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Abstract. We analyze the Auroral Electrojet (AE) index data from the period of Solar
minimum and maximum, with respect to their predictability and intermittency. Neural
networks are employed to predict the behavior of the AE- data for the different intermittent
intervals, as well as recurrence plots where these intervals are visualized. We also compute the
multifractal singularity spectrum as additional evidence for the existence of intermittency,
and show that this spectrum is independent of the Solar activity.

1. INTRODUCTION

The Auroral Electrojet (AE) index is a measure of the aurora-related magnetic activ-
ity around the auroral oval of the Northern hemisphere. The horizontal field variations
are measured at observatories along the auroral zone, and are meant to estimate the
total amplitude of the ionospheric current system. This index is introduced by Sugiura
and Davis, 1966, and is supposed to monitor the auroral substorm events. Since their
discovery, AE index time series have been extensively studied as part of the effort to
understand the dynamics of magnetosphere-ionosphere coupling. In addition to the
obvious plasma physics based theories, more complex systems based approaches have
attracted considerable interest. Depending on the measured AE index characteristics,
one has found signatures of self-organized criticality (e.g. Kozelov et al., 2004), turbu-
lence (Consolini et al., 1996), and low dimensional chaos (Vassiliadis, 1990, Athanasiu
et al., 2001). In this brief report, we present results from an ongoing study of the
AE index predictability and its connection to the intermittent intervals of the same
data. We analyze the AE index minute data downloaded from the Kyoto database
(http:// swdcwww. kugi. kyoto-u. ac. p/wdc/Sec3. html). We were interested in
the years 1979 and 1986, since these years had the highest and lowest Solar activity,
respectively. Particularly, we analyze the data from disturbed conditions, i.e., when
an auroral substorm was identified. First, we use neural networks to identify the time
scale of the AE index predictability. Then, we apply recurrence plot analysis which
clearly shows different dynamic regimes, where the boundaries between these regimes
coincide with the time scales on which the predictability from the neural network was
achievable. These boundaries also match with the increase of the wavelet coefficient
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energy calculated for the intermittent part of the AE index time series. Finally, we
show by applying multifractal singularity spectrum analysis that our time series have
the signatures of the intermittent turbulence.

2. NEURAL NETWORKS

Neural networks (NNs) are often used in the analysis of the AE index (see e.g. Her-
nandez et al., 1993, Pallocchia et al., 2008). Generally speaking, NNs have a training
and test set of data, where the first set establishes the NN, and the other is classified
through the NN. NNs consist of the input, output, and layers of neurons in between.
These layers learn the relationship between the input and output (training set), such
that later a new input (the test set) can be added in the network and, according to
the rules of the NN, can produce a new output. We use the AE index data as the
input, the AE index data sampled with a time lag as the output, and one layer of
4 neurons between the input and the output. We iterate the neural network until
the error ε = 1

2

∑M
i=1(Oi − Õi)2 → 0, where Oi is the desired output, Õi is the real

output from the network and M is the number of the AE index samples. After such a
network has learnt the relationship between two AE index time series, where there is
a time lag between their measurements, we can predict the future of other AE index
time series after the same time lag. Fig. 1(a) and Fig. 1(b) shows the original and
the predicted AE index time series for the period of the Solar minimum, when the
length of the series was 900 min.

For the time series lengths ≥ 900 min, different NN has to be used. In other words,
this means that the data has changed its character and the rules that governed the
NN up to 900 min, can not be applied anymore. Very similar results are obtained for
the data in the Solar minimum as well.

3. THE LINK BETWEEN THE RECURRENCE PLOT AND
THE INTERMITTENCY

Recurrence plot (RP) analysis was introduced in Eckmann et al., 1987, and has been
extensively used in the last twenty years. The essential steps of the method are as
follows: First the phase space is reconstructed by time-delay embedding (see Takens,
1981), where vectors xi (i = 1, . . . , T ) are produced. Then a T × T matrix consisting
of elements 0 and 1 is constructed. The matrix element (i, j) is 1 if the distance
is ‖xi − xj‖ ≤ R in the reconstructed phase space, and otherwise it is 0. The
recurrence plot is simply a plot where the points (i, j) for which the corresponding
matrix element is 1 are marked by a dot. The radius R is fixed and chosen such
that a sufficient number of points are found to reveal the fine structure of the plot.
On the RP, periodic states are visualized as diagonal, continuous lines, where the
distance between the lines indicate the period. Vertically and horizontally spread
black areas represent states with short laminar behavior, while abrupt changes in the
dynamics as well as extreme events cause white areas in the RP. On Fig. 1(d) we
show RP for the Solar minimum, obtained for the embedding dimension D = 6. We
see that RP consists of some small black rectangular as well as white areas, which
indicate changes in the dynamics (probably from laminar to intermittent states).
Particularly, for τ ∼ 103 we see that mid-rectangular area finishes and exchanges
with the different pattern for the larger time scales. On Fig. 1(c), we also plot
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Figure 1: Data for the Solar minimum: a) original , b) predicted from NN, c) vari-
ogram, d) recurrence plot.

variogram (V (τ) = 1
2 (M−τ)

∑M−τ
t=0 (s(t + τ)− s(t))2, where s(t) is the AE index time

series, and τ is a time lag), and notice that the greatest change in the variogram
occurs for τ ∼ 103, which is also in agreement with the results of the neural network
analysis. The differences between RP patterns are even better exposed in Fig. 2(b),
where the RP for the AE index of the Solar maximum is plotted. In Fig. 2(a) on the
upper part of the plot, the first 2000 points of the original AE index data for the Solar
maximum are plotted. By applying mexican-hat wavelet analysis and after keeping
the wavelet coefficients for the smallest scales, we are able to exclude the intermittent
part of the signal, which we plot below the original signal. We also plot energies of
the wavelet coefficients, which correspond to the intermittent signal. It seems like
the boundaries between different patterns on the RP correspond to the peaks of the
wavelet energies of the intermittent signal.

Additional evidence that AE index is intermittent is provided by direct computa-
tion of the multifractal spectrum of generalized dimensions and the singularity spec-
trum. First, we calculate generalized dimension spectrum Dq = 1

q−1
log Mq(r)

log r when
r → 0. Here Mq =

∑
pq

i and pi is the probability that some point is in the box i. The
generalized dimension is independent of q if the time series is monofractal. In Fig. 2
(c), we plot Dq vs. q for the AE index data at Solar maximum. Since Dq varies with
q, we conclude that the time series is multifractal. Further, we define the singularity
spectrum f(α) vs. α from the Legendre transform (q− 1)Dq = inf{qα− f(α)}. Here
α is the Hölder exponent characterizing the local variation around a given point in
the time series and f(α) can be thought of as the fractal dimension of the set of points
which are characterized by the particular exponent α. For a monofractal, f(α) van-
ishes except for the the value of α corresponding to the (mono-) fractal dimension (see
Hilborn et al., 2000 ). However, Fig. 2(d) shows a considerable spread in α-values for
which f(α) > 0. Very similar plots are produced for the AE index data for the Solar
minimum. Since the singularity spectrum and spectrum of generalized dimensions
show very little variation between the Solar maximum and Solar minimum data, it
seems like solar activity does not represent a significant influence on the intermittency
properties of the turbulence which give rise to the fluctuations in the AE index.
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Figure 2: Data for the Solar maximum: a) original and intermittent time series with
energy of the wavelet coefficients, b) Recurrence plot, c) Generalized dimension, d)
Singularity spectrum.

4. CONCLUSION

We have analyzed AE index data from periods of Solar minimum as well as maximum.
We investigate the predictability of the data by using neural networks, and conclude
that the same neural network can not be used for all the lengths of the time series.
This indicates that different dynamics govern different part of the time series, which
can be clearly demonstrated via the recurrence plots. We further contemplate that
these different dynamics are due to intermittent burst, which can be pictured through
the wavelet energy of the small-scale wavelet coefficients. Singularity spectrum and
generalized dimension also confirm that intermittent turbulence governs the dynamics
of our data.
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