of model
atmosphere problem by a number of authors, e.g. Mihalas (1972) or Hubeny (1988).
Applying the accelerated lambda iteration method (ALI) we may express the radiation
field using quantities from previous iterations,

J (n)
ν = Λ∗S(n)

ν + (Λ− Λ∗) S(n−1)
ν . (7)

Thus we are able to remove the radiation field from the linearization step and sig-
nificantly reduce the size of inverted matrices. More details about implementation of
ALI and further references may be found in Kubát (2003).

3. MODELLING OF EXPANDING ATMOSPHERES

Compared to the static case, the situation is more complicated for the case of ex-
panding atmospheres. There a simultaneous solution of both the stellar atmosphere
and wind is necessary. The radiative transfer equation has to be solved in a mov-
ing medium, where the absorption coefficient depends on angle (in an observer frame)
thanks to the Doppler effect. In addition, instead of the hydrostatic equilibrium equa-
tion we have to solve the equations of motion and continuity, which then determine
the density and velocity structure of the atmosphere.

The atmosphere is significantly supported by the radiation pressure. For the case
of hot stars, an important part of this pressure (or force) is caused by absorption
and scattering in a number of spectral lines, mostly in the UV spectral region. A
substantial complication arises from properties of radiative force, since it depends
nonlinearly on the velocity gradient.

Due to the complexity of the problem being solved, a number of approximation
is usually being used. First, it is often assumed that the atmosphere consists of
two distinct parts, namely the static atmosphere and the expanding wind, which
is located above the atmosphere. This approximation is usually referred to as the
core-halo approximation. Additional common approximation is applied when we aim
at solving the so-called NLTE problem in the wind (in the ”halo” part). In these
calculations, the velocity and density structure is held fixed. In addition, treatment
of lines is many times being simplified by using the Sobolev approximation, while for
the continuum radiative transfer the same method as for the static case may be used.

The above mentioned dependence of the radiative force on a huge number of UV
spectral lines makes their direct treatment computationally expensive. That’s why
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the radiative force is usually approximated using the so-called force multipliers, which
enable fast calculation of the radiative force without the necessity to solve the radiative
transfer equation.

3. 1. HYDRODYNAMIC CALCULATIONS AND DRIVING FORCE

The importance of the influence of the radiative force on individual atoms was first
discussed by Johnson (1925) and Milne (1926). The concept of a stellar wind driven
by line absorption was developed by Lucy and Solomon (1970). Castor (1974) did
detailed calculations of the line force produced by spectral lines and subsequently,
Castor, Abbott and Klein (1975, hereafter CAK) performed first hydrodynamical
solution of the line driven wind. They used a parameterized form of the radiative
force

frad =
σeF

c
kt−α

(ne

W

)δ

(8)

using parameters k, α (usually called force multipliers) while the multiplier δ was
introduced later by Abbott (1982). CAK solution of the line driven wind initiated
intensive research in this field. Pauldrach (1987) did huge NLTE calculations of the
radiative force, which were later used in analysis of hot star winds (Pauldrach et al.
1990, 1994). Vink et al. (1999) determined the radiative force using NLTE Monte
Carlo calculations. Hydrodynamic calculations without force multipliers in Sobolev
approximation were done by Krtička and Kubát (2004).

As mentioned above, first wind solution was calculated by CAK. Later Abbott
(1980) analyzed the solution of the hydrodynamic calculation in a more detail and
discovered the radiative-acoustic waves using stability analysis. In the above men-
tioned first hydrodynamical calculations the star was approximated as a point source.
A more realistic approach, which takes into account full stellar surface, was applied by
Pauldrach, Puls and Kudritzki (1986) and Friend and Abbott (1986), while the latter
authors took also rotation into account. A stride forward was made by Owocki, Cas-
tor and Rybicki (1988) and later by Feldmeier (1995), who solved the time evolution
of the wind using hydrodynamical simulations.

Radiation acts directly only on metals, while the radiative force acting on hydro-
gen and helium is negligible. The latter atoms are accelerated by collisions with
metals. This multicomponent nature of the wind was first taken into account by
Springmann and Pauldrach (1992), stationary models were calculated by Krtička and
Kubát (2000). Hydrodynamical simulations of a multicomponent wind were per-
formed by Votruba et al. (2007). Multicomponent nature of the line driven winds
was reviewed by Krtička and Kubát (2007).

3. 2. EXTENDED HYDRODYNAMIC CALCULATIONS

More advanced calculations combine hydrodynamical calculations with solution of
other equations. Standard hydrodynamical calculations solve equations of continuity
and motion, which give us density and velocity structure, respectively. Sometimes
they are extended by an energy equation, which determines the temperature struc-
ture. These equations are iteratively combined with the solution of the radiative
transfer equation (in Sobolev approximation, in comoving frame, or using Monte Carlo
approach), often supplemented by statistical equilibrium equations, which means so-
lution of the so-called NLTE problem. The radiative transfer calculations enable
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subsequent recalculation of the radiative force and such models are iterated until sat-
isfactory convergence is reached. As examples may serve calculations by Gabler et
al. (1989), Schaerer and Schmutz (1994), Pauldrach et al. (1994, 2001), Krtička and
Kubát (2004), and Gräfener and Hamann (2005).

4. MASS-LOSS RATE DETERMINATION

Compared to the static case, where basic stellar parameters are the stellar mass
M∗, stellar radius R∗, and luminosity L, additional basic parameters of a moving
atmosphere are the terminal wind velocity v∞ and the mass-loss rate Ṁ . While the
measurement of the former is relatively straightforward for the case of P-Cygni line
profiles, the mass-loss rate determination is still subject to many uncertainties.

4. 1. β-VELOCITY LAW

A commonly used simplification of the velocity structure of the atmosphere, which
enables to avoid solution of the momentum equation, is the so-called β-velocity law.
It is a simple power-law dependence of the radial expansion velocity on radius in the
form

v = v∞

(
1− R∗

r

)β

. (9)

It was introduced already by Milne (1926) and Chandrasekhar (1934) with β = 1/2.
Typical value for line driven stellar winds is β ≈ 0.8, but values of β ∼ 3 were also
found for some stars (e.g. Evans et al. 2004). The value of v∞ can be determined
from observed P Cygni line profiles.

4. 2. RADIO MASS-LOSS RATE DETERMINATION

Radio emission is mainly of thermal origin caused by free-free radiation produced
in the outer parts of the wind. Radio measurements are used as diagnostic tools to
obtain mass-loss rate. In this method, following assumptions are usually applied: gas
is completely ionized everywhere, electron temperature is constant, spherical symme-
try and LTE are assumed, expanding velocity is constant and equal to the terminal
velocity v∞, and the radial ne-distribution is power-law. Measured radio flux (Fν) is
related to the mass-loss rate (Ṁ) as in the following expression (Wright and Barlow
1975)

Fν = 23.2

(
ZṀ

µv∞

)4/3
[νγgff (ν, T )]2/3

D2
[Jy] , (10)

where µ is the mean ionic weight (in a.m.u.), v∞ is the terminal wind velocity in
km s−1, D is the distance to the star in kpc, ν is the frequency in Hz, γ = ne/ni is
the mean number of electrons per ion, Z is the mean charge per ion, and gff is the
free-free Gaunt factor.

Detailed derivation of expression (10) can be found in Wright and Barlow (1975)
and Panagia and Felli (1975). From expression (10), stellar mass-lose rate can be
expressed as

Ṁ = 0.095
µv∞F

3/4
ν D3/2

Z (γgffν)1/2

[
M¯
yr

]
. (11)
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In the winds of OB stars we may use µ = 1.25, Z = 1.0, γ = 1.0, ne ≈ ni and ν = 4.88
GHz, then mass-loss rate is given by (Abbott et al. 1981)

Ṁ = 1.7 · 10−6 v∞F
3/4
ν D3/2

g
1/2
ff

[
M¯
yr

]
, (12)

where v∞, Fν , and D can be derived from observation and mass-loss rate can be easily
calculated.

Radio measurement is known as one of the most reliable method for mass-loss rate
determination and this method is free of uncertain assumptions. But on the other
hand, there is problem for stars which are too distant. In this case, flux densities are
low and, consequently, only about twenty stars have accurate flux density determina-
tions (Scuderi et al. 1998). Another problem is that part of radio emission may be of
non-thermal origin (Bieging et al. 1989). Because of this, other spectral regions also
have to be used for more accurate mass-loss rate determination.

4. 3. Hα MASS-LOSS RATE DETERMINATION

Hα emission originates in regions closer to the star than the free-free emission. In this
method of mass-loss rate determination usually a β-velocity law is assumed with some
specific value of β, and then the theoretical emergent Hα line profile is calculated.
The mass-loss rate corresponding to the model with the best fit is then called the
observed mass loss rate.

First NLTE line profiles from radiatively driven winds (for a CAK velocity struc-
ture) were calculated by Klein and Castor (1978). However, for mass-loss rate deter-
mination they used only comparison of observed and theoretical equivalent widths.
Hα line profiles for several different prescribed velocity fields were calculated by Olson
and Ebbets (1981). Leitherer (1988) determined mass-loss rates for a number of stars
using Hα equivalent widths, while Puls et al. (1996) used detailed Hα profiles for
mass-loss rate determination.

4. 4. MASS-LOSS RATES FROM UV RESONANCE LINES

Besides Hα and radio measurements of mass-loss rates also ultraviolet resonance lines
are indicators of mass-loss from early type stars. However, only unsaturated lines
can be used for this purpose. In addition, knowledge of the ionization structure of
the wind is necessary (cf. Lamers et al. 1999). As an example, Fullerton, Massa and
Prinja (2006) used the resonance lines of Pv λλ 1118, 1128 Å as extremely suitable for
this purpose. However, they found discrepancies between the three above mentioned
mass-loss rates determinations.

4. 5. MASS-LOSS RATES FROM MODEL ATMOSPHERES

The most sophisticated method of mass-loss rate measurements is that using detailed
model atmosphere analysis. There are several codes available, with different sophis-
tication of the radiative transfer solution. The codes CMFGEN (Hillier and Miller
1998) and PoWR (Gräfener and Hamann 2005) use solution of the radiative trans-
fer equation in a comoving frame. The latter code takes into account the consistent
hydrodynamical structure by means of iterative recalculation (see Section 3.2). The
code WM-basic (Pauldrach et al. 2001) also recalculates the hydrodynamical struc-
ture iteratively, but uses the Sobolev approximation for the solution of the transfer
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equation in lines. Line blanketing and line blocking are correctly taken into account
by CMFGEN, but assuming the prescribed velocity profile, which is the β-law in
many cases. The code FASTWIND (Santolaya-Rey et al. 1997, Puls et al. 2005)
uses a number of approximations that make the calculations of emergent radiation
significantly faster while preserving the most important properties of the atmosphere.
A useful comparison of CMFGEN, WM-basic, and FASTWIND codes was presented
by Puls et al. (2005).

The above mentioned codes were applied to a number of stars to determine their
mass loss rates, e.g. Bouret et al. (2003), Evans et al. (2004), Trundle et al. (2004),
Crowther et al. (2006), and many other.

4. 6. CLUMPING IN HOT STAR WINDS

There is a vast observational evidence of absorption or emission features moving across
line profiles. Such moving bumps may be explained as corotating interation regions
(Mullan 1984, Cranmer and Owocki 1986) or as a consequence of clumping. From
other side, mass loss rates determined from Hα and radio measurements sometimes
disagree. These facts lead to a hypothesis that hot star winds are clumped (Runacres
and Blomme 1996, Blomme and Runacres 1997).

Clumps are regions with larger density than the surrounding wind. Consequently,
clumped medium has lower opacity and this causes that the radiative force changes.
Solution of the radiative transfer equation in such medium is not an easy task and
and efficient method, which is able to cope with such inhomogeneities, must be used.
Clumps are usually assumed to form as a consequence of shocks arising from wind
instabilities (see Feldmeier et al. 2008, and references therein).

5. SUMMARY

While for static atmospheres, both for the plane-parallel and spherically symmetric
cases, modelling is used almost routinely, for the case of moving atmospheres the latter
is more complicated. This task is usually split to two parts, namely to hydrodynamic
calculations with simplified treatment of radiation field and to NLTE modelling for
known hydrodynamic structure, often simplified using the β-velocity law. NLTE
modelling is often being used for mass-loss rate determination.
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