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DOUBLY EXCITED STATES OF He IN A DC FIELD

S. I. THEMELIS

Technological Educational Institute of Chalkis, Department of Applied Sciences,
GR-34400 Psahna - Evia, Greece

E–mail: sthemelis@teihal.gr

Abstract. The effects of strong electric fields on the doubly excited states of He are
investigated. Strong electric-field strengths up to F=0.02 a.u. are used in the present study.
Intrashell doubly excited states are chosen as prototype states for studying these effects. The
solution of the Complex Eigenvalue Schrödinger equation is obtained using and appropriate
partitioning of the wave-function and the complex rotation method. Energy shifts and field
induced widths, as a function of the external field strength, are presented and analyzed.

1. INTRODUCTION

The effects of electric fields on ground or low-lying states of atoms and molecules
have been studied for many years (Ryde 1976). Likewise, the doubly excited states
of H− are particularly sensitive to external electric fields and the DC-field effects on
these states have been studied fairly well (Halka 2006). The effects of electric fields
on the doubly excited states of He have only recently been considered by experiments
(Harries et al. 2003, Halka 2006). Some recent advances in the experimental methods
have given us the opportunity to study the energy shift and the field induced width of
the doubly excited states of He and the modifications appearing in the photoionization
cross section. The calculation of these properties and of the profile shapes is a testing
case for the advanced many-body theories. The problem is more difficult than the
calculation of the tunneling rates in effective one-electron systems. The semi classical
theory is useful for, essentially, hydrogen-like states, whereas for a more complicated
system, the formulation suggested by Fisher, Maron and Pitaevskii (1998) could be
applied. A thorough and effective approach is required far from the semi-classical
limit. A first principles approach, in the context of density functional approach, has
been proposed by Otobe et al. (2004), but applications on non-stationary states are
not reported.

The ab initio theoretical approach introduced by Themelis and Nicolaides (2000,
2001) is the background for the recent study. A general and computationally feasible
theoretical approach has been developed for the study of the Stark effect on many
electron atomic systems, in both ground and in excited states. The complex coordi-
nate rotation method is used for the solution of the Complex Eigenvalue Schrodinger
Equation. The main characteristic of the present approach is the partitioning of the
function space used for the description of the atomic or molecular states, with or
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without the existence of an external perturbation. Application of the theory has been
reported for ground or excited states and the present problem is a natural generaliza-
tion.

For non-stationary states there is already a finite lifetime whereas the application of
an electric field can increase or decrease it, as a function of the applied field strength.
For the width of an autoionizing state in a DC field we can write:

Γ(F ) = Γaut + ΓDC(F ). (1)

Γaut is the autoionization width and the problem here is actually the determination
of the field induced width, ΓDC(F ). For a bound state the usual dependence of the
field-induced width on the field strength F is ΓDC(F ) ∼ e−k/F , where k is a parameter
depending on the ionization potential, the angular momentum of the escaping electron
etc. We will see that this rule does not apply in the case of the doubly excited states
(DES) of He. An old suggestion made by Khomskii (1965) and reinvented by Davis
and Jacobs (1975), brings forth a dependence of ΓDC on F 2 and describes fairly well
the exact values of the width in a large interval of values of F .

2. THEORY AND METHODOLOGY

The calculation of field-induced properties of atoms or molecules, in the present
approach is formulated as a problem of solving variationally a complex eigenvalue
Schrodinger equation (Kukulin et al. 1988):

(Ĥ − ε)Ψ = 0, (2)

where: Ĥ = Ĥatom +
∑

i ~ri. ~F and ε = E0 + ∆(F ) − i
2Γ(F ). Hatom is the free-atom

Hamiltonian and ~F the external dc-field. E0 is the field-free energy of the state
of interest, described by the field-free wave-function Ψ0, while ∆(F ) and Γ(F ) are
the field-dependent energy shift and width. Resonances are eigenvalues of Ĥ with
ε=complex energy (Γ > 0). A straightforward description of such states are difficult
because their wave functions are exponentially divergent in the asymptotic region. In
this method the eigenvalue problem of a transformed Hamiltonian

Ĥθ = Û(θ)ĤÛ−1(θ) (3)

is solved, instead of the original Ĥ. The effect of the complex scaling transformation,
in equation (3), is that the positive-energy continuum of Ĥ gets rotated down into
the complex energy plane, while the wave function of any resonance becomes square-
integrable (if 0 < θ < π/3).

The trial wave-function Ψ, which will be computed by a variational procedure, is
expanded in a function space that is divided into two nonorthogonal parts Q and P .
The Q space, in general, contains correlated wave-functions belonging to the bound
spectrum. The P space contains states that represent the multichannel continuous
spectrum. These states are expanded in terms of L2 functions, since the complex co-
ordinate transformation Û(θ) makes them square integrable. The Stark Hamiltonian
matrix which is derived from this choice of the basis functions is:

H =
(

HQQ HQP

HPQ HPP

)
(4)
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H is diagonalized repeatedly in respect to changes of the non-linear parameters in
the basis set of the space P and in the rotation angle θ, until the root having the
maximum overlap with Ψ0 is stabilized.

2. 1. APPLICATION TO DES OF HE

For the calculation of the localized part of the autoionizing states, we use a multi-
configuration Hartree-Fock (MCHF) approximation. For example, the 2s2p 3P o state
can be described accurately by a 3× 3 minimal approximation to the wave-function:
Ψ(2s2p 3P o) = 0.992 (2s2p)−0.118 (2p3d)+0.049 (3s3p) The energy that corresponds
to the expectation value of Q̂ĤQ̂ for this wave-function is: E0(2s2p 3P o) = −0.760935
a.u. For the description of the nearby lying non-relativistically bound state 2p2 3P ,
we use an approximation of a similar accuracy. The energy that results from the
calculation for this state is E0(2p2 3P ) = −0.710190 a.u. The function space Q for
the manifold of the triplet-spin states is not consisted only by these two states. The
states that are also included in our calculation are:

i. the singly excited states 1sn`, n ≤ 6 and ` ≤ n− 1.
ii. intershell autoionizing and bound states lying below the threshold n=2 of He+,

that is 2`n`′, 2 ≤ n ≤ 6 and `, `′ ≤ 5.
iii. higher lying double excited states of the form n′`′n′′`′′, with 3 ≤ n′ ≤ n′′ ≤ 6,

lying below higher thresholds of He+.
Singly excited states are represented by compact but accurate MCHF expansions

or by their HF functions. The doubly excited states are represented by CI expansion
in a hydrogenic basis set, which proved to provide an accurate description of the
localized part of these states. The symmetry of all of the above cited doubly excited
states is for limited values of the total angular momentum L ≤ 4.

All the above singly and doubly excited states are the members of the Q-space
included in our calculations. However, in order to have a complete description of the
field-free or non-zero field problem, we have to include the multichannel continuum de-
scribed by the complementary function space P . The open channel components of the
resonant wave-functions are represented as: X(n`ε`′ 2S+1Lπ) = Â (φn`(~r1)uε`′( ~ρ2)) =
Â (φn`(~r1)

∑
i ciχi(ρ∗2)Y`m(Ω2)) Â is an antisymmetrizer and φn` are hydrogen-line

states with Z=2 and uε`′ are states belonging to the continuum represented as a linear
combination of χi(ρ∗) = (ρ∗)kie−aiρ

∗
. In the variant of the complex-coordinate ap-

proximation followed here, for χi(ρ∗) the radial coordinate takes the form ρ∗i = rie
−iθ.

The non-linear parameters ai and the expansion coefficients ci are subject to a vari-
ational optimization for the calculation of the complex energy eigenvalues pertaining
to the autoionizing and field induced resonant states.

3. RESULTS

In the case of the absence of electric field, for the triplet-spin states of interest, we
have found for their energy position the following results: E(2s2p 3P o) = -0.760150
a.u. and E(2p2 3P ) = -0.710218 a.u.. The energy width of the autoionizing state is:
Γ(2s2p 3P o) = 0.0003126 a.u.. In Fig. (1a) we show the movement of the resonance
poles for the 2s2p 3P o and 2p2 3P states (M = 0 and M = ±1) when the external
electric field is turned on. For the field-free case, the 2s2p 3P o state lies at a position
of ∼ 0.05 a.u. lower than the 2p2 3P state. When the external electric field is turned
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Figure 1: Energies and widths as functions of the DC-field.

on, the interaction between the two resonant poles having M = ±1 is evident, as they
start to repel each other in the complex-energy plane. This is not the case for the
states with M = 0 since, according to the selection rules for the external perturbation,
they do not interact. The width for the 2s2p 3P o states decreases for small values
of F whereas for higher values of F starts to increase. At the same time, the width
for the 2p2 3P state increases when the field strength is increased. In Fig. (1b) we
show the change in width of the state 2p2 3P , M = ±1 as a function of the squared
external electric-field strength F . Its is clear that for low values of F the width has
a linear dependence on F 2. This dependence has been predicted many years ago by
Khomskii (1965). It is further noted that when the external electric-field strength is
greater than 8 × 10−5 a.u. approximately, the width for the 2p2 3P , M = ±1 state
increases quite rapidly. At the high-field region, the effective potential barrier, formed
by the combination of the atomic potential and the external DC field, would become
narrower as the external electric-field strength is increased further.
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