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FOREWORD

This book is based on my doctoral thesis “Dark Matter in Early-Type Galaxies With
X-Ray Haloes. A Spectroscopic Study of Dynamics and Abundance Indices” defended
in April 2004 at the Department of Physics, University of Trieste, Italy. Many parts
of the text and many figures were updated to include the latest results in the rapidly
developing field of research of elliptical galaxies. Also, some completely new portions
of the text have been written: the Jeans analysis of a number of ellipticals in Chapters
2 and 3 is added and a section dedicated to globular clusters and planetary nebulae
as tracers of the mass in ellipticals at larger distances from the center is included.

The book is organized as follows. In Introduction I give the basic features of el-
liptical galaxies and present a detailed review of the dark matter research in these
galaxies. Particular attention is given to the research of the integrated stellar spec-
tra. In Chapter 1 I present theoretical concepts related to the stellar kinematics in
elliptical galaxies; I also describe the reduction procedures which I apply. In this
Chapter all observational results regarding galactic kinematics of the galaxies from
my samples are given. Dynamical modelling of these galaxies is given in Chapter 2:
after introducing basic theoretical concepts I present the modelling results for two-
and three-integral modelling procedures. Chapter 3 is dedicated to the galaxies with
X-ray haloes: basic formulas related to the hot gas in the X-ray haloes are given and
applied to the galaxies from my samples which possess X-ray haloes. A comparison is
made between the results for the mass-to-light ratio obtained using this approach and
the results obtained using stellar dynamics. In Chapter 4 I study abundance indices
for some galaxies from my samples and make comparison with the results from chemo-
dynamical modelling. In Chapter 5 I present the results of the total mass (and the
total mass-to-light ratios) of elliptical galaxies based on globular clusters and plane-
tary nebulae; wherever it was possible the comparison with other techniques was done.
Finally, in Chapter 6 I draw the conclusions. Some additional information related to
mathematical (ill-posed problems and regularization; non-negative least-squares; self-
organizing maps), dynamical (orbits in different potentials) and observational (total
flux as function of radius) aspects is given in the Appendices; I also present the stellar
kinematics and abundance indices in the table form.

I would like to thank my thesis advisors John Danziger and Francesca Matteucci
for their help, encouragement and support. They provided guidance and posed inte-
resting and important problems yet allowing me a large amount of freedom in solving
them.

I would like to thank the following colleagues from the Trieste Observatory and
the Department of Astronomy of the University of Trieste where the biggest part of
the work on this book was done for numerous discussions and advice: Simone Zaggia
for the help in obtaining spectra of galaxies from the Fornax sample and the help in
the data reduction, Antonio Pipino for calculation of different photo-chemical evolu-
tion models, Francesco Calura for stimulating discussions about different aspects of
elliptical galaxies, Piercarlo Bonifacio for the help with the data reduction. While I
was at the Trieste Observatory I had the pleasure to have discussions with the mem-
bers of the staff of the Observatory/Dept. of Astronomy: Andrea Biviano, Stefano
Borgani, Marisa Girardi, Christian Marinoni, Marino Mezzetti, Pierluigi Monaco,
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Massimo Persic, Simone Recchi and Paolo Tozzi. I also acknowledge useful discus-
sions that I had during my stay in Trieste with: Paolo Salucci, Giuseppe Bertin, Luca
Ciotti, Eduardo Simonneau, Gary Mamon and the late Dennis Sciama. I thank Fabio
Mardirossian and Stefano Cristiani for their continual help in their role of the Director
of the Trieste Observatory. I express my gratitude to the late Giuliano Giuricin who
helped me in the initial phases of this work.
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Research in Italian Laboratories) program and Elena Dose, the secretary of the ICTP
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INTRODUCTION

Galaxies are large systems that contain stars, gas, dust, planets and, most probably,
dark matter. A large galaxy can contain 1011 − 1012 stars. The amount of gas and
dust can vary from a few percent of the total stellar mass (as in lenticular galaxies)
to about ten percent for the most gas-rich objects (spiral galaxies). As noted by
Binney and Tremaine (1987), in reply to the statement of Sandage made in 1961 that
“galaxies are to astronomy what atoms are to physics”, some analogy between galaxies
and atoms indeed exists: galaxies are relatively isolated systems and they maintain
their identity throughout their lives, except for occasional collisions and mergers with
other galaxies and, perhaps, weak interaction with the tenuous intergalactic medium.
Also, a galaxy is a dynamical and chemical unit. However, there are some differences:
for galaxies the laws from the world of atoms do not hold: a huge number of processes
in some galaxy may, but not necessarily, be present in some other galaxy. That is why
Binney and Tremaine suggested a more appropriate analogy: the relationship between
galaxies and astronomy should be regarded as the relationship between ecosystems
and biology — this analogy takes into account their complexity, their relative isolation
and their ongoing evolution.

I.1. CLASSIFICATION OF GALAXIES

Galaxies can be classified according to the Hubble’s classification system (see Figure
1) into four main types: ellipticals, lenticulars, spirals and irregulars. Early-type
(elliptical and lenticular) galaxies belong to the left-hand end of the Hubble’s tuning-
fork diagram. The original suggestion of E. Hubble was that galaxies evolve from the
left-hand end to the right. This suggestion has now been abandoned.

Elliptical galaxies have the surface brightness that falls off smoothly with radius,
and in most cases can be fitted by R1/4 or de Vaucouleurs law (see e.g. Binney and
Merrifield 1998):

I(R) = Ie exp{−7.67[(R/Re)
0.25 − 1]}, (I.1)

where Re is the effective radius, that is the radius of the isophote containing half
of the total luminosity and Ie is the surface brightness at Re. Thus, the following
equation holds:

2

Re
∫

0

dR I(R)2πR =

∞
∫

0

dR I(R)2πR = 7.22πR2
eIe. (I.2)

1
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Figure I.1: The Hubble tuning-fork diagram. On the left-hand end there are elliptical

galaxies, in the middle there are lenticulars (S0) and on the right-hand end there spirals

(Sa−→Sc) and irregulars. Lower part of the right-hand end is occupied by galaxies with

bars (letter “B”).

In Table (A5-1) in Appendix 5 we give the fraction of the total flux at the given
radius; for example, 96 per cent of the total flux of a given galaxy is contained within
10Re.

It is however important to note that for some galaxies the brightness profiles show
significant departures from the best-fitting R1/4 profile. In such cases it is useful to
fit the brightness profile by the generalized de Vaucouleurs law (also called the Sersic
profile) (see Box 4.1 in Binney and Merrifield 1998):

I(R) = Iee{−bn[(R/Re)1/n−1]}, (I.3)

where n is a positive real number and bn is a dimensionless parameter whose value is
determined by the definition of effective radius Re, and is chosen such that half the
total luminosity predicted by this law comes from R < Re; for example for n = 4 (the
case of the Vaucouleurs law), b4 = 7.66924944 (see Ciotti 1991 for details). When
Eq. (I.3) is used with n < 4 the predicted brightness profile as a function of radius
given as R1/4 will be placed downwards (the case of low-luminosity elliptical galaxies).
If, however, one uses n > 4 the model profile curves will be placed upwards in the
R1/4 plots (this is the case of the very luminous elliptical galaxies, particularly cD
galaxies).

The shape of elliptical galaxies varies in form from round to elongated. One can
use the simple formula n = 10[1 − (b/a)], where (b/a) denotes the apparent axial
ratio, to write the type of these galaxies: En. Therefore, E0 are round galaxies, and
E6 are highly elongated systems as seen projected on the sky. In Fig. I.2 (left) it is
shown a round galaxy NGC 3379 (type E0, sometimes also classified as E1; see the
photometry of this galaxy in Chapter 1) and in the same Figure (right) we show a
moderately flattened (E3) galaxy IC 1459; both of these galaxies will be studied in
Chapters that follow.

Here it should be noted that in general the line of sight to a given galaxy will be
inclined at an angle to a galaxy’s equatorial plane. One therefore defines the galaxy’s
inclination, i as the angle between the normal to the equatorial plane and the line
of sight (see Fig. I.3). When i = 0◦ we speak of the face-on case and when i = 90◦
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we speak of the edge-on case. Majority of galaxies are somewhere in between: i.e.
0 < i < 90◦. With a we denote the major observed axis and with b we denote the
minor observed axis. It can be shown (see for example Binney and Merrifield 1998)
that whenever i < 90◦ it is in principle not possible to determine a galaxy’s true shape
from observed photometry alone.

Figure I.2: Left: Round (E0) galaxy NGC 3379. The image size is 7 × 7 arcmin. Right:
Flattened (E3) galaxy IC 1459. The image size is 6.8× 6.8 arcmin. Both images were taken

by the 2MASS (Two Micron All Sky Survey) project with a 1.3m telescope.

Figure I.3: Inclination of an observed galaxy: two extreme cases (i = 0◦ is the face-on

case and i = 90◦ is the edge-on case). Majority of galaxies are somewhere in between:

0 < i < 90◦.
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Research over the last 20 years has brought new knowledge about ellipticals and we
now know that these galaxies are much more complex systems than they were hitherto
assumed. The elliptical galaxies contain little or no gas or dust. The old stars that
are prevalent are cool, evolved, and therefore of late spectral types. In the middle
of the Hubble’s diagram there is a class of galaxies designated as type S0, known
as lenticular galaxies. They have a smooth central brightness condensation similar
to an elliptical galaxy that is surrounded by a large region of less steeply declining
brightness. They have disks that do not show any conspicuous structure. Because of
their appearance, and also because of their stellar content (e.g., spectral type), they
look more like ellipticals rather than spiral galaxies. The problems may arise in the
classification of S0 galaxies. For example, for a close well-studied galaxy NGC 3379
it is not certain whether it is a bona fide normal elliptical or a face-on lenticular
galaxy. The example of IC 3370 also presented in this book provides another case of a
problematic classification (its distance is ∼ 42 Mpc, for the Hubble constant h0 ∼ 0.7;
this value of the Hubble constant will be used throughout this book). The remark of
Gregg et al. (2004) therefore seems appropriate: “If after such detailed investigations,
we are unable to discern the morphological type of NGC 3379, at a distance of only
10 Mpc, then it is practically impossible to establish the true morphology of other
early type galaxies at greater distances in clusters such as Coma, let alone at high
redshift”.

Spiral galaxies (including our own, Milky Way) consist of three main parts: spheroid,
thin disk and dark halo. Spirals contain a prominent disk that is composed of Popula-
tion I stars, gas, and dust. The disk also contains spiral arms, in which are embedded
bright O and B stars, gas, and dust – this is a place in which the stars are cur-
rently forming. Hubble divided spirals into a sequence of four classes (types), called
Sa, Sb, Sc, and Sd. Along this sequence (Sa−→ Sd) the relative luminosity of the
spheroid (that contains older Population II stars) decreases, the relative mass of the
gas increases, and the spiral arms become more loosely wound. The Milky Way is
sometimes classified as Sbc, expressing the fact that its Hubble type is between Sb
and Sc. Rotation curves of spirals are typically flat, a fact of considerable importance
for the dark matter studies (see below).

Irregular galaxies are galaxies where one cannot easily distinguish a particular
pattern. The majority of irregulars are low-luminosity gas-rich system such as the
Magellanic Clouds (see Fig. I.1 – the letters “I” and “m” refer to irregulars of the
type similar to that of the Magellanic Clouds).

I.2. THE DARK MATTER PROBLEM IN
EARLY-TYPE GALAXIES

The problem of the dark matter in galaxies remains perhaps the most important astro-
physical problem in contemporary cosmology and extragalactic astronomy. Although
its nature is still unknown, general opinion is that it exists and that it is a necessary
ingredient of every viable cosmological model (see recent overview of the dark matter
problem in galaxies in Binney (2003): in that paper the problems of the cold dark
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matter (CDM) and Modified Newtonian Dynamics (MOND) theory are presented).1

In the summer of 2006 the news based on the recent work by D. Clowe and collabo-
rators (Clowe et al. 2006) was highly publicised and drew attention not only in the
field of researchers working on the dark matter problem. From their observations of
a cluster merger 1E0657-558 (at redshift z = 0.296) using gravitational lensing maps
they came to the conclusion that the majority of the matter in the system is unseen
(dark). Work by Clowe et al. shows that the total mass of the system “cannot be
explained with an alternation of the gravitational force law”. We need to stress here
that this discovery is related to clusters of galaxies, whereas in this book we deal
with individual (field) galaxies, galaxies is groups and galaxies in a particular Fornax
cluster of galaxies.

The existence of the dark matter in spiral galaxies (late-type galaxies), like our own,
Milky Way is rather clear mainly because of existence of cool gas which provides a
powerful tool for obtaining rotation curves (that provide dependence of circular speed
on radius from the center of the galaxy), that are, for most spirals, nearly flat thus
indicating presence of dark mass in their outer parts – dark haloes (see, e.g., Binney
and Tremaine 1987, Persic, Salucci and Stel 1996, Sofue and Rubin 2001, Bahcall
et al. 2004). There are problems in the determination of its shape, but observations
tend to conclude that the dark halo is flattened (see, e.g., Samurović, Ćirković and
Milošević-Zdjelar 1999).

However, the problem of dark matter in elliptical (early-type) galaxies is more
complicated – it is more difficult to confirm the presence of dark haloes around el-
lipticals. Since elliptical galaxies contain little or no cool gas usually one cannot use
21-cm observations to trace kinematics of neutral hydrogen out to large radii, as is
possible in the case of spirals. The support against gravitational collapse in ellipticals
comes from essentially random motions rather than ordered rotation. In an attempt
to check whether ellipticals have dark haloes one can use stellar kinematics, but since
their outer parts are very faint, it is usually difficult to obtain spectra to constrain
kinematics at large radii. An additional problem is related to the fact that one does
not a priori know anything about the orbits of stars in ellipticals. Current investi-
gations lead to the conclusion that there is less unambiguous evidence for the dark
matter in ellipticals than in the case of spirals. Moreover, there are hints that in
ellipticals the dark matter is not needed at all or, more precisely, not needed in some
early-type galaxies, out to a given observed distance from the galactic center.

Recent reviews on the dark matter problem in elliptical galaxies can be found
for example in Danziger (1997), Binney and Merrifield (1998) and Bertin (2000).
We here briefly present different approaches that can be used in order to determine
the presence of the dark haloes around early-type galaxies. As in Danziger (1997)
we split the different methodological approaches in three large groups that are then
subdivided: gas, test particles and lensing methods.

1In this book all the calculations were done in the framework of the classical Newtonian dynamics
– no attempts were made to perform calculations within alternative theories (e.g. MOND theory of
Milgrom 1983).
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(a) GAS The gas in the early type-galaxies can be found in the X-ray haloes,
this is a hot gas with temperature T ∼ 107 K. Studies of X-ray haloes strongly sug-
gest the existence of dark matter out to large distances from the center (review in
Mathews and Brighenti 2003a). We refer the reader to Chapter 3 where we present
relevant calculations and apply them to the galaxies from our samples that possess
X-ray haloes. Here we note that the present observational situation is interesting:
for example, Sivakoff et al. (2004) used the X-ray observations by Chandra and
assuming hydrostatic equilibrium found that for the X-ray bright galaxy NGC 1600
within ∼ 4Re dark matter does not dominate. But two very recent studies based on
the Chandra data by Humphrey et al. (2006) and Fukazawa et al. (2006) used the
same methodology (on different samples) on X-ray data to demonstrate the existence
of dark matter beyond ∼ 1Re. The gas can also be warm, with T ∼ 104 K. This is
ionized hydrogen that includes emission line gas and Hα + [NII] regions (e.g. Buson
et al. 1993, Zeilinger et al. 1996). Pizzella et al. (1997) analyzed the velocity fields of
ionized gas disks in four ellipticals and derived mass-to-light ratios as a function of
radial distance. Using triaxial mass distribution they found that M/L ratio changes
within individual galaxies, although there is no systematic increase with radius. The
mean value for the B–band that was found is ∼ 5M�/LB� out to one effective radius
(note that h0 = 0.5 was used in that study). This technique is limited to the inner
regions of galaxies. Cold gas has been detected in several early-type galaxies out to
large distances (≥ 10Re). Bertola et al. (1993) found that variation of mass-to-light
ratio in the B–band, M�/LB�

(in this book abbreviated to M/LB), in ellipticals is
similar to that of spiral galaxies. They showed that in spirals and ellipticals there
exists a radius where the density of the dark matter is equal to that of the visible
matter. Expressed in units of effective radius, Re, this distance is at 1.2 Re. Mor-
ganti et al. (1995) studied the example of elliptical galaxy NGC 5266 and found that
a disk of neutral hydrogen extends out to 10 Re. They discovered that there was an
increase of mass-to-light ratio in the B–band from a value of M/LB ∼ 2 − 3 in the
inner region to M/LB ∼ 12 at the most distant measured point at ∼ 9 Re. Thus
they concluded that there is a hint of a dark matter halo. Oosterloo et al. (2002)
studied five dust lane elliptical galaxies and found that in the case of NGC 3108 the
regular distribution and kinematics of the HI allowed them to derive the mass-to-light
ratio: they calculated the value of M/LB ∼ 18 at 6 Re. The recent result of radio
and optical observations of the same galaxy of Jozsa, Oosterloo and Morganti (2003)
suggests that the mass-to-light ratio out to 6Re is ∼ 15 M�/LV � (in the V –band,
corresponds to M/LB ∼ 22 in the B–band). They reached the conclusion that this
galaxy possesses a dark halo similar to that observed in spirals.

(b) TEST PARTICLES Planetary nebulae (PNe) are a very promising tool for
dark matter research because they are detectable even in moderately distant galaxies
through their strong emission lines. Hui, Freeman and Dopita (1995) found that
the mass-to-light ratio in the central region of a giant elliptical galaxy NGC 5128 is
∼ 3.9 and that out to ∼ 5 Re it increases to ∼ 10 (in the B–band), thus indicating
the existence of the dark halo. In an extension of this work, very recently, Peng,
Ford and Freeman (2003) presented their results of an imaging and spectroscopic
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survey for PNe in NGC 5128. They detected 1141 PNe, out of which they confirmed
780. They found that PNe exist at distances out to 80 kpc (∼ 15Re) making this
study the largest kinematic study of an elliptic galaxy to date, both in the number of
velocity tracers and in radial extent.2 They found that the dark matter is necessary to
explain the observed stellar kinematics, but their value of M/LB is much lower than
that expected from determinations that use X-ray haloes: within 80 kpc they found
the total dynamical mass ∼ 5×1011M� with M/LB ∼ 13. According to the paper of
Bahcall, Lubin and Dorman (1995), which is based on the compilation of the mass-to-
light ratios from the literature, at 80 kpc one should expect M/LB ∼ 112±28. It was
already found by Hui et al. (1995) that the dynamical mass that they measured within
25 kpc was systematically lower than that measured by Forman, Jones and Tucker
(1985) from Rosat data who calculated a total mass of 1.2× 1012M� within 20 kpc.
Also, van Gorkom et al. (1990) estimated the dynamical mass of NGC 5128 using HI
synthesis observations and found that it is much lower than that obtained using X-
ray halo: they found that the total mass is 2.5× 1011M�, and the mass within 1.2Re

is 1.2 × 1011M�. Thus, they found that there exists a constant mass-to-light ratio
(that is equal to 3.1) out to at least 8.7 kpc. An interesting example of usage of PNe
methodology in dark matter research is that of galaxy NGC 3379. Ciardullo, Jacoby
and Dejonghe (1993) used 29 PNe (out to 3.8 Re) to draw the conclusion that the
mass-to-light ratio M/LB ∼ 7 and that there is no need for the dark matter. Recently,
Romanowsky et al. (2003) observed PNe in three galaxies (NGC 821, NGC 3379 and
NGC 4494) and confirmed this conclusion for NGC 3379 using much larger sample of
109 PNe (out to ∼ 3.5 Re (if one takes into account a correct value of the effective
radius for NGC 3379 see Chapter 1 for details.) We analyzed this galaxy in some detail
using different available data (photometry, long-slit spectra, X-ray data) in Chapters
1 and 2 and we reached the same conclusions, although we stress that some doubts
still remain. Very recently, Sluis and Williams (2006) used the Rutgers Fabry–Pérot
in order to search for planetary nebulae in NGC 3379 and three other galaxies in
order to use the PNe as kinematic tracers of the galaxy potential. They detected 54
PNe in NGC 3379 and found that within ∼ 3Re the total mass-to-light ratio of this
galaxy in the B–band is ∼ 5, implying very low amount of dark matter in the given
region (∼ 130 arcsec).

Globular clusters (GCs) can also be used as tracers of dark matter in the early-
type galaxies: Mould et al. (1990) obtained optical multislit spectra of two giant
elliptical galaxies M49 and M87 from the Virgo cluster. They found that the velocity
dispersion profiles of the cluster systems were flat, thus suggesting the existence of
an isothermal halo of dark matter in these elliptical galaxies. Grillmair et al. (1994)
studied the radial velocities of 47 globular clusters in NGC 1399 in the Fornax cluster.
Under the assumption that the clusters were on purely circular orbits, they gave a
lower limit on a globally constant mass-to-light (M/L) ratio of 79±20 in the B–band.
Their result suggesting that M/L is several times larger than values of mass-to-light
ratio determined from the stellar component closer to the core implies that M/L
must increase substantially with radius. This galaxy has been analyzed in Chapters 2

2This galaxy will be the subject of Chapter 5 and some results based on both planetary nebulae
and globular clusters and X-rays for NGC 5128 are given in Samurović (2006).

7



SRDJAN SAMUROVIĆ

(using long-slit spectra) and Chapter 6 (using GCs) of this book. Briefly, in Samurović
and Danziger (2006) it is shown that — in spite of the observations that show that
the velocity dispersion decreases between 4 and 10 Re — there is evidence that dark
matter exists beyond ∼ 3Re (but does not dominate interior to this distance). Another
example is that of M49 (= NGC4472) studied by Côté et al. (2003) who showed
that the globular clusters radial velocities and density profiles provide “unmistakable
evidence” for a massive dark halo. Very recently, Pierce et al. (2006) have obtained
Gemini/GMOS spectra for 22 GCs associated with NGC 3379 and found that, in
contrast to the results of Romanowsky et al. (2003), their results suggest a constant
value of the velocity dispersion (out to ∼ 200 arcsec) which imply a normal-sized dark
matter halo. They do note, however, that due to possible anisotropies (see below) they
could not rigorously determine the dark halo mass. Another very recent example of an
early-type galaxy which was studied using GCs is that of NGC 4649 (M60): Bridges
et al. (2006) used Gemini/GMOS to obtain spectra of 38 confirmed GCs there. They
found that between ∼ 100 arcsec (∼ 1.5Re) and 260 arcsec (∼ 3.5Re) the velocity
dispersion remains constant indicating the existence of dark matter. They applied
different spherical, isotropic and axisymmetric, orbit-based dynamical models; the
value of the total mass-to-light ratio that they infer in the outer regions shows an
increase of factor of two with respect to the central one.

A large set of dark matter investigations in early-type galaxies is made of studies of
integrated stellar light. Since this is one of the main subjects of this book in subsequent
Chapters we will provide more details later. Here we present briefly the history
of observations and modelling procedures. Binney, Davies and Illingworth (1990)
in their seminal paper established a two-integral axisymmetric modelling based on
the photometric observations. They analyzed galaxies NGC 720, NGC 1052, and
NGC 4697 and modelled velocities and velocity dispersions out to ∼ 1 Re. van der
Marel et al. (1990) applied this approach to NGC 3379 (out to ∼ 1 Re), NGC 4261
(out to ∼ 1 Re), NGC 4278 (out to ∼ 1 Re) and NGC 4472 (out to 0.5 Re). Cinzano
and van der Marel (1994) modelled the galaxy NGC 2974 out to 0.5 Re introducing a
new method – modelling of the Gauss-Hermite moments (for definitions see Chapter 1)
defined previously in van der Marel and Franx (1993). All these modelling procedures
did not take into account dark matter, because they dealt with the regions in which
dark matter was not expected to make a significant contribution. In this case they
showed that this method can provide a hint on the embedded stellar disk. Bertin,
Saglia and Stiavelli (1992) and Saglia, Bertin and Stiavelli (1992) developed self-
consistent two-component models of ellipticals. They fitted the models to observed
photometric and kinematic profiles of individual galaxies and found that the amount
of dark matter within one effective radius is not too large (it is of similar order to the
luminous mass). In the case of NGC 4472 (under their physical assumptions) it was
found that dark matter must be present.

Saglia et al. (1993) presented a kinematical and line strength profiles of NGC 4472,
IC 4296 and NGC 7144 and from their dynamical modelling (quadratic programming)
concluded that there is a strong evidence for dark matter in these galaxies. Carollo et
al. (1995) observed and modelled a set of elliptical galaxies (NGC 2434, NGC 2663,
NGC 3706 and NGC 5018). They used two-integral modelling procedure to model
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the stellar line-of-sight velocity distribution (using velocity dispersion and Gauss-
Hermite h4 parameter) out to two effective radii. They concluded that the massive
dark matter haloes must be present in three of the four galaxies (they were analyzed
in this book using a three-integral modelling procedure), and in case of NGC 2663
there was no evidence of the dark matter. In 1997 Rix et al. used the Schwarzschild
(1979) method for construction of axisymmetric and triaxial models of galaxies in
equilibrium without explicit knowledge of the integrals of motion. They introduced
into the analysis velocity, velocity dispersion and Gauss-Hermite parameters h3 and
h4. They used the galaxy NGC 2434 (from Carollo et al. 1995) to perform a detailed
dynamical modelling in order to conclude that this galaxy contains a lot of dark
matter: they found that about half of the mass within one effective radius is dark.

Statler et al. (1996) studied stellar kinematical fields of the post-merger elliptical
galaxy NGC 1700 out to four effective radii. In a subsequent paper Statler et al. (1999)
found, using two-integral axisymmetric models as well as three-integral quadratic pro-
gramming models that NGC 1700 must have a radially increasing mass-to-light ratio,
and that NGC 1700 “appears to represent the strongest stellar dynamical evidence
to date for dark halos in elliptical galaxies”. Statler and McNamara (2002) observed
this galaxy in the X-ray domain, and using gas modelling estimated the gas tem-
perature to be ∼ 0.5 keV. Note, however, that these authors found that probably
the hypothesis of hydrostatic equilibrium is not applicable in this case, which would
therefore make the comparison between mass profiles based on the X-ray data and
stellar dynamics difficult. Saglia et al. (2000) modelled the galaxy NGC 1399 using
two-integral models (major photometric axis only) out to ∼ 2.5 Re. They marginally
detected the influence of the dark component that starts from 1.5 Re.

Kronawitter et al. (2000) modelled a large sample of 21 elliptical galaxies out to
1-2 Re: for three of them (NGC 2434, NGC 7507, NGC 7626) they found that models
based on luminous matter should be ruled out. De Bruyne et al. (2001) modelled
NGC 4649 and NGC 7097 using a three-integral quadratic programming method and
found that in the case of NGC 4649 a constant mass-to-light ratio (M/LV = 9.5)
fit can provide good agreement with the data and that a marginally better fit can
be obtained including 10% of dark matter at 1.2 Re. In the case of NGC 7097 both
kinematic and photometric data can be fitted out to 1.6 Re using a constant mass-to-
light ratio ∼ 7.2. Cretton et al. (2000) modelled the giant elliptical galaxy NGC 2320
using the Schwarzschild orbit superposition method and found that the models with
radially constant mass-to-light ratio and logarithmic models with dark matter provide
comparably good fits to the data and have similar dynamical structure (but note that
the mass-to-light in the V –band is rather large: ∼ 15 for the mass-follows-light models
and ∼ 17 for the logarithmic models).

The Schwarzschild method can be applied in modelling of the central parts of the
early-type galaxies; see for example, the paper by van der Marel et al. (1998) in which
M32 was analyzed, the Cretton and van der Bosch (1999) paper in which axisymmetric
models of NGC 4342 were presented, the Gebhardt et al. (2000) paper in which a black
hole in the center of NGC 3379 was modelled, the Gebhardt et al. (2003) paper with
the sample of 12 ellipticals that were analyzed using axisymmetric approach. Finally,
we mention the paper of Cappellari et al. (2002) that modelled in detail, using the
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Schwarzschild formalism, internal parts of one early-type galaxy that is also a subject
of this book, IC 1459.

A new promising avenue in studies of integrated light from the early-type galaxies
is usage of new integral field spectrographs (like SAURON, cf. Bacon et al. 2001,
de Zeeuw et al. 2002) that should provide information on line-of-sight velocity distri-
bution and spectral indices in two dimensions improving the limitations of long-slit
spectroscopy that is limited by time to few position angles. Unfortunately, this tech-
nique is at the moment limited to the interior parts of the galaxies (out to ∼ 1 Re,
Emsellem, 2002, priv. communication). Therefore, long-slit spectroscopy with its long
exposures still remains a necessary tool in dark matter studies. Recently, on the the-
oretical grounds, Mamon and  Lokas (2005) found that the stellar component should
dominate the dark matter component out to at least 1 Re.

There are numerous studies of early-type dwarf galaxies in the Local Group that
investigate the internal dynamics of dwarf ellipsoidal galaxies. A successful fit to the
data is obtained when one assumes that they are embedded in a dark halo with mass
of ∼ 107 M�, and a luminous mass component with a mass-to-light ratio in V –band
M/LV = 2.5 (see, e.g. Mateo 1998).

A serious problem with the determination of the mass in the early–type galaxies is
related to the fact that one does not a priori know anything about the orbits of stars in
ellipticals which leads to a well known mass–anisotropy degeneracy (see Tonry 1983,
see also Binney and Merrifield 1998, Chap 11.2).

(c) LENSING METHODS In this group of methods, we include weak gravita-
tional lensing that enables determination of the dependence of the velocity dispersion
on the luminosity of the lensing galaxies and is suitable for studies of the dark matter
in outer part of galaxies. It was found that a Navarro-Frenk-White (NFW) profile
provides a good fit to the data (Kleinheinrich et al. 2003). Strong gravitational lenses
can also be used for probing of the galaxy haloes, but only in the inner regions of
galaxies (few tens of kiloparsecs) (see, for example, Prada et al. 2003). we also men-
tion the Lenses Structure and Dynamics (LSD) Survey that gathers kinematic data
for distant (up to z ∼ 1) early-type galaxies that are gravitational lenses (review in
Treu et al. 2004). The results of this survey suggest that extended dark matter haloes
are detected in the early-type galaxies and that the dark matter contributes 50-75%
to the total mass within the Einstein radius (cases of the lens galaxies MG2016+112
in Treu and Koopmans (2002) and 0047-281 in Koopmans and Treu 2003).

I.3. THE AIM OF THIS BOOK

This book is dedicated to the detailed study of the kinematics of the early-type
galaxies that is extracted from the integrated spectra of their stars and from the
observations of different mass tracers (such as PNe and GCs). Since the existence of
dark matter in the early-type galaxies can be established only in a study that takes
into account all available observational data, the observational data that we had were
then used in combination with the photometry data and the X-ray data in cases
where galaxies possess X-ray haloes. A substantial part of the book is devoted to

10



INTRODUCTION

the construction of realistic dynamical models of the early-type galaxies: a publicly
available code for two-integral modelling (van der Marel 2006) was used and we built
our own package for three-integral dynamical modelling (based on the Schwarzschild
(1979) method and Rix et al. (1997) paper) that we describe in detail. A reduction
of long-slit spectra of all of the galaxies that we had at our disposal (except for
three galaxies from Carollo et al. (1995) sample for which we took the data from
the literature) was made. Some photometric data from the literature was also used.
Comparison of our results with the results of other aforementioned techniques in cases
where such data existed revealed both agreement and discrepancies. Finally, in an
attempt at making a link between the dynamics and chemical evolution we calculated
abundance indices and compared them with the up-to-date chemical evolution models
(Matteucci 2001, Pipino and Matteucci 2003).
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Chapter 1

THEORETICAL CONCEPTS,

OBSERVATIONS AND REDUCTION

1.1. STELLAR KINEMATICS: THEORETICAL APPROACH

Stars are moving in a given galaxy under the influence of a gravitational potential
Φ(x, t). If one wants to give a full description of the state of a collisionless system
such as galaxy at any time t, one can use the number of stars f(x,v, t) d3x d3v
that have positions in the small volume d3x that is centered on x and have velocities
in the small range d3v that is centered on v. The function f(x,v, t) is called the
distribution function (or phase-space density) of the system. This is obviously a
non-negative function: f ≥ 0.

In the case of all external galaxies, one cannot obtain data necessary for the recon-
struction of the distribution function directly: one can observe line-of-sight velocities
and angular coordinates. Since individual stars cannot be resolved, one has to deal
with integrated stellar light that represents the average of the stellar properties of
numerous unresolved stars that lie along each line of sight (LOS). Each star will have
a slightly different LOS velocity, and therefore its spectral features will be shifted by
a different amount: ∆u = c∆λ/λ = vLOS. The final galaxy spectrum will be shifted
and broadened, as shown in Fig. (1.1), for the galaxy IC 3370.

The first step in the analysis of the shifts and broadenings is to define the line of
sight velocity distribution (LOSVD, also called velocity profile, VP): this is a function
F (vLOS) that defines the fraction of the stars that contribute to the spectrum that
have LOS velocities between vLOS and vLOS + dvLOS and is given as F (vLOS)dvLOS.
Now, if one assumes that all stars have identical spectra S(u) (where u is the spectral
velocity in the galaxy’s spectrum), then the intensity that is received from a star with
LOS velocity vLOS is S(u − vLOS). When one sums over all stars one gets:

G(u) ∝
∫

dvLOSF (vLOS)S(u − vLOS). (1.1)

This relation represents the starting point for a study of stellar kinematics in ex-
ternal galaxies (cf. Binney and Merrifield 1998, hereafter BM98). The observer gets
G(u) for a LOS through a galaxy by obtaining its spectrum. If the galaxy is made of
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Figure 1.1: Reduced central spectrum of the galaxy IC 3370 (above) and template star

(below). Spectra have been wavelength calibrated: x axis is in Angstroems. Note the effects

of velocity dispersion and redshift in the case of the galaxy; y axis is in arbitrary units.

certain type of stars, one can estimate S(u) using a spectrum of a star from the Milky
Way galaxy (see Fig. (1.1), lower part).

The solution of Eq. (1.1) seems rather simple. It would be enough to take its
Fourier transform:

F̃ (k) ∝ G̃(k)

S̃(k)
(1.2)

where quantities with tilde sign are the Fourier transforms of the original functions.

This is however a very difficult task, since G̃(k)

S̃(k)
will be plagued by large errors that

vary from point to point and the simple derivation of F (vLOS) will not be easy (for
details, see BM98). Therefore, less direct methods have been invented to solve this
problem.

First we can define the simplest properties of a LOSVD. Its mean value is given as:

v̄LOS =

∫

dvLOSvLOSF (vLOS). (1.3)

Its dispersion is given as:

σ2
LOS =

∫

dvLOS(vLOS − v̄LOS)2F (vLOS). (1.4)

One possible solution is to assume that the LOSVD has the Gaussian form. Sargent
et al. (1977) invented the method known as Fourier Quotient Method, that has a

problem of large errors for the ratio G̃(k)

S̃(k)
that vary from point to point. The cross-

correlation method based on the calculation of the cross-correlation function between
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the galaxy and the stellar spectra was pioneered by Simkin (1974) and developed
further by Tonry and Davis (1979) and Statler (1995).

The LOSVD can be modelled as truncated Gauss-Hermite (FTGH) series that con-
sists of a Gaussian that is multiplied by a polynomial (van der Marel and Franx 1993,
also Gerhard 1993):

FTGH(vLOS) = Γ
α(w)

σ
exp(−1

2
w2)

[

1 +

n
∑

k=3

hkHk(w)

]

(1.5)

here Γ represents the line strength, w ≡ (vLOS − v̄)/σ, α ≡ 1√
2π

exp(−w2/2), where

v̄ and σ are free parameters. hk are constant coefficients and Hk(w) is a Gauss-
Hermite function, that is a polynomial of order k. We will truncate the series at
k = 4 (although higher values are also possible), for which the polynomials are:

H0(w) = 1,

H1(w) =
√

w,

H2(w) =
1√
2

(2w2 − 1), (1.6)

H3(w) =
1√
6

(2
√

2w3 − 3
√

2w),

and

H4(w) =
1√
24

(4w4 − 12w2 + 3).

It can be shown (van der Marel and Franx 1993) that Hl(w) (in this case, l = 0, . . . , 4)
are orthogonal with respect to the weight function α2(w).

Now the LOSVD can be calculated by varying the values of v̄, σ, h3 and h4 un-
til the convolution of the function FTGH(vLOS) with a template star spectrum best
reproduces the observed galaxy spectrum. The optimal fit is then reached using a
non-linear least-squares fitting algorithm. If the form of the LOSVD is close to the
Gaussian form, then v̄ and σ will be approximately equal to v̄LOS and σLOS. Pa-
rameters h3 and h4 are important because they measure asymmetric and symmetric
departures from the Gaussian respectively. If one detects a positive (negative) value
of the h3 parameter that would mean that the distribution is skewed towards higher
(lower) velocities with respect to the systemic velocity. On the other hand, if one
detects h4 > 0 this means that the distribution is more peaked than the Gaussian at
small velocities with more extended high-velocity tails; for h4 < 0 the distribution is
more flat-topped than the Gaussian. In the study of the dark matter in the early type
galaxies the value of the h4 parameter plays a crucial role because it is constraining
the level of tangential anisotropy which is extremely important since it is well known
that the excess of tangential motions can mimic the existence of the dark matter
haloes in these galaxies (Gerhard 1993, Danziger 1997). The influence of changes in
their values on the form of the LOSVD is given in Fig. (1.2).
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Figure 1.2: Plots demonstrating various combinations of h3 and h4 on the shape of the

function FTGH(w). Pure Gaussian is in the center (both h3 and h4 are equal to zero). h3

parametrizes the skewness of the line profile, while h4 measures whether the profile is more

or less peaked than a Gaussian. Units of the variable w are arbitrary.
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For the extraction of the stellar kinematics we used van der Marel’s freely available
”Gauss-Hermite Fourier Fitting Software”. Since this package was written for the
Sun FORTRAN compiler for the Sun UNIX platform, initial testing was done using
Sun Sparc (Sun-Blade-100) platform. Later, it was modified and ported to the x86
GNU/Linux PC platform that uses a GNU FORTRAN compiler. Detailed tests were
done, and it was found that the results obtained in two different environments were
in the excellent agreement. All the results presented in this book were obtained in the
GNU/Linux environment. The results from this Chapter regarding galaxies IC 1459,
IC 3370, NGC 3379 and NGC 4105 are presented in the paper by Samurović and
Danziger (2005).

1.2. OBSERVATIONS

1.2.1. GENERAL REMARKS

We have used different long-slit data obtained from different sources that will be called
Samples hereafter. They are:

Sample 1. Observations obtained courtesy of J. Danziger (ESO NTT was used)
which include spectra of IC 1459 and IC 3370.

Sample 2. Observations obtained courtesy of A. Graham and S. Zaggia (Double
Beam Spectrograph attached to the Australian National University 2.3 m telescope
at Siding Springs Observatory was used) which include the spectra of the following
galaxies: NGC 1336, NGC 1339, NGC 1373, NGC 1374, NGC 1379, NGC 1399,
NGC 1404 and NGC 1419 (from Fornax cluster – see Graham et al. (1998)).

Sample 3. Observations obtained courtesy of M. Carollo and K. Freeman (again
Double Beam Spectrograph attached to the Australian National University 2.3
m telescope at Siding Springs Observatory was used) which include the galaxy
NGC 3379. Galaxy NGC 4105 was observed using ESO 2.2 m telescope with
EFOSC.

Details of the instrumental setup will be given in detail when each sample will be
analyzed. Here we present the details of the reduction procedures that are common
for all the observations. Note that in this book we will also deal with Sample 4
which includes three galaxies taken from the literature: NGC 2434, NGC 3706 and
NGC 5018 (Carollo et al. 1995). For all galaxies for which we had the observational
data we extracted stellar kinematic parameters (velocity, velocity dispersion, h3 and
h4 parameters) and spectral indices.

All the reduction procedures of the long-slit spectra were done using the ESO MIDAS

package3. All the standard MIDAS commands and the commands from the context
long were used, and where necessary small routines were written using MIDAS com-
mand language, MCL. First, we combined the spectra taken under the same conditions

3MIDAS is developed and maintained by the European Southern Observatory
(http://www.eso.org/esomidas/).
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using COMBINE/LONG command. This was a very efficient way to remove the cosmic
particle hits from the raw data. The bias, that is composed of a DC offset that
is noiseless, and a noise component generated by the process of CCD readout, was
subtracted: we have made a combined bias frame out of all available bias frames. A
correction for the dark current was not made. For flat-fielding which performs the cor-
rections for variations in pixel sensitivity across the CCD array, we combined available
flat-field frames into a single flat-field frame which was normalized to unity. Frames
of interest (galaxy’s and stellar) were then divided by this single frame. For the pur-
pose of the wavelength calibration we used spectra of different lamps (for example
Helium-Argon) which were available for each observation. Interactive identification
of lines was done using MIDAS commands that were embedded in a small MCL script:
typical RMS uncertainty was ∼ 0.03 Å. Sky subtraction was of a crucial importance
because the outer parts of the galaxies are very faint, and sky removal had to be done
very carefully. The command SKYFIT/LONG was used taking an average of ∼ 30 rows
near the edges of the exposure frames. For the extraction of the kinematical param-
eters of the galaxies rebinning into a logarithmic scale was done using simple MIDAS

commands. Finally, the frames were trimmed by removing the rows and columns near
the edges of the frames. In some cases we will present comparisons of our extracted
kinematical parameters with those taken from literature (see below). The agreement
is typically very good.

We used IRAF4 for extraction of photometric profiles and for conversion of the
MIDAS format into the IRAF format required by the Fourier Fitting package.

1.2.2. SAMPLE 1

IC 3370

GENERAL INFORMATION

IC 3370 is a bright galaxy, classified as E2-E3 (elliptical) galaxy, absolute blue mag-
nitude −21.4, heliocentric radial velocity 2930 ± 24 km s−1 (taken from the LEDA
database). It covers 2.9×2.3 arcmin on the sky (RC3). However, it is a rather unusual
elliptical galaxy and according to Jarvis (1987, hereafter referred to as J87) it should
be classified as S0pec (see below). One arcsec in the galaxy corresponds to ∼ 203.02
pc. The effective radius is 35′′ (=7.10 kpc).

PHOTOMETRIC OBSERVATIONS

We used frames kindly provided by O. Hainaut using ESO NTT and EMMI in the
RILD mode on July 3-4, 2002 in the B-band. The photometry of IC 3370 is very
interesting and it is given in detail in J87. We present here some additional elements
that are complementary to that study and are of importance for the analysis that we
are undertaking.

4IRAF is distributed by NOAO, which is operated by AURA Inc., under contract with the National
Science Foundation (http://iraf.noao.edu).
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Figure 1.3: Photometric profiles for IC 3370 (in the B-band). From top to bottom: el-

lipticity, surface brightness for the B filter in mag arcsec−2 (for major axis: full circles; for

minor axis: open circles), a4 parameter and position angle.
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LONG-SLIT SPECTRA
One should note that J87 took for the major axis the position angle (PA) of 40◦,

Carollo, Danziger and Buson (1993) took for the same axis P.A. of 51◦, while the
spectra in this study were taken using P.A. = 60◦. The reason for these differences
lies in a very particular photometry of this galaxy that has strong isophotal twisting as
shown in J87 and in Fig. (1.3) (see position angle (P.A.) plot). This may be evidence
for the fact that this galaxy is triaxial, because the isophotes of an axisymmetric
system must always be aligned with one another (see, for example, BM98). Fasano
and Bonoli (1989) using a sample of 43 isolated ellipticals found that the twisting
observed in these galaxies is intrinsic (triaxiality). Jarvis has taken the mean position
angle of isophotes to be equal to 40±2◦ which is true for the data up to 80′′. However,
at larger radii the PA tends to increase, so the usage of larger value of 60◦ (and 150◦

for the minor axis) is justified (see Fig. (1.3)).

In Fig. (1.3) we present relevant photometric data obtained using IRAF task ellipse:
ellipticity, magnitude in the B-band for major axis (filled circles) and minor axis (open
circles), a4 parameter (fourth harmonic deviations from ellipse) and the position an-
gles, as a function of distance. The value of a4 is positive up to one effective radius
(for almost all values of radius), thus indicating that the isophotes are disky, while
beyond one effective radius, the isophotes become boxy since a4 is negative. Since a4

increases rapidly up to ∼ 5′′ this can lead to the conclusion of the embedded disk.
The existence of the stellar disk was shown in J87. The photometric data in the case
of IC 3370, as well as in case of other galaxies that we present here, will be neces-
sary for the dynamical modelling presented in the next Chapter. Long-slit spectra
observations provided by J. Danziger were taken during 1998 March 1-3, using ESO
NTT and EMMI in the Red Medium Spectroscopy mode. The central wavelength
was chosen to be near the Mg2 feature: ∼ 5150 Å with a range of ∼ 700 Å. Several
exposures were taken for three different position angles: for the galactic major axis
(P.A. = 60◦) total exposure of 21,600 s, for the minor axis (P.A. = 150◦) total ex-
posure of 7,200 s. Also, the spectra of the intermediate axis were taken (P.A.=20◦),
and the total exposure time was 14,400 s. The spectra were rebinned at the telescope
over 2 pixels giving a scale of 0.56 arcsec pixel−1. We did the standard data reduc-
tion procedures in ESO MIDAS, as described previously. Wavelength calibration was
done using the Helium-Argon comparison lamp spectra. Sky subtraction was done
by taking an average of 30 rows near the edges of the exposure frames. Finally the
spectra were rebinned on a logarithmic scale. Also, spectra of several template stars
were reduced as described above, continuum divided, and averaged over several rows
in order to obtain one stellar template spectrum of high signal-to-noise ratio (S/N).
In Fig. (1.1) we showed a central galactic spectrum and a template star spectrum (K0
III star HR2701). The instrumental dispersion was ∼ 3.5 Å (∼ 190 km s−1) and was
determined using a Helium-Argon spectrum in a region ∼ 5000 Å. This is important
for the conversion of the abundance indices to the Lick system discussed in Chapter 4.

In Fig. (1.4) we show the major axis kinematic parameters. This galaxy indeed
shows behaviour that is characteristic for an S0 galaxy: for example, its major axis
kinematics can be compared to that of NGC 1461, lenticular galaxy from the Fisher
(1997) sample. Note the usual behaviour of h3 parameter: when the velocity rises,

19



SRDJAN SAMUROVIĆ

h3 decreases, and vice versa. In Fig. (1.5) we present intermediate and minor axis
kinematic profiles: IC 3370 has minor axis rotation that provides an additional hint
(apart from the isophotal twist) of the triaxiality. Note the small values (consistent
with zero) of h3 and h4 at the large distances from the center for the major axis and
their generally small values in the two other cases – they provide evidence of the lack
of excessive tangential motions, that may mimic the dark matter in the outer parts
of the galaxy.

Figure 1.4: Kinematic profiles for the major axis of IC 3370 (P.A.= 60◦). From top to

bottom: velocity, velocity dispersion, h3 and h4 parameters. One effective radius is plotted

using dashed lines.
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Figure 1.5: Kinematic profiles for the intermediate (P.A.= 150◦, left) and minor (P.A.=
20◦, right) axes of IC 3370. From top to bottom: velocity, velocity dispersion, h3 and h4

parameters. One effective radius is plotted using dashed lines.

IC 1459

GENERAL INFORMATION

IC 1459 is a giant E3 elliptical galaxy. Its absolute blue magnitude is −20.52, helio-
centric radial velocity 1663 ± 74 km s−1 (taken from the LEDA database). It covers
5.2× 3.8 arcmin on the sky (RC3). One arcsec in the galaxy corresponds to ∼ 117.16
pc. The effective radius is 33′′ (=3.87 kpc). One of its most characteristic features is
a fast counterrotating stellar core (Franx and Illingworth 1988). It has other peculiar-
ities: twisted isophotes (Williams and Schwarzschild 1988), a dust lane and patches
near the nucleus (Sparks et al. 1986) and an ionized gaseous disk at the core that ro-
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Figure 1.6: Left: Photometric profiles for IC 1459 (in the V -band). From top to bottom:

ellipticity, surface brightness for the B filter (see text) in mag arcsec−2 (for major axis: full

circles; for minor axis: open circles), a4 parameter and position angle. Right: Comparison

of the kinematic profiles for the major axis of IC 1459 (P.A.= 40◦, black circles) and the

data taken from Cappellari et al. (2002) (P.A.= 39◦, open circles). From top to bottom:

velocity, velocity dispersion, h3 and h4 parameters.

tates along the major axis in the same direction as the majority of stars in the galaxy
– this is the opposite direction to that of the stellar core (Forbes et al. 1995). The
nucleus of IC 1459 has a strong (1Jy) compact radio source (Slee et al 1994). Recently,
Fabbiano et al. (2003) observed this galaxy with Chandra ACIS-S.

Verdoes Kleijn et al. (2000) analyzed kinematical observations of the nuclear gas
disk, and found a central black hole of mass MBH = (2 − 6) × 108M�. Cappel-
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lari et al. (2002) observed IC 1459 using several slit positions and constructed ax-
isymmetric three-integral models of this galaxy using the Schwarzschild orbit su-
perposition method. They found, using stellar and gas kinematics, that MBH =
(1.1 ± 0.3) × 109M�.

PHOTOMETRIC OBSERVATIONS

Photometric observations made by J. Danziger during 1997 August 28-30 using the
ESO NTT and EMMI in the Red Medium Spectroscopy mode in the V -band were
used. We present the results obtained using the aforementioned IRAF routine in
Fig. (1.6) where surface brightness was transformed to the B-band using relation
B−V = 0.99 taken from the LEDA database. The photometric profile was compared
with that of Franx and Illingworth (1988) and it was found that they were in good
agreement.

LONG-SLIT SPECTRA

Long-slit spectra observations provided by J. Danziger were done during the same
nights using the same telescope and setup as in the case of IC 3370. The central
wavelength was chosen to be near the Mg2 feature: ∼ 5150 Å. The range that was
covered was ∼ 700 Å. Several exposures were taken for two different position angles:
for the galactic major axis (P.A. = 40◦) total exposure of 35,100 s, and for the minor
axis (P.A. = 130◦) total exposure of 3,600 s. Because of the fact that only one
exposure was available for the minor axis, the removal of the cosmic ray hits was
not successful and we have taken the minor axis stellar kinematics from Cappellari
et al. (2002). We compared the results for the major axis and plot the comparison in
Fig. (1.6). Cappellari et al. (2002) used the Cerro Tololo Inter-American Observatory
(CTIO). The agreement is good, except for the velocity and h3 parameter near the
galactic center where some discrepancy exists. Note, however, that Cappellari et
al. (2002) used P.A.=39◦ and observations that we had were made at P.A.=40◦. In
the outer parts agreement is excellent for the whole velocity profile. The spectra were
rebinned at the telescope over 2 pixels giving a scale of 0.56 arcsec pixel −1. We made
standard reduction procedures in ESO MIDAS, as described previously. Wavelength
calibration was done using a Helium-Argon comparison lamp spectra. Finally the
spectra were rebinned on the logarithmic scale. Again, spectra of several template
stars were reduced as described above, continuum divided, and averaged over several
rows in order to obtain one stellar template spectrum of high signal-to-noise ratio
(S/N). This time the template star HR5852 was used. The instrumental dispersion
was ∼ 3.5 Å (∼ 190 km s−1) and was determined using Helium-Argon spectrum in a
region ∼ 5000 Å.

In Fig. (1.7) we show the major and minor axis kinematic parameters. Major axis
data show the rapid increase of velocity in the inner ∼ 3′′: velocity rises to ∼ 100
km s−1(note however a small asymmetry in our determination of velocity). Velocity
dispersion is large at the centre: ∼ 350 km s−1, and decreases rapidly to ∼ 240 km s−1

(at ∼ 40 ′′). There is a plateau in velocity dispersion between ∼ 20′′ and 30′′ after
which velocity dispersion decreases. The h3 parameter shows a typical behaviour,
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i.e. it rises (falls) when velocity rapidly increases (decreases). In the outer parts it
shows small departures from zero. The h4 parameter shows very small departures
from zero in the inner parts, and in the outer parts there is an increase of its value,
suggesting existence of the radial anisotropy. Minor axis data provide evidence of
small velocities, and larger central velocity dispersion (∼ 380 km s−1). Both h3 and
h4 parameters show very small departures from zero throughout the observed parts
of the galaxy.
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Figure 1.7: Stellar kinematics of IC 1459. Left: major axis data. Right: minor axis data

(taken from Cappellari et al. 2002). From top to bottom: velocity, velocity dispersion, h3

and h4 parameters. One effective radius in case of the major axis is plotted using dashed

line. Note that in case of the minor axis it is out of scale.
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1.2.3. SAMPLE 2

In this subsection we will describe the sample and present the stellar kinematic results
for the early-type galaxies in the Fornax cluster obtained courtesy from A. Graham
and S. Zaggia. These observations include 13 galaxies (major axes data) and rep-
resent a sample of 86% of Fornax galaxies brighter that BT = 15 mag. From the
observed galaxies we chose 8 galaxies for which we could extract the full velocity
profiles and whose spectra extend to the distances larger than one effective radius
(except for NGC 1336, see below). A detailed description of the observations is given
in Graham et al. (1998) (hereafter G98) and here we provide only some details that
will be of importance for the modelling procedures. In Table 1-1 we give the basic
observational data of Sample 2.

Table 1-1

Graham et al. (1998) sample

NOTE: Column (1): name; (2) and (3): coordinates (R.A. and Dec.); (4): morphological

type (according to Ferguson (1989)); (5): heliocentric radial velocity (from the LEDA

database); (6): total apparent blue magnitude; (7): effective radius in arcsecs; (8): ap-

proximate radial radial range of the kinematical data (in units of effective radius); (9):

blue surface brightness at 1 effective radius given in (mag/sq.arcsec.); (10): major axis

position angle; (11): total exposure time (in hours).

The spectra were obtained during two runs in November and December 1996. The
blue arm of the Double Beam Spectrograph was attached to the Australian National
University’s 2.3 m telescope at Siding Spring Observatory. The spatial scale on the
chip was 0.91 arcsec pixel−1. A spectrograph slit width of 2 arcsec on the sky with a
length greater than the spatial extent of the CCD was used. FWHM for the arc lines
of was found to be equal to 2.7 pixels or 1.50Å, giving a resolution of 86 km s−1 at 5200
Å. We did the whole reduction procedure (explained in section 1.2.3 of this Chapter).
The Neon-Argon lamp frames were used for the wavelength calibration. The spectra
of several template stars were reduced and used for the extraction of the full velocity
profiles. The template star HD4128 was used in extracting the stellar kinematics of
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the following galaxies: NGC 1336, NGC 1379, NGC 1374, NGC 1399 and NGC 1419.
The template star HD4188 was used in case of these galaxies: NGC 1339, NGC 1373
and NGC 1404. Note that in the presentation of the photometric data we used Caon
et al. (1994) data that give the cos4 parameter that represents the amplitude of the
residual cos4 coefficient (multiplied by 100) of the isophotal deviation from the best
fitting ellipse. In all the plots of this Sample, East (E) side is given with the positive
values of the radius (right hand side), and the west side (W) is given with the negative
values of the radius (left hand side).

NGC 1336 (Fig. (1.8))

One arcsec in this galaxy corresponds to ∼ 100 pc. The effective radius is 30′′ (=3.00
kpc). The velocity has a slow increase and does not reach large values (maximum
of 50 km s−1, with large error bars). Velocity dispersion profiles show a lack of
symmetry and have a decreasing trend (error bars are large, so this should be taken
with caution). G98 suggested the existence of a bar – note the large cos4 parameter
in the photometetric profile inside 10′′, and also the small positive values of h4 in this
region.

NGC 1339 (Fig. (1.9))

One arcsec in the galaxy corresponds to ∼ 93.95 pc and the effective radius is 15′′

(=1.41 kpc). The data for the rotation curve extend to ∼ 2Re and the velocity remains
constant. The velocity dispersion falls from the central value of ∼ 170 km s−1 to
∼ 100 km s−1 (at ∼ 1Re) and then begins to rise: at the last measured point σ ≈ 125
km s−1. The parameter h3 behaves as usual when the galaxy has such a rotation
curve: it rises when velocity rises, and declines when velocity declines. h4 shows signs
of an increase: only in the very internal part its value is consistent with zero.

NGC 1373 (Fig. (1.10))

One arcsec in the galaxy corresponds to ∼ 95.13 pc. The effective radius is 11′′ (=1.05
kpc). The rotation curve is rather symmetric and with a small degree of rotation.
On the contrary, the velocity dispersion shows clear signs of asymmetry. Also, there
is a trend of rising velocity dispersion values in the outer parts. From h3 and h4

it is difficult to draw conclusions. There is a hint that h4 has small positive values
throughout the observed regions of the galaxy.

NGC 1374 (Fig. (1.11))

One arcsec in the galaxy corresponds to ∼ 92.22 pc. The effective radius is 26′′ (=2.40
kpc). The rotation curve is another example of the steep increase of the velocity in
the inner parts (∼ 5′′). As noted by G98, although the overall velocity profile is
symmetric there are important departures from symmetry, which are also visible in
the velocity dispersion profiles: when the plateau of σ ∼ 150 km s−1 is reached at
∼ 10′′ the velocity dispersion changes behavior beyond one effective radius. h3 and
h4 profiles also show a lack of symmetry.
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NGC 1379 (Fig. (1.12))

One arcsec in the galaxy corresponds to ∼ 94.58 pc. The effective radius is 24′′

(=2.27 kpc). This galaxy has a slow rotation (the value of the maximum velocity:
∼ 40 km s−1). Velocity profiles show a lack of symmetry twice: first, near the central
region and, second, in the outer regions – on the E side velocity approaches zero, and
on the W side it tends to be constant ∼ 30−40 km s−1. The velocity dispersion does
not show a tendency to decline beyond one effective radius.

NGC 1399 (Fig. (1.13))

One arcsec in the galaxy corresponds to ∼ 100.19 pc. The effective radius is 42′′

(=4.21 kpc); note, however, that this value might be problematic: Caon et al. (1994)
calculated a value of 127′′(=12.72 kpc) by fitting their extended photometry. We
calculated the effective radius of 42 arcsec using the curve of growth. This is the
largest galaxy in the Fornax cluster and is positioned in the center of the cluster.
The rotation curve shows evidence for a kinematically distinct inner component. The
velocity reaches (at W side) at ∼ 20′′ a value of ∼ 30 km s−1 which then steadily
falls to zero (at ∼ 50′′). At the E side the velocity remains constant at ∼ 30 km s−1

(starting from 10′′). The velocity dispersion is very high at the center ∼ 320 km s−1

and quickly declines to ∼ 250 km s−1 (at 10′′) and then remains approximately flat.
The h3 parameter remains slightly positive throughout the whole observed galaxy.
The h4 parameter shows small departures from zero but which can be considered to
be consistent with zero throughout the whole observed galaxy.

NGC 1404 (Fig. (1.14))

One arcsec in the galaxy corresponds to ∼ 134.55 pc. The effective radius is 26′′

(=3.50 kpc). This galaxy shows a steep gradient of velocity: it rises to ∼ 100 km s−1

within 10′′. Note, however, that there is a flattening at the inner ∼ 2′′ (note the
different binning used in extracting stellar kinematics for this galaxy with respect to
the other galaxies in the Fornax cluster). The velocity remains constant beyond one
effective radius, v ∼ 80 km s−1 and the profile looks symmetric with respect to the
center. The velocity dispersion profiles are in general symmetric, too. There are two
local maxima at ±2′′ from the center. Beyond these two points the velocity dispersion
decreases at a nearly constant rate until it reaches a plateau at ∼ 12′′. Departures
from symmetry can be seen in the outer parts of the galaxy (∼ 3Re). In these outer
regions the velocity dispersion again becomes σ ∼ 200 km s−1. The h3 parameter
shows the usual behaviour for the case of the galaxy with rapidly increasing velocity
(see the note for NGC 1339) and is consistent with zero at large distances from the
center (∼ 3Re). h4 is slightly negative, but within the error bars it is consistent with
zero throughout the whole observed galaxy.
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NGC 1419 (Fig. (1.15))

One arcsec in the galaxy corresponds to ∼ 114.25 pc, and the effective radius is 9′′

(=1.03 kpc). As noted by G98 the velocity and dispersion profiles of this galaxy are
very similar to those of NGC 1336. The velocity is small and is almost consistent with
zero in the inner parts. The velocity dispersion is approximately constant (σ ∼ 100
km s−1) within the observed parts of this galaxy. Not much can be said about h3 and
h4: in the outer regions they appear to be consistent with zero.

1.2.4. SAMPLE 3

These are observations of early-type galaxies obtained courtesy of M. Carollo and K.
Freeman. The galaxy NGC 3379 was observed using the Double Beam Spectrograph
attached to the Australian National’s University 2.3 m telescope at Siding Springs
Observatory. The galaxy NGC 4105 was observed using ESO 2.2 m telescope with
EFOSC.

For NGC 3379 the long slit spectra of the major axis (P.A.=70◦) were taken on
March 13-14, 1997 and the total exposure time was 6,000 s. In both cases: (i) the scale
was 0.59 arcsec pixel −1, (ii) wavelength calibration was done using Neon-Argon lamp,
and (iii) the template star was cpd-43. The instrumental dispersion was ∼ 2 Å(∼ 100
km s−1) and was determined using a Neon-Argon spectrum in a region ∼ 5000 Å. For
NGC 3379 the surface brightness was taken from the paper of Capaccioli et al. (1990),
whereas ellipticity, a4 parameter and position angle as function of radius using images
from the ESO archive (I-band) were extracted using standard IRAF commands (see
Fig. (1.16)).

NGC 3379 (Fig. (1.16), Fig. (1.17))

NGC 3379 is a bright E0 galaxy (note however the ellipticity ε ≈ 0.15 in Fig. (1.16);
there are still some doubts whether this is a bona fide normal elliptical or a face-
on lenticular galaxy, cf. Gregg et al. 2004), with heliocentric radial velocity of 911
km s−1, and absolute B–magnitude −20.57. One arcsec in the galaxy corresponds to
∼ 63.12 pc. The effective radius is 55′′ (=3.46 kpc) (see Capaccioli et al. 1990). We
verified this value using the curve of growth.

Since we had only major axis (P.A.=70◦) data, we have taken data from Statler and
Smecker-Hane (1999) for the major and the minor axis (P.A.=340◦). We compared
the results for the inner region which we have in common for the major axis and found
that they are in an excellent agreement (see Fig. (1.16) (right)). The data that we
had extend out to ≈ 30 ′′, so in the modelling procedures (see next Chapter) we will
use Statler and Smecker-Hane (1999) measurements because their data extend to a
larger radius (80′′ that is ≈ 1.5 Re) and are also available for the minor axis.

This galaxy shows steep increase of velocity: it rises to ∼ 60 km s−1 in the inner
20′′. After a plateau between ∼ 20′′ and ∼ 60′′ the velocity shows a tendency to
decrease. The velocity dispersion peaks at ∼ 230 km s−1 and then decreases rapidly.
There is a plateau between ∼ 20′′ and ∼ 50′′. One can see that there is an obvious
asymmetry at ∼ 80′′. However, other observations show that there is a decreasing
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trend out to 6 Re (see next Chapter). The h3 parameter is small out to ∼ 50 ′′,
but shows departures from zero at ∼ 70′′. h4 remains small throughout the whole
observed galaxy, except in the outer parts for which there is a hint of departures from
zero, but since error bars are large, it is difficult to draw firm conclusions. Minor axis
data suggest that NGC 3379 does not show significant rotation on the minor axis.
The velocity dispersion profile is similar to that of the minor axis. The h3 and h4

parameters are small throughout the whole observed galaxy on the minor axis (see
Fig. (1.17)).

NGC 4105 (Fig. (1.18), Fig. (1.19))

GENERAL INFORMATION

NGC 4105 is an E galaxy, with heliocentric radial velocity of 1918 km s−1, and ab-
solute B–magnitude −20.72. One arcsec in the galaxy corresponds to ∼ 134.14 pc.
The effective radius is 35′′ (=4.69 kpc).

PHOTOMETRIC OBSERVATIONS

Photometric data were extracted from frames obtained courtesy of M. Carollo and K.
Freeman using standard IRAF routines (Fig. (1.18)). Note that the surface brightness
is given in the R-band .

LONG-SLIT SPECTRA

Long slit spectra were obtained on March 9-13, 1994 using ESO 2.2 m telescope with
EFOSC. The total exposure time for the major axis (P.A.=150◦) was 27,900 s. The
total exposure time for the minor axis (P.A.=60◦) was 14,400 s. The scale was 0.336
arcsec pixel −1. The wavelength calibration was done using Helium-Argon lamp. The
template star was HR5582. The instrumental dispersion was ∼ 4.2 Å(∼ 280 km s−1)
and was determined using Helium-Argon spectrum in a region ∼ 5000 Å.

On the major axis this galaxy shows a maximum value of the velocity ∼ 60 km s−1

(see Fig. (1.19), left). Note that there is a hint of a counterrotating stellar core in the
inner 3′′. In general, there is a lack of symmetry about the galaxy center. The central
value of the velocity dispersion is large: ∼ 320 km s−1. It declines in the inner ∼ 5′′

after which there is a tendency that to remain constant (out to ∼ 20 arcsec). h3 also
shows a hint of the effects of the counterrotating stellar core in the inner 3′′. At the
larger radii the value of h3 is consistent with zero. The h4 parameter remains small
(slightly negative, but consistent with zero) throughout the whole observed galaxy.
On the minor axis NGC 4105 shows rather complex behaviour and again a lack of
symmetry is evident (see (Fig. (1.19)). The velocity dispersion decreases from the
central value of ∼ 320 km s−1 to ∼ 200 km s−1. Not much can be said about h3 and
h4 parameters, except that they show asymmetries.

1.2.5. SAMPLE 4

In this sample we include three galaxies from Carollo et al. (1995) for which these
authors found an indication of existence of a dark halo: NGC 2434 (a galaxy studied
in detail also in Rix et al. 1997, see next Chapter), NGC 3706 and NGC 5018. The
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details concerning these galaxies are given in the above two papers for each galaxy.
Stellar kinematics for all galaxies are given in Carollo et al. (1995). Here, we give only
a brief overview and present kinematical data (see related Figures) which we obtained
in electronic form courtesy of M. Carollo.

NGC 2434 (Fig. (1.20))

This is E0-1 galaxy, with heliocentric radial velocity v = 1390 ± 27 km s−1 (taken
from the NED database). Total apparent corrected B–magnitude is 11.29 (taken from
the LEDA database). Details on photometry can be found in Carollo and Danziger
(1994a). One arcsec in the galaxy corresponds to ∼ 96.31 pc. The effective radius
is 24′′ (=2.31 kpc). This galaxy possesses a strong isophotal twisting in the inner
∼ 10′′. Isophotes are disky in the inner ∼ 3′′. The velocity does not reach large
values: at ∼ 2Re it is ∼ 30 km s−1. The velocity dispersion peaks at ∼ 260 km s−1,
and then declines rapidly. Note that from ∼ 15 ′′ outwards it remains constant. h3

parameters have small values throughout the observed galaxy. Note, however, that
the velocity data in combination with the h3 data may indicate the existence of the
counterrotating stellar core (a case similar to that of NGC 4105). Apart from small
positive values in the inner region, the h4 parameter is zero in the outer regions thus
providing (in combination with the flat velocity dispersion profile) a strong indication
of the existence of the dark halo (but see the modelling in the next Chapter).

NGC 3706 (Fig. (1.21))

This is an E galaxy (according to the LEDA database), with heliocentric radial
velocity 3215 ± 150 km s−1 (taken from the NED database). The total corrected
apparent B–magnitude is 12.32 (taken from the LEDA database). Details on pho-
tometry can be found in Carollo and Danziger (1994a). One arcsec in the galaxy
corresponds to ∼ 222.75 pc. The effective radius is 27′′ (=6.01 kpc). This galaxy
does not show strong isophotal twisting: the P.A. decreases slowly from ∼ 80◦ (at ∼
2′′) to ∼ 70◦(at ∼ 100′′). The rotation curve (and h3 behaviour) is very similar to
that of galaxies NGC 1339 and NGC 1404. The central velocity dispersion is rather
high: 340 km s−1 and declines rapidly in the inner ∼ 20′′. At ∼ 2Re it does show
a plateau (albeit only on one side – data on the opposite side are unfortunately un-
available). The h4 parameter has small positive values in the inner region and in the
outer regions small negative values (that deviate from zero).

NGC 5018 (Fig. (1.22))

This is an E-S0 galaxy (according to the LEDA database), with heliocentric radial
velocity 2897 km s−1. The total corrected apparent B–magnitude is 11.7 (all data
are from ESO Lauberts and Valentijn catalog, as quoted in Carollo and Danziger
(1994b). Details of photometry can be found in Carollo and Danziger (1994b). The
effective radius is 22′′ (=4.26 kpc) and one arcsec corresponds to 193.58 pc. The
galaxy does not show an isophotal twist. Note the asymmetry in velocity: maximum
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on one side ∼ 100 km s−1, and on the other side maximum ∼ 50 km s−1. The
velocity dispersion has a double peaked maximum values (at ∼ 240 km s−1). There
exists a decreasing trend in the velocity dispersion. The h3 parameter shows complex
variations (especially in the region where the velocity is negative). The h4 parameter
remains positive throughout the whole observed galaxy .

All the galaxies discussed so far will be modelled in the next Chapter.

0

0.1

0.2

0.3

0.4

0.5

26

24

22

20

18

-4

-2

0

2

4

0 10 20 30 40

-40

-20

0

20

40

radius (’’)

-100

-50

0

50

100

0

50

100

-0.2

0

0.2

-40 -20 0 20 40

-0.2

0

0.2

radius (’’)

Figure 1.8: Left: Photometric profiles of NGC 1336 in the B-band (taken from Caon

et al. 1994). From top to bottom: ellipticity, surface brightness (in mag/sq.arcsec.), cos4

parameter, position angle. Right: stellar kinematics of NGC 1336. From top to bottom:

velocity, velocity dispersion, h3 and h4 parameters. Dashed line indicates one effective

radius.
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Figure 1.9: Left: Photometric profiles of NGC 1339 in the B-band (taken from Caon

et al. 1994). From top to bottom: ellipticity, surface brightness (in mag/sq.arcsec.), cos4

parameter, position angle. Right: stellar kinematics of NGC 1339. From top to bottom:

velocity, velocity dispersion, h3 and h4 parameters. Dashed line indicates one effective

radius.
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Figure 1.10: Left: Photometric profiles of NGC 1373 in the B-band (taken from Caon

et al. 1994). From top to bottom: ellipticity, surface brightness (in mag/sq.arcsec.), cos4

parameter, position angle. Right: stellar kinematics of NGC 1373. From top to bottom:

velocity, velocity dispersion, h3 and h4 parameters. Dashed line indicates one effective
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Figure 1.11: Left: Photometric profiles of NGC 1374 in the B-band (taken from Caon

et al. 1994). From top to bottom: ellipticity, surface brightness (in mag/sq.arcsec.), cos4

parameter, position angle. Right: stellar kinematics of NGC 1374. From top to bottom:

velocity, velocity dispersion, h3 and h4 parameters. Dashed line indicates one effective

radius.

34



THEORETICAL CONCEPTS, OBSERVATIONS AND REDUCTION

0

0.05

0.1

0.15

0.2

28

26

24

22

20

18

-4

-2

0

2

4

0 20 40 60
-20

0

20

40

60

80

radius (’’)

-100

-50

0

50

100

0

50

100

150

-0.2

0

0.2

-50 0 50

-0.2

0

0.2

radius (’’)

Figure 1.12: Left: Photometric profiles of NGC 1379 in the B-band (taken from Caon

et al. 1994). From top to bottom: ellipticity, surface brightness (in mag/sq.arcsec.), cos4

parameter, position angle. Right: stellar kinematics of NGC 1379. From top to bottom:

velocity, velocity dispersion, h3 and h4 parameters. Dashed line indicates one effective
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Figure 1.13: Left: Photometric profiles of NGC 1399 in the B-band (taken from Caon

et al. 1994). From top to bottom: ellipticity, surface brightness (in mag/sq.arcsec.), cos4

parameter (note lack of data between 10′′ and 35′′), position angle. Right: stellar kinematics

of NGC 1399. From top to bottom: velocity, velocity dispersion, h3 and h4 parameters.

Dashed line indicates one effective radius.

36



THEORETICAL CONCEPTS, OBSERVATIONS AND REDUCTION

0

0.1

0.2

0.3

0.4

0.5

26

24

22

20

18

16

-4

-2

0

2

4

0 10 20 30 40 50
100

120

140

160

radius (’’)

-100

0

100

0

100

200

300

-0.2

0

0.2

-50 0 50

-0.2

0

0.2

radius (’’)

Figure 1.14: Left: Photometric profiles of NGC 1404 in the B-band (taken from Caon

et al. 1994). From top to bottom: ellipticity, surface brightness (in mag/sq.arcsec.), cos4

parameter, position angle. Right: stellar kinematics of NGC 1404. From top to bottom:

velocity, velocity dispersion, h3 and h4 parameters. Dashed line indicates one effective

radius.
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Figure 1.15: Left: Photometric profiles of NGC 1419 in the B-band (taken from Caon

et al. 1994). From top to bottom: ellipticity, surface brightness (in mag/sq.arcsec.), cos4

parameter, position angle. Right: stellar kinematics of NGC 1419. From top to bottom:

velocity, velocity dispersion, h3 and h4 parameters. Dashed line indicates one effective

radius.
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Figure 1.16: Left: Photometric profiles of NGC 3379 in the B-band. From top to bottom:

ellipticity, surface brightness from Capaccioli et al. (1990) (in mag/sq.arcsec.) for major

(black circles) and minor (open circles) axis, cos4 parameter, position angle. Right: Com-

parison of stellar kinematics of our extraction (black circles) and Statler and Smecker-Hane

(1999). From top to bottom: velocity, velocity dispersion, h3 and h4 parameters. Dashed

line indicates one effective radius.
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Figure 1.17: Stellar kinematics of NGC 3379 (taken from Statler and Smecker-Hane (1999))

for major (left) and minor (right) axis. From top to bottom: velocity, velocity dispersion,

h3 and h4 parameters. Dashed line indicates one effective radius.
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Figure 1.18: Photometric profiles of NGC 4105 in the R-band. From top to bottom:

ellipticity, surface brightness (in mag/sq.arcsec.), cos4 parameter, position angle. Note that

the effective radius is 35 arcsec and is therefore not shown.
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Figure 1.19: Stellar kinematics of NGC 4105 for major (left) and minor (right) axis. From

top to bottom: velocity, velocity dispersion, h3 and h4 parameters. Note that the effective

radius is 35 arcsec and is therefore not shown.
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Figure 1.20: Stellar kinematics of NGC 2434 for major axis. From top to bottom: velocity,

velocity dispersion, h3 and h4 parameters. Dashed line indicates one effective radius. Data

taken from Carollo et al. (1995).
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Figure 1.21: Stellar kinematics of NGC 3706 for major axis. From top to bottom: velocity,

velocity dispersion, h3 and h4 parameters. Dashed line indicates one effective radius. Data

taken from Carollo et al. (1995).
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Figure 1.22: Stellar kinematics of NGC 5018 for major axis. From top to bottom: velocity,

velocity dispersion, h3 and h4 parameters. Dashed line indicates one effective radius. Data

taken from Carollo et al. (1995).
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Chapter 2

DYNAMICAL MODELLING OF

ELLIPTICAL GALAXIES: TWO- AND

THREE-INTEGRAL APPROACHES

2.1. TWO-INTEGRAL MODELLING

2.1.1. THEORETICAL INTRODUCTION

DETAILED JEANS MODELLING

In this subsection we present the concept of the Jeans modelling which involves making
the predictions of the following kinematic quantities: velocity, velocity dispersion, h3

and h4 parameters. This kind of modelling will be applied to the galaxies for which
we have at least major and minor axis integrated stellar spectra: IC 3370 and IC 1459
(from Sample 1) and NGC 3379 and NGC 4105 (from Sample 3). All other galaxies
for which we have only major data kinematics (Samples 2 and 4) will be modelled
using simple Jeans modelling which includes modelling of the velocity dispersion only
(but taking account the h4 parameter). Note that the simple Jeans modelling will also
be applied in the case of Sample 3 for the sake of comparison with the detailed Jeans
and X-ray modelling (addressed in Chapter 3). Some preliminary results regarding
the observations and modelling of elliptical galaxies were given in Samurović (2003,
2005) and some results presented here were published in Samurović and Danziger
(2005).

For the two-integral (2I) modelling procedures we used the modelling technique
developed by Binney, Davies and Illingworth (1990, hereafter BDI), and subsequently
used by van der Marel, Binney and Davies (1990) and Cinzano and van der Marel
(1994). Only in Cinzano and van der Marel (1994) does the modelling include h3

and h4 parameters. Statler, Dejonghe and Smecker-Hane (1999) used the modified
version of this method to analyze mass distribution in NGC 1700. Here we briefly
present the assumptions and the modelling steps.

Two-integral modelling is the first step in understanding of the dynamics of the
elliptical galaxies, because in cases of small departures from triaxiality (which is far
more probable, and true in case of IC 3370 as has been shown previously), comparison
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of real systems with the models can provide useful insights. The assumptions of ax-
isymmetry and the fact that the velocity dispersion tensor is everywhere isotropic are
the starting points for the procedure that includes the following three steps (cf. BDI):
(i) inversion of the luminosity profiles and obtaining three-dimensional luminosity den-
sity that provides the mass density (under the assumption of constant mass-to-light
ratio); (ii) evaluation of the potential and derivation of the velocity dispersion and az-
imuthal streaming (under the assumptions that the form of the distribution function
is f(E, Lz), where E is the energy and Lz is the angular momentum of the individ-
ual star about the symmetry axis of the galaxy and that the velocity dispersion is
isotropic) and (iii) comparison of the projected kinematical quantities from the model
with the observed kinematic parameters; optionally, a disk, and/or a dark halo can
be included in the modelling procedure (see Fig. (2.1)).

The first step in the modelling procedure involves making a least-squares fit for a
flattened Jaffe model (Jaffe 1983, Eqs. (2) and (3)) or a flattened modified Hubble
model. The brightness distribution in the case of the modified Hubble profile is given
as (see Binney and Tremaine 1987, Eq. (2-39)):

I(R) =
2j0a

1 + (R/a)2
,

(where j0 is the central luminosity density and a is the core radius), and was used
in the 2I modelling procedures of the galaxies for which we have sufficient data:
photometry, and major and minor axis long-slit spectra. Because we were mainly
interested in the outer parts of galaxies we did not correct for the effects of seeing
that are of importance near the centres of galaxies. Six Lucy iterations were used to
get a fit of the surface brightness profile to the model. In cases when the disk was
taken into account, the surface brightness of the disk was subtracted assuming that
the disk is exponential.

For the evaluation of the dynamical quantities one assumes that the spheroid’s
mass density ρ(R, z) = Υsj(R, z) where Υs is some constant mass-to-light ratio, and
j(R, z) is a luminosity density along the line of sight. Here, it would be appropriate
to present an estimate of the typical mass-to-light ratio in elliptical galaxies. van der
Marel (1991) found in his sample of 37 bright ellipticals that the average mass-to-light
ratio in the B-band is: M/LB ≡ ΥB = (5.95±0.25)h50. He also found that the mass-
to-light ratio is correlated with the total luminosity: M/LB = 3.84h50(LB/L∗,B)0.35,
where L∗,B ≡ 3.3 × 1010h−2

50 L�. Note that in this book h0 = 0.70 was always used,
which means that h50 = 0.70/0.50 = 1.4. For the mass-to-light symbol we will use
both M/LB and ΥB .

The gravitational potential Φs generated by the spheroid is (see BDI):

Φs(R, z) =

5
∑

l=0

Φ̃l(R)P2l

(

z√
R2 + z2

)

, (2.1)

where Pk is the Legendre polynomial of order k. Six-point Gaussian evaluation is used
to solve the integrals on a logarithmic grid of r values (r, z, θ are the usual cylindrical
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coordinates):

ρ̃l(r) =

1
∫

0

ρ(r sin θ, r cos θ)P2l(cos θ)d(cos θ) (2.2)

and direct evaluation of the integrals for these r values:

Φ̃l(r) = −4πG





1

r2l+1

r
∫

0

ρl(s)s2l+2ds + r2l

∞
∫

0

ρl(s)
ds

s2l−1



 (2.3)

and a linear interpolation of Φ̃l versus log r.
If one includes the disk, it is assumed that its mass-to-light ratio is Υd. The disk

potential (cf. BDI and references therein) is given as:

Φd = −2πGΥdId(0)

Rd

∞
∫

0

J0(kR)e−kz

(R−2
d + k2)3/2

dk, (2.4)

where the integral on the right hand side is the Bessel integral. For z = 0 this integral
can be evaluated analytically. For z 6= 0, R 6= 0 this integral must be evaluated
numerically.

When one has the potential Φ = Φs +Φd and the luminosity density j, the velocity
dispersion σ in the meridional directions, under the assumptions of the distribution
function of the form f(E, Lz) is given by Satoh formula:

σ2(R, z) =
1

j(R, z)

∞
∫

z

jdΦ (2.5)

where the integral is along a line of constant R. The mean-square azimuthal speed
v2

φ is given as:

v2
φ = σ2 + R

∂Φ

∂R
+

R

j

∂(jσ2)

∂R
. (2.6)

Since we assume, for the moment, in this subsection, that the distribution function
is of the form f(E, Lz) the second radial velocity moment, v2

R ≡ σ2
R, and the second

vertical velocity moment, v2
z ≡ σ2

z are everywhere equal and vRvz = 0. The Jeans
equations are:

∂ρv2
z

∂z
+ ρ

∂Φ

∂z
= 0 (2.7)

∂ρv2
R

∂R
+ ρ

∂Φ

∂R
+

ρ

R
[v2

R − v2
φ] = 0. (2.8)

We solve them searching for unknowns v2
φ and σ2

R = σ2
z . Using a free parameter,

k, one can, as usual, assign a part of the second azimuthal velocity moment v2
φ to

streaming:

vφ = k
√

v2
φ − σ2

R. (2.9)

48



DYNAMICAL MODELLING OF ELLIPTICAL GALAXIES: TWO- AND THREE-INTEGRAL APPROACHES

Then we project the dynamical quantities on to the sky to get predictions.

Observations: Surface Brightness
& VPs

Luminosity profile - 3D
Luminosity density

Potential - density
Mass model

Option: Add
dark

component

Mass density - const
M/L ratio is assumed

Projected kinematical
quantities are compared

with the VPs

Figure 2.1: Flowchart of the detailed Jeans modelling (two-integral modelling procedure).

VP stands for velocity profile.

SIMPLE JEANS MODELLING

In this part we will briefly describe the procedure which we call simple Jeans modelling
because it involves modelling of the velocity dispersion only. Some of the details will
be repeated in Chapters 3 and 5 when we use the Jeans equations for the modelling
based on the X-rays and planetary nebulae and globular clusters, respectively.

We solve the Jeans equation which provides the connection between the velocity
dispersion, anisotropy and the dynamical mass distribution (Binney and Tremaine
1987):

1

`∗

d(`∗σ2
r)

dr
+

2β∗σ2
r

r
= −GM(r)

r2
+

v2
rot

r
(2.10)

where σr is the radial stellar velocity dispersion, `∗ is the stellar luminosity density
which corresponds to the radial (σr) and transverse (σt) stellar velocity dispersions.
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Here, vrot is the rotational speed. A parameter β∗ is introduced to describe the
nonspherical nature of the stellar velocity dispersion:

β∗ = 1 − v2
θ/σ2

r , (2.11)

where v2
θ = vθ

2 + σ2
θ . For 0 < β∗ < 1 the orbits are predominantly radial, in this

case the line of sight velocity profile is more strongly peaked than a Gaussian profile
(positive h4 parameter), and for −∞ ≤ β∗ < 0 the orbits are mostly tangential, so the
profile is more flat-topped than a Gaussian (negative h4 parameter) (Gerhard 1993).
In all the cases calculated below we always assumed isotropy, i.e., the value β = 0
was imposed.

For the stellar luminosity density we adopted the Hernquist (1990) profile:

`∗ =
L

2π

a

r

(

1

r + a

)3

(2.12)

where Re = 1.8153a. The projected line-of-sight velocity dispersion is calculated as
(e.g. Binney and Mamon 1982, Mathews and Brighenti 2003a,b):

σ2(R) =

∫ rt

R
σ2

r(r)
[

1 − (R/r)2β∗
]

× `∗(r)(r2 − R2)−1/2 rdr
∫ rt

R
`∗(r)(r2 − R2)−1/2 rdr

(2.13)

where the truncation radius, rt, extends to a large distance: for the galaxies analyzed
below it was well beyond the last observed point.

To calculate the total mass interior to a given radius r one can use the photometry
of a given galaxy and use the simple formula (in this case for the B-band, see Binney
and Merrifield 1998) to calculate the total luminous mass of the galaxy:

ΥB = 10−0.4(MB−M�B) Mtot

M�
, (2.14)

where MB is the absolute magnitude of a given galaxy in the B-band and M�B is the
absolute magnitude of the Sun in the B-band (M�B = +5.48). The total luminous
mass is given with Mtot, and the mass of the Sun is given with M�. The mass M′

tot

given in Table 2-1 below provides the total mass of the given galaxy divided by
the given constant mass-to-light ratio: M′

tot = Mtot

ΥB
. For example, for the galaxy

NGC 1336 we have M′
tot = 3.2× 109M� which means that for ΥB = 7 its total mass

will be Mtot = 2.24 × 1010M�.
Now one can write the cumulative mass of a given galaxy interior to a given radius

r for the Hernquist (1990) profile:

M(r) = Mtot
(r/Re)2

(r/Re + k′)2
(2.15)

where Re is effective radius and k′ ' 0.5509 (see for example Napolitano et al. 2005
where this parametrization was used; k′ ' 0.5509 ≡ a/Re = 1/1.8153). Note that we
write k′ to avoid confusion between this quantity and the one defined in Eq. (2.9).
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This mass, M(r) is then inserted in the Jeans equation Eq. (2.10) and the velocity
dispersion is calculated for a given value of the constant mass-to-light ratio.

This kind of modelling will be applied (using the assumptions given above) to the
galaxies for which we had only the major axis kinematics data (Samples 2 and 4) and
also to Sample 3 for the sake of comparison with the detailed Jeans modelling and
X-ray modelling.

2.1.2. MODELLING RESULTS

DETAILED JEANS MODELLING

Using the two-integral axisymmetric modelling procedure we analyzed four galax-
ies for which we had sufficiently good major and minor axis stellar kinematics and
photometry. We assume symmetry about the y-axis and therefore we folded all the
observational data taking into account that velocity and h3 are odd functions of the
radius, and that velocity dispersion and h4 are even functions of the radius. In all
the following calculations the Hubble parameter h = 0.70 has been assumed. All the
inferred mass-to-light ratios are given in the B-band.

Sample 1

Both of the galaxies belonging to Sample 1 will be modelled using detailed Jeans
modelling.

IC 3370

As might be expected the axisymmetric modelling of IC 3370 did not give a good fit
to the observed data given the strong isophotal twisting present in this galaxy. We
used the inclination angle of 50◦ that gave the best (but far from perfect) results.
This inclination angle implies intrinsic axis ratio of ∼ 0.7. In Fig. (2.2) and Fig. (2.3)
we present our modelling results for major, minor and intermediate axis.

Major axis (Fig. (2.2, panel (a)): for the major axis k = 0.6 (dotted lines) gives a
good fit in the inner regions (∼ 25 arcsec) for the velocity. A good fit is obtained in the
outer regions (> 50 arcsec) for the velocity dispersion. On the contrary, k = 1 provides
a good fit for the velocity in the outer region (> 1Re); the velocity dispersion seems
to be fitted well throughout the whole galaxy with k = 1. We experimented with
the inclusion of the inner embedded disc of 6 arcsec, but this does not change much
the results. The decrease of the velocity dispersion follows very closely the constant
mass-to-light prediction (out to ∼ 3Re). Both h3 and h4 are fitted reasonably in all
the given cases. The mass-to-light ratio found in all the cases at ∼ 3Re is ∼ 5.4.
Since in this case, for the major axis, both the h3 and h4 parameters are consistent
with zero we did not apply the correction of the velocity and velocity dispersion as
we did in the case of IC 1459 (see below).

Minor axis (Fig. (2.2, panel (b)): because of the fact that the axisymmetric mod-
elling predicts zero velocity for the minor axis, a successful fit could not be achieved
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(the same is true for the h3 parameter). Modelling of the velocity dispersion therefore
provided a possibility for several interesting tests. One can see that k = 0.6 (dotted
line, M/LB = 4.80, no dark matter, no embedded disc) cannot produce a successful
fit for the velocity dispersion. Therefore, in all other tests in the case of the minor
axis we used k = 1. With the solid line we present the case of M/LB = 6.59 without
the embedded disc which provided a better, but still unsatisfactory fit to the data.
Again, the inner embedded disc of 6 arcsec was included. Therefore, we increased the
mass-to-light ratio to 9.68 (case without the dark matter and with the disc represented
with the thick dashed line) to achieve a better agreement. Still better agreement is
obtained when one increases further the mass-to-light ratio to 12.65: this is the case
without the dark matter and the included disc represented by the thick dot-dashed
line. Note, however, the discrepancy in the inner parts of the galaxy.

Intermediate axis (Fig. (2.3, panels (c) and (d)): Several tests were done using
lower values of the constant mass-to-light ratio: the modelling of the uncorrected
values of the observed velocity and velocity dispersion are given in panel (c) and the
modelling of the corrected points is given in panel (d).

It was argued that the Gauss-Hermite estimates are not the best approximation
of the mean line-of-sight velocity and velocity dispersion of the LOSVD (cf. van der
Marel and Franx 1993; Statler, Smecker-Hane, and Cecil 1996; De Rijcke et al. 2003),
because their real values depend on the h3 and h4 parameters. In the case of IC 3370
(intermediate axis) and IC 1459 there are significant departures in the Gauss-Hermite
parameters from zero for a major axis so we applied the correction for the velocity and
velocity dispersion. Following van der Marel and Franx (1993) we used the following
formulas to get the corrected values that are then compared with the modelling results.
The corrected values are, for the velocity:

vcorr = vGH +
√

3(h3)GHσGH, (2.16)

and for the velocity dispersion:

σcorr = σGH(1 +
√

6(h4)GH), (2.17)

where the index “GH” is related to the Gauss-Hermite estimates.
Successful fits for the velocity dispersion are obtained for k = 1 (again the k = 0.6

case can be ruled out). All the models with k = 1 give a good fit for the velocity
in the inner parts of the galaxy (∼ 20 arcsec) and they all fail in the outer parts.
In a similar manner they all reproduce well the velocity dispersion profile. h3 and
h4 parameters are fitted reasonably throughout the whole galaxy (modelled h3 shows
departures in the outer region and h4 shows small departures from the data in the
inner part). We note the improvement of the models when the points corrected for
non-zero values of h3 and h4 are used (see Fig. (2.3), panel d).

Strictly speaking IC 3370 should not be modelled using the axisymmetric modelling
technique. However, this technique permits the following conclusion. In IC 3370 up to
∼ 3Re the dark matter halo is not needed for the successful modelling: the mass-to-
light ratio varies between ∼ 5 (based upon the major axis data) and ∼ 13 (based upon
the minor axis data). Note however, that M/LB ∼ 13 is the upper limit, because it
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Figure 2.2: Predictions of the two-integral models for IC 3370. Panel (a): major axis

predictions. Dotted lines: k = 0.6, M/LB = 5.42, no dark matter included, no embedded

disc. Solid lines: k = 1, M/LB = 5.28, no dark matter included, no embedded disc. Panel
(b): minor axis predictions. Dotted line: k = 0.6, M/LB = 4.80, no dark matter included,

no embedded disc. Solid line: k = 1, M/LB = 6.59, no dark matter included, no embedded

disc. Thick dashed line: k = 1, M/LB = 9.68, no dark matter, embedded disc. Thick

dot-dashed line: k = 1, M/LB = 12.64, no dark matter, embedded disc. Vertical dotted

line indicates one effective radius.
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Figure 2.3: Predictions of the two-integral models for IC 3370. Intermediate axis predic-

tions. Panel (c): Intermediate axis predictions for the uncorrected values of the observed

velocity and velocity dispersion. Dotted lines: k = 0.6, M/LB = 3.64, no dark matter

included, no embedded disc. Solid lines: k = 1, M/LB = 5.19, no dark matter included,

no embedded disc included. Panel (d): Intermediate axis predictions for the values cor-

rected for non-zero values of h3 and h4 of the observed velocity and velocity dispersion. The

meaning of the curves is the same as in plot (c). Vertical dotted line indicates one effective

radius.
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must be stressed that this kind of modelling of the observed minor axis dispersions
tends to overestimate the mass-to-light ratio (as given in BDI): this modelling, for
a given M/LB underestimates the minor axis dispersions since the model will be

flattened by enhanced v2
φ which does not contribute to the minor axis profile. The

real galaxy is flattened by enhanced v2
r which contributes on the minor axis.

IC 1459

This galaxy has a counterrotating core and, therefore, two-integral axisymmetric mod-
elling conceived by BDI based on the photometric profiles will necessarily fail in the
inner regions. We tested the inclination angles from 50◦ to 90◦ and we decided to use
the inclination angle of 65◦ in all the cases because it provided the best fit to the data
(although very far from perfect). This inclination angle implies intrinsic axis ratio of
∼ 0.7.

Major axis (Fig. (2.4, (left)): In the case of the major axis we tested k = 0.6 value:
first, it gave marginally good fit for the velocity in the outer region of the galaxy
(M/LB = 3.81), and a marginally good fit in the region slightly beyond 1Re for the
velocity dispersion (dashed line), and, second, a case of larger M/LB = 6.83 did not
fit the velocity, nor the velocity dispersion (dotted line). In both of these cases no dark
matter halo was included, and no embedded disc was assumed. If one takes k = 1,
there are two cases that we decided to present: first, M/LB = 6.83 (no dark halo, and
no embedded disc) (solid lines) the velocity is extremely large (it declines from ∼ 350
km s−1 at 20 arcsec to ∼ 220 km s−1 at 100 arcsec); the velocity dispersion can be
fitted, very closely, throughout the whole observed galaxy, and second, the case when
M/LB = 3.81 (no dark halo, and no embedded disc) (dot-dashed lines) for which
the fitted velocity has smaller values (although still much larger than the observed
ones): in a region between 20 arcsec and 100 arcsec the velocity decreases from 260
km s−1 to 170 km s−1; the velocity dispersion is much lower, and the successful fit is
attained only in the outer parts. The h3 parameter, because of the fact that there is
a counterrotating core, cannot be fitted. For the h4 parameter this modelling did not
give a successful fit in the outer parts where there possibly exists a radial anisotropy
(judging from the observed non-zero value of the h4 parameter). Therefore, one can
state that only the test with k = 1 (M/LB = 6.83 ± 0.13) can provide a fit to the
velocity dispersion. The fact that the predicted velocity is much larger is of a crucial
importance and will be addressed below.

The corrections given with Eq. (2.16) and Eq. (2.17) are done only in the case of
the major axis, since in the case of minor axis the departures from zero in h3 and h4

are minimal. Using the Cinzano and van der Marel modelling technique we did not
correct the observed data in the inner regions (interior to ∼ 6 arcsec) where the disc
may be present and we corrected velocity and velocity dispersion beyond ∼ 6 arcsec in
order to compare with the models. In this inner region the model LOSVD is a sum of
2 Gaussians, and the modelled velocity dispersion is the physical velocity dispersion
which is then compared to the data. We note that the non-zero values of the h3

and h4 parameters are not fitted because in the outer regions the models assume
Gaussian LOSVDs. After the correction is done one can note the following change
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with respect to the uncorrected values (see Fig. (2.5)): the velocity dispersion values
in the outer part have increased (h4 is positive), but the general trend of decline
remains. When one now examines the modelling results given in Fig. (2.4) (right
panel) one can see that a better fit to the observations is obtained using k = 0.6, and
the constant mass-to-light ratio M/LB = 5.31±0.10 that is somewhat lower than the
value estimated for the best-fitting in the uncorrected case. This however does not
alter the main conclusion: IC 1459 can be successfully fitted without invoking dark
matter. Note however, that the error bars for h4 are rather large in the outer parts.
New observations of IC 1459 made (but still unpublished as of September 2006) by
Bridges et al. (2003) should hopefully clarify the mass at ∼ 3Re.

Minor axis (Fig. (2.4) (right panel)): Three k = 0.6 cases are plotted: one for
M/LB = 3.05 (dashed line) which does not provide a good fit for the velocity dis-
persion, and the other one for which M/LB = 7.33 that provides a better agreement
(solid line). Finally, a thick short dashed line gives a prediction of the velocity disper-
sion for M/LB = 12.21 and obviously does not provide a good fit (except marginally
at ∼ 30 arcsec). A better fit was obtained using k = 1: with the dotted lines we
present a case with M/LB = 8.54 (no dark matter, no embedded disc). However, a
fit with k = 1, but with a lower value of mass-to-light (M/LB = 3.05, dot-dashed line)
predicts a velocity dispersion that is too low. Finally, if one increases mass-to-light
ratio to M/LB = 14.23 (thick long dashed line) one can get a prediction that seems
valid at ∼ 25 arcsec. Values of both velocity and h3 parameter are consistent with
zero for the minor axis, and h4 is fitted properly for these cases.

We have shown that in the case of the major axis the best-fitting for the velocity
dispersion can be obtained using k = 1 and M/LB = 6.83 ± 0.13 (or 5.31 ± 0.10
obtained using corrected values of v and σ) . However, with these assumptions the
velocity is enormously high. This means that one is faced with the same situation
that BDI described in the case of NGC 720. Therefore, as in BDI, one can conclude
that IC 1459 cannot have a distribution function of the form f(E, Lz), and that three-
integral modelling is needed.

The results for the minor axis modelling are inconclusive because the observations
go out only to ∼ 1Re. The slight tendency for the velocity dispersion to flatten in the
outer parts of the minor axis could be a result of a predominance of tangential orbits
possibly suggested by the trend seen in the h4 parameter.

Because of the counterrotating core there is a strong hint that IC 1459 is the result
of a merger. That is why we compared the results of Bendo and Barnes (2000) who
used an N-body code to study the LOSVD of simulated merger remnants with the
stellar kinematics that we extracted. A reasonable agreement is seen in Fig. 9 by
Bendo and Barnes (2000) (see Fig. (2.6) in this book) which shows the dependence
of the Gauss-Hermite parameters as functions of position along the major axis for a
typical 3:1 merger (merger between disc galaxies with mass ratios of 3:1). Although
in the central parts there is a small discrepancy between the observations and the
simulation, in the outer parts there is an obvious trend for an increase in the h4

parameter. A further detailed comparison is difficult to perform because we do not
know how to scale exactly Bendo and Barnes simulation to our observed data because
we do not know the effective radius of the simulated merger. In the case of IC 1459
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Figure 2.4: Predictions of the two-integral models for IC 1459. Left: major axis predictions.

Solid lines: k = 1, M/LB = 6.83, no dark matter included, no embedded disc. Dashed

lines: k = 0.6, M/LB = 3.81, no dark matter included, without embedded disc. Dotted

lines: k = 0.6, M/LB = 6.83, no dark matter included, without embedded disc. Dot-

dashed lines: k = 1, M/LB = 3.81, no dark matter included, without embedded disc .

Right: minor axis predictions. Dotted line: k = 1, M/LB = 8.54, no dark matter included,

without embedded disc. Dashed line: k = 0.6, M/LB = 3.05, no dark matter included,

without embedded disc. Solid line: k = 0.6, M/LB = 7.33, no dark matter included,

without embedded disc. Dot-dashed line: k = 1, M/LB = 3.05, no dark matter included,

without embedded disc. Thick long dashed line: k = 1, M/LB = 14.23, no dark matter

included, without embedded disc. Thick short dashed line: k = 0.6, M/LB = 12.21, no

dark matter included, without embedded disc. Vertical dotted line indicates one effective

radius; in case of the minor axis it is out of scale.
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Figure 2.5: Predictions of the two-integral models for the major axis of IC 1459 for cor-
rected values of the observed velocity and velocity dispersion (see text for details). Dotted

line: k = 1, M/LB = 9.56, no dark matter included, no embedded disc. Solid line:

k = 0.6, M/LB = 5.31, no dark matter included, without embedded disc. Vertical dotted

line indicates one effective radius.

we have no way of knowing what the mass ratio of two disc galaxies might have been
as well as other parameters involved in the simulation (such as inclination angles of
the merging galaxies). For the core region we find v/σ ≈ 0.29. Note, that for a quoted
Bendo and Barnes simulation this ratio is about one. This is only a rough comparison
but we hope that future studies of the projected kinematics of simulated merger rem-
nants will bring new insights to the problem of the formation of the counterrotating
cores and the formation of early-type galaxies in general, as the number of observed
kinematical profiles increases.
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Figure 2.6: Taken from Bendo and Barnes (2000) (their Fig. 9). Parameters of the LOSVD

along the major axis for a remnant, a typical 3:1 merger.

Sample 3

NGC 3379

NGC 3379 is a galaxy for which the evidence for dark matter is scarce (Ciardullo
et al. 1993, Romanowsky et al. 2003). We present our results for the two-integral
axisymmetric modelling for the major and minor axis in Fig. (2.7). The inclination
angle that we used in all the cases was 40◦ because it gave the best fit to the observed
data.

Major axis (Fig. (2.7) (left)): When one takes k = 1 and does not include either a
dark matter halo or an internal embedded disc, using M/LB = 5.44 (dotted lines) one
gets an exaggerated value of the velocity but a rather reasonable fit for the velocity
dispersion (especially in the inner part). In all other cases for the major axis we will
use k = 0.5 which provides a better fit to the data in the outer part of NGC 3379.
Using a mass-to-light ratio, M/LB = 4.75, without an embedded disc and without a
dark halo combination gives a good fit for the velocity dispersion in the outer regions.
Also, a case with M/LB = 5.44 (dashed line), without the embedded disc and without
a dark halo gives a good fit in the outer part of the galaxy. Both h3 and h4 parameters
are fitted similarly in all the models and the fit is very close to the observed values.
Note that since the outermost points for the velocity dispersion and h4 parameter
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Figure 2.7: Predictions of the two-integral models for NGC 3379 compared to data. Left:

major axis predictions. Dotted lines: k = 1, M/LB = 5.44, no dark matter included, no

embedded disc. Dashed lines: k = 0.5, M/LB = 5.44, no dark matter included, without

embedded disc. Solid lines: k = 0.5, M/LB = 4.75, no dark matter included, embedded

disc included. Thick dot-dashed line: k = 0.4, M/LB = 4.58 no dark matter included, with

embedded disc. Right: minor axis predictions. Dotted line: k = 1, M/LB = 4.18, no dark

matter included, without embedded disc. Solid line: k = 0.5, M/LB = 4.18, no dark matter

included, embedded disc included. Thick long dashed line: k = 0.5, M/LB = 8.91, no dark

matter included, without embedded disc. Thick dot-dashed line: k = 0.5, M/LB = 6.69,

no dark matter included, with embedded disc. Vertical dotted line indicates one effective

radius.
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appear to be discordant, we put a greatly increased error bar in order to provide a
real uncertainty of these quantities. To get a better fit in the inner regions (interior
to ∼ 15 arcsec) we performed a test using low k = 0.4, inclination angle of 50◦ and
M/LB = 4.58: this is shown in Fig. (2.7) using a thick dot-dashed line.

Minor axis (Fig. (2.7) (right)): Because this galaxy does not show a strong rotation
on the minor axis, the velocity was fitted properly in this approach which assumes
axisymmetry. In the case of the minor axis we consider various tests related to the
velocity dispersion. With a dotted line we present the k = 1 case with M/LB = 4.18
without the dark matter, and without a disc: this does not provide a good fit. Neither
can the case with k = 0.5 without a dark matter halo and a disc, with M/LB = 4.18
which is represented with a dashed line. The thick dot-dashed line represents a case
for which M/LB = 6.69 (k = 0.5, without dark matter, and with embedded disc) and
which provides a good fit in the inner region (out to ∼ 1Re), but fails in the outer
regions. On the contrary, a test made with M/LB = 8.91 and k = 0.5 (thick long
dashed line) provides a good fit in the outer regions (beyond ∼ 1Re).

Our conclusion based upon the two-integral modelling that we performed is that
in NGC 3379 there is no evidence for dark matter out to ∼ 1.46Re and that this
galaxy can be fitted with a constant mass-to-light ratio that is between ∼ 5 and ∼
9. The minor axis modelling suggests a mass-to-light increasing with radius, while
the major axis does not. This discrepancy could be due to the third-integral effects.
These results are in agreement with the papers by other authors using entirely different
techniques. Ciardullo et al. (1993) found that NGC 3379 does not possess a dark halo,
and that mass-to-light ratio is ∼ 7 (their observations of PNe extend out to ∼ 200
arcsec). Also, they used distance of 10.1 Mpc to NGC 3379; if we apply the value of 13
Mpc used in our calculations the mass-to-light ratio in the B-band will become equal
to 5.9±0.9. Romanowsky et al. (2003) obtained the value M/LB = 7.1±0.6 at ∼ 200
arcsec taking the distance of 10.3 Mpc; again if we apply the value of 13 Mpc used
in our applications we calculate the mass-to-light ratio in the B-band of 5.8 ± 0.5.
Their results are similar to ours at smaller radius and taken together they fail to
demonstrate the presence of dark matter over this range of radius. For comparison
with some recent observations based on different mass tracers we refer the reader to
Chapter 3.

NGC 4105

We present our results for the two-integral axisymmetric modelling for the major and
minor axis in Fig. (2.8). The inclination angle that we used in all the cases was 50◦

because it gave the best fit to the observed data.
Major axis Fig. (2.8) (left)): The case of k = 0.5 and M/LB = 4.50 (no dark

matter halo, no disc included) provided the best-fitting to the velocity dispersion
for the distance > 2 arcsec (dotted line). However, this case (as well as all the
others mentioned below) predicts a grossly excessive velocity. The solid lines show
the predictions of the case with k = 1, M/LB = 4.50 (no dark matter halo, disc
included), for which the velocity is again exaggerated, and velocity dispersion is lower
than observed (although beyond ∼ 2 arcsec within the error bars). We experimented
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Figure 2.8: Predictions of the two-integral models for NGC 4105 compared to data. Left:

major axis predictions. Dotted lines: k = 0.5, M/LB = 4.50, no dark matter included,

with embedded disc. Solid lines: k = 1.0, M/LB = 4.50, no dark matter included,

embedded disc included. Dot-dashed lines: k = 1, M/LB = 5.94, without dark matter,

with embedded disc. Right: minor axis predictions. Dotted line: k = 0.5, M/LB = 5.86,

no dark matter included, without embedded disc. Dashed line: k = 1, M/LB = 6.42, no

dark matter included, without embedded disc (overlapped by solid line). Solid line: k = 1,

M/LB = 6.42, no dark matter included, embedded disc included. Dashed line: k = 0.5,

M/LB = 5.86, without dark matter, without embedded disc. Note the difference in scales

for two different axes.
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with the embedded discs of 6 arcsec (radius inside which the P.A. changes): their
inclusion did not change much the final results. Finally, with a dot-dashed line we
present the case of k = 1, M/LB = 5.94 (no dark matter halo, disc included), that
predicts an even larger velocity, but a good fit to the velocity dispersion. The h3

parameter predictions provide a rather good agreement with the observations (apart
from the region between 10 and 20 arcsec related to to the large rotational velocity
curve which is not seen in the data and is probably related to the problem of the
existence of the third integral). The h4 parameter is fitted properly in all the cases.
A good fit for the velocity could not be obtained; various mass distributions could
not solve the problem of the fit to this quantity.

Minor axis Fig. (2.8) (right)): The case of k = 0.5 and M/LB = 5.86 (no dark
matter halo, no disc included) did not provide a successful fit to the velocity dispersion
for a radius < 10 arcsec (dotted line). The solid line is for the case of k = 1 and
M/LB = 6.42 (without dark matter, and without a disc) and this represents the best
fit in all cases. Since h3 and h4 do not show large departures from zero, they are
fitted properly.

Our conclusion for NGC 4105 is that this galaxy should be modelled using a three-
integral approach because the rotation and velocity dispersion cannot be fitted si-
multaneously (the modelling results are very similar to these obtained in the case of
IC 1459 above, and NGC 720 from BDI). However, judging by two-integral modelling
one can see that the dark matter is not needed (out to ∼ 1 Re) and that a successful
fit (only for dispersion, for reasons given above) can be obtained for a constant mass
to light ratio M/LB ∼ 6.

SIMPLE JEANS MODELLING

In all the modelling procedures performed below for different galaxies we have tested
three different possibilities for the constant mass-to-light ratio. The list of the galaxies
with the basic data is given in Table 2-1. As said in Chap. 2.1.1.1 we modelled only
the major axis data: the observed data were folded about the y-axis. Note that the
velocity dispersion points were corrected according to Eq. (2.17) given above taking
into account the values of the h4 parameter. With the dotted line we plotted the case
for which ΥB = 5, the thin solid line is plotted for ΥB = 7 and with the thick solid
line we plotted the case for which Υ = 10.

Sample 2

NGC 1336

In Fig. (2.9) we see that all three values of the constant mass-to-light ratio are in
agreement with the observed data beyond ∼ 6 arcsec. Since the observed data extend
to less than one effective radius one can see that interior to this region there is no
need for dark matter because 5 <

∼ ΥB
<
∼ 10.
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TABLE 2-1

GALAXIES MODELLED USING SIMPLE JEANS MODELLING

Name vrot [km/s] MB M ′
tot [M�] Re [′′] 1′′ [pc]

NGC 1336 - −18.28 3.2 × 109 30 100
NGC 1339 110 −18.63 4.4 × 109 15 94
NGC 1373 - −17.04 1.0 × 109 11 95
NGC 1374 50 −19.10 6.8 × 109 26 92
NGC 1379 - −19.21 7.5 × 109 24 95
NGC 1399 - −20.81 3.3 × 1010 42 100
NGC 1404 100 −21.08 4.2 × 1010 26 135
NGC 1419 - −17.89 2.2 × 109 9 114
NGC 3379 - −20.60 2.7 × 1010 55 63
NGC 4105 - −20.70 3.0 × 1010 35 134
NGC 2434 - −19.83 1.3 × 1010 24 96
NGC 3706 120 −21.12 4.4 × 1010 27 223
NGC 5018 50 −21.75 7.8 × 1010 22 194

NOTES - Col. (1): name of the galaxy. Col. (2): rotational speed in km s−1 (see text

for details). Whenever the rotational velocity is not constant and is low the zero value for

vrot was taken in the calculations. Col. (3): absolute magnitude in the B-band taken from

the LEDA database. Col. (4): total mass divided by the constant mass-to-light ratio in

the B-band (ΥB) expressed in solar masses (see text for details). Col. (5): effective radius

expressed in arcsecs. Col. (6): value of one arcsec of a given galaxy expressed in parsecs.

NGC 1339

Fig. (2.10) shows that in this galaxy there is a hint of the increase of the mass-to-
light ratio from ΥB = 5 (beyond ∼ 4 arcsec) to ΥB = 10 (beyond ∼ 10 arcsec).
This may mean that there is dark matter beyond ∼ 1Re due to increase of the
velocity dispersion. This galaxy is a good candidate for further investigation of dark
matter and therefore the integrated stellar spectra out to a larger distance from the
center would be useful. At this point drawing further conclusions is unfortunately
not possible.

NGC 1373

In Fig. (2.11) we can see that between ∼ 4 and ∼ 10 arcsec the mass-to-light ratio,
ΥB varies between 5 and 7 and that beyond one effective radius there is an increase of
the velocity dispersion implying the rise of the total mass-to-light ratio to 10. Since
the last observed point is at ∼ 230 km s−1 one may suspect that dark matter starts
to provide its contribution beyond ∼ 1Re. This is another good candidate for a more
detailed study by taking more extended spectra.

64



DYNAMICAL MODELLING OF ELLIPTICAL GALAXIES: TWO- AND THREE-INTEGRAL APPROACHES

0 10 20 30
0

50

100

150

200

Figure 2.9: Predictions of the simple Jeans modelling for NGC 1336 for the major axis.

The dotted line is the case for which ΥB =5, the thin solid line is the case for which ΥB =7

and the thick solid line is given for the case for which ΥB =10. The observed data are

corrected using Eq. (2.17). Vertical dotted line indicates one effective radius.
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Figure 2.10: Predictions of the simple Jeans modelling for NGC 1339 for the major axis.

The meaning of symbols is the same as in Fig. (2.9).
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Figure 2.11: Predictions of the simple Jeans modelling for NGC 1373 for the major axis.

The meaning of symbols is the same as in Fig. (2.9)

0 10 20 30
0

50

100

150

200

Figure 2.12: Predictions of the simple Jeans modelling for NGC 1374 for the major axis.

The meaning of symbols is the same as in Fig. (2.9)
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Figure 2.13: Predictions of the simple Jeans modelling for NGC 1379 for the major axis.

The meaning of symbols is the same as in Fig. (2.9)

NGC 1374

Fig. (2.12) provides an indication that the mass-to-light ratio in this galaxy interior
to ∼ 1Re is between 7 and 10. There is a declining trend of the observed velocity
dispersion which indicates small contribution of dark matter in the observed region.

NGC 1379

In Fig. (2.13) we see that the lower value of the constant mass-to-light ratio is present
in this galaxy: the value ΥB = 5 provides a good fit to the corrected observed velocity
dispersion out to ∼ 1Re beyond ∼ 6 arcsec. There is a declining trend in the velocity
dispersion which means that dark matter does not provide a significant contribution
in the observed region.

NGC 1399

In Fig. (2.14) we see the observed velocity dispersion and the simple Jeans modelling
of the central galaxy of the Fornax cluster of galaxies. The observed integrated stellar
spectra extend out to ∼ 2Re from the center. This galaxy will be a subject of a more
detailed analysis in Chapter 3 when we address its X-ray properties (and what they
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can tell us about the total mass of this galaxy) and in Chapter 5 when we study
in detail the globular clusters which belong to NGC 1399 and the estimates of its
total mass (and the mass-to-light ratio) at much larger distances from the center (out
to ∼ 10Re). Given the large error bars we can see in Fig. (2.14) that we cannot
establish the exact value of the mass-to-light ratio from this kind of modelling. The
value ΥB = 7 provides the best fit of the three different values which we tested. It is
important to stress that from Fig. (2.14) is also visible that ΥB < 10 in the observed
region which means that dark matter does not play an important role within ∼ 2Re.
This result is in agreement with those obtained in Chapters 3 and 5.
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Figure 2.14: Predictions of the simple Jeans modelling for NGC 1399 for the major axis.

The meaning of symbols is the same as in Fig. (2.9)

NGC 1404

In Fig. (2.15) we present the results of the simple Jeans modelling for the galaxy
NGC 1404 which suggest that this galaxy is best described with the following mass-
to-light ratio: 5 < ΥB < 7 which means that interior to ∼ 3Re (the last observed
point) dark matter does not dominate. This result is in agreement with the result
based on the X-rays given in Chapter 3.
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Figure 2.15: Predictions of the simple Jeans modelling for NGC 1404 for the major axis.

The meaning of symbols is the same as in Fig. (2.9)
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Figure 2.16: Predictions of the simple Jeans modelling for NGC 1419 for the major axis.

The meaning of symbols is the same as in Fig. (2.9).
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NGC 1419

In Fig. (2.16) we show the observations and simple Jeans modelling for the galaxy
NGC 1419 which extend interior to ∼ 1Re. It can be seen that: 7 < ΥB < 10, which
means that dark matter does not provide a significant contribution in the observed
region.

Sample 3

Both galaxies from this sample were already a subject of the detailed Jeans modelling
earlier in this Chapter. In this Section we present the simple Jeans modelling for the
sake of comparison. Note that both of the galaxies belonging to Sample 3 will be
addressed in Chapter 3 when we will analyze their X-ray properties.

NGC 3379

In Fig. (2.18) we present the results for the integrated stellar spectra which extend
out to ∼ 1.5Re for the galaxy NGC 3379. It can be seen that low mass-to-light ratio,
Υ = 5 provides the best fit to the observed data. This is a well known result in
agreement with all the results from the literature and the results found in this book
(Fig. (2.7) in this Chapter and also from the X-ray modelling performed in Chapter
3).
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Figure 2.17: Predictions of the simple Jeans modelling for NGC 3379 for the major axis.

The meaning of symbols is the same as in Fig. (2.9).

70



DYNAMICAL MODELLING OF ELLIPTICAL GALAXIES: TWO- AND THREE-INTEGRAL APPROACHES

0 10 20 30
0

100

200

300

Figure 2.18: Predictions of the simple Jeans modelling for NGC 4105 for the major axis.

The meaning of symbols is the same as in Fig. (2.9).
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Figure 2.19: Predictions of the simple Jeans modelling for NGC 2434 for the major axis.

The meaning of symbols is the same as in Fig. (2.9).
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NGC 4105

In Fig. (2.19) we present the results of the simple Jeans modelling of the galaxy
NGC 4105 which imply that interior to ∼ 1Re the mass-to-light ratio is between 5
and 10. Therefore, one can conclude that dark matter does not appear to contribute
significantly in the observed region. This result is in agreement with the results
obtained earlier in this Chapter (see Fig. (2.8)). This galaxy will also be the subject
of the X-ray modelling in Chapter 3.

Sample 4

The and kinematic data for three galaxies, NGC 2434, NGC 3706 and NGC 5018,
were taken from the literature (Carollo et al. 1995) and the absolute magnitudes are
taken from the LEDA database.
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Figure 2.20: Predictions of the simple Jeans modelling for NGC 3706 for the major axis.

The meaning of symbols is the same as in Fig. (2.9).

NGC 2434

In Fig. (2.20) we present our simple Jeans modelling results for the galaxy NGC 2434.
One can see that interior to ∼ 1Re the mass-to-light ratio, ΥB = 7 provides a satis-
factory fit and that beyond ∼ 1Re the total mass-to-light ratio appears to increase.
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Between ∼ 1Re and ∼ 2.5Re the value of the mass-to-light ratio increases to ΥB = 10.
Using 2I axisymmetric modelling Carollo et al. (1995) concluded that there must be
dark matter in this galaxy. Rix et al. (1997) used spherical Schwarzschild modelling
to conclude that there is dark matter in the outer regions of this galaxy. From our
simple, spherical Jeans modelling, we can say that there is indeed an indication of the
rise of the total mass-to-light ratio, but since ΥB = 10 provides a satisfactory fit to
the observed velocity dispersion it appears that the contribution of dark matter is not
significant and dark matter does not dominate luminous matter interior to ∼ 2.5Re

in NGC 2434.

NGC 3706

In Fig. (2.21) we present the observed declining trend in the velocity dispersion of
the galaxy NGC 3706. It is hard to draw conclusions on the exact value of the mass-
to-light ratio in this galaxy but it is obvious that 7 < ΥB < 10 provides a good fit
throughout the galaxy which means that dark matter does not dominate luminous
matter interior to ∼ 3Re.
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Figure 2.21: Predictions of the simple Jeans modelling for NGC 5018 for the major axis.

The meaning of symbols is the same as in Fig. (2.9).
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NGC 5018

In Fig. (2.22) we present the results of the simple Jeans modelling of the galaxy
NGC 5018. Only one value of the tested mass-to-light ratio (ΥB = 5) can provide
a fit to the observed velocity dispersion. In the inner regions (interior to ∼ 1Re)
an even smaller value of the mass-to-light ratio would provide a fit to the observed
data. One can therefore safely conclude, based on this simple Jeans modelling, that
dark matter does not play an important role interior to the last observed point of
NGC 5018 (∼ 2Re).

2.2. THREE-INTEGRAL MODELLING

2.2.1. THEORETICAL INTRODUCTION

For axisymmetric potentials one can have orbits that have three integrals of motion:
E, Lz and I3. There is no general expression for the third integral, I3. The assumption
that the distribution has the form f = f(E, Lz, I3) broadens the range of possible
axisymmetric motions (see Appendix 3 for details on orbits). Three-integral models
are used for modelling of triaxial systems. Schwarzschild (1979) invented a very
powerful method that can be used for the construction of axisymmetric and triaxial
models of galaxies in equilibrium without explicit knowledge of the integrals of motion.
The basic steps of this approach are the following: one specifies the mass model
ρ(r), finds its potential and then constructs a grid of cells in position space. Then
initial conditions are chosen for a set of orbits and for every orbit one integrates the
equations of motion for many orbital periods and measures how much time the orbit
spends in each cell (that measures how much mass the orbit contributes to that cell).
Finally, one needs to determine the non-negative weights for each orbit such that the
summed mass in each cell is equal to the mass given by the original ρ(r). For the
last step one can use different methods; for example, Schwarzschild (1979) used linear
programming. A non-negative least squares (NNLS) method (Lawson and Hanson
1974) was used in this work (see Appendix 2 for details on NNLS).

Schwarzschild’s original idea has recently been further developed: namely, models
are now made that match the bulk kinematics and LOSVD of observed galaxies. Rix et
al. (1997) used such an approach to search for dark matter in elliptical galaxies. Cret-
ton and van der Bosch (1999) used it to confirm the presence of nuclear black holes.
Recently, Gebhardt et al. (2003) used the orbit superposition method for detection
of central black holes in 12 galaxies. These works deal with axisymmetric modelling
only. We have used the Rix et al. (1997) algorithm to build a new Schwarzschild
modelling code that uses the so-called self-organizing maps (SOMs) (Kohonen 1997,
Murtagh 1995) to extract velocity profiles from the large orbit library. The flowchart
is presented in Fig. (2.22).

We made the orbit libraries using standard definitions for the orbits. Orbital
starting conditions were given in the (r,v) phase space selected in such a way that
the starting points were all equidistant points in both position and velocity with a
given step (10 per cent of the outermost radial distance measured from the centre for
the position and 10 per cent of the maximum velocity for the velocity) in a given re-
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gion (from the center out to the last spectroscopically measured point). We did not
attempt to analyze in detail the orbital structure of our models because it is beyond
the scope of this book. However, we are aware that among orbits which we generated
there were chaotic orbits: these orbits were dealt with as regular orbits, i.e., they were
included together with the regular ones in our orbit library.

The details of the modelling procedure are given in Rix et al. (1997). We ex-
plain here several important steps. Note that in the paper of Rix et al. (1997) there
are numerous unfortunate (uncorrected) typographical errors that are absent from
the preprint version of this paper (available through LANL as astro-ph/9702126).
Namely, in equations (4), (5), (7), (8), (9), (11) and (12) the sign “>” should be omi-

Observations: Surface Brightness
& VPs

Luminous mass
distribution

Potential - density
Mass model

Orbit library

VP of each orbit

Option: Add
dark

component

SUPERPOSITION
OF ORBITS

NNLS

SOM
SOM

Figure 2.22: Flowchart of three-integral modelling procedure. (SOM stands for self-organi-

zing maps; see Appendix 4 for details on SOMs, NNLS stands for non-negative least squares;

see Appendix 2 for details on NNLS).
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tted. In equation (13) the comma sign (“,”) in the second term on the right hand
side should be omitted and, finally, in equation (14) Ne in a matrix on the left hand
side should read Nc, γN0 in the vector on the left hand side should read γN0 and Ne

in the vector on the right hand side should read Nc.
The details of the modelling procedure are given in Rix et al. (1997) and here we

explain only several important steps and present corrected formulas. We generated
orbits in different potentials using a leapfrog integrator. As in Rix et al. (1997)
the energy fractional conservation was at least 10−5 over the whole integration. We
tested two groups of potentials (using different input parameters, such as flattening of
the potential, total mass, core radius): spherical constant mass-to-light ratio models
based on the Hernquist (1990) potential which is given in Eq. (2.12). We also used the
logarithmic potentials (both axisymmetric and triaxial) (e.g., Binney and Tremaine
1987, Chapters 2.2.2 and 2.3.2). The axisymmetric logarithmic potential is given as:

Φ(x, y, z) =
1

2
v2
0 ln

(

R2
c + R2 +

z2

q2

)

,

and the triaxial logarithmic potential is given as:

Φ(x, y, z) =
1

2
v2
0 ln

(

R2
c + x2 +

y2

p2
+

z2

q2

)

,

where in both cases velocity, v0 and core radius, Rc, are constants and p and q
represent flattenings of the potential: in the triaxial case, for example, p = b/a and
q = c/a are axis ratios of the potential, where a is the long axis, b is intermediate and
c is the short axis.

As already mentioned, details of orbit calculations are given in Appendix 3. Here we
note that it is important to have the projected properties of orbits in order to compare
them with the observations. As given in Cretton, Rix, and de Zeeuw (1999) only three
coordinates in the phase space are available for comparison with the observations: the
projected positions x′, y′ (that are chosen to be aligned with the photometric major
and minor axis), and the line-of-sight velocity, vlos (≡ vz′). If the inclination angle is
i (for edge-on galaxy i = 90◦, see Introduction), these coordinates are related to the
cylindrical coordinates (R, z, φ) as:

x′ = R sin φ, (2.18)

y′ = −R cos i cosφ + z sin i, (2.19)

and
vlos = (vR cos φ − vφ sin φ) sin i + vz cos i. (2.20)

One can assign to each orbit in the library an index k, with k = 1, . . . , N0, where
N0 is the total number of orbits (in this book N0 = 729). The occupation weight of
the orbit k in the storage cube cell that is centered on (x, y, v) is denoted as wk

xyv .
The occupation weights for each orbit are normalized to unit mass:

∑

xyv

wk
xyv = 1, ∀k. (2.21)
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After the calculation of the k-th orbit, one can proceed with the modelling with the
direct comparison with the observational constraints. These constraints are taken at
different constraint positions on the projected face of the galaxy. One can again use
the photometric and kinematic data as in the case of the 2I modelling. The constraint
positions are labeled by l, with l = 1, . . . , Nc. As in Rix et al. (1997) one can denote
by fxy,l the fraction of the area of the storage cube cell centered on the grid point
(x, y) that is contained within the constraint area l.

Let Mk
l be the fraction of the total mass in orbit k that contributes to constraint

area l. This mass fraction is obtained by summing over the storage cube for the given
orbit:

Mk
l =

∑

xyv

fxy,l wk
xyv. (2.22)

To calculate a dynamical model one needs to estimate its orbital weights γk, which
measure the fraction of the total mass of the system that resides in each orbit k.
The total mass fraction Ml of the model that contributes to constraint area l is then
obtained as a sum over all orbits:

Ml =
∑

k

γk Mk
l . (2.23)

Under the assumption that the stellar population has the same mass-to-light ratio
everywhere in the galaxy one can obtain the observed mass fractions M obs

l at the
constraint positions l from the observed surface brightnesses µobs

l as:

Mobs
l = µobs

l Al/Ltot, (2.24)

Al is the area of constraint position l, and Ltot is the total observed luminosity. When
one wants to fit the predicted mass fractions Ml to the observed mass fractions M obs

l

one encounters a linear superposition problem for the γk.
For this kind of modelling one must be sure that the contributions of individual

orbits to all kinematic constraints add up linearly. This can be achieved if one chooses
the Gauss-Hermite coefficients hm (m = 1, . . . , M) to describe the shape of the VP.
The normalized VP contributed by orbit k to constraint position l is

VPk
l,v =

1

Mk
l

∑

xy

fxy,l wk
xyv . (2.25)

When one performs the sum over all orbits one obtains the total normalized VP at
the constraint position l:

VPl,v =
1

Ml

∑

k

γk Mk
l VPk

l,v . (2.26)

The Gauss-Hermite moment hm,l of order m at constraint position l is defined as
an integral over VPl(v):

hm,l = 2
√

π

∞
∫

−∞

VPl(v) α(wl) Hm(wl) dv. (2.27)
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The function α is a Gaussian weighting function:

α(wl) ≡
1√
2π

exp

[

−1

2
w2

l

]

. (2.28)

Here, wl is defined as wl ≡ (v − Vl)/σl, where the velocity Vl and dispersion σl are
free parameters. The Hm(wl) are Hermite polynomials that were defined previously.
In a similar manner one can define the Gauss-Hermite moment hk

m,l of orbit k and

order m for constraint position l, as an integral over VPk
l (v) (of which VPk

l,v is the
discrete representation). When one chooses the free parameters Vl and σl to be the
same for each orbit k, it follows that

Ml hm,l =
∑

k

γk Mk
l hk

m,l. (2.29)

Therefore, fitting the observed Gauss-Hermite moments hobs
m,l through the combination

Mobs
l hobs

m,l is also a linear superposition problem for the γk.
In practice one chooses Vl and σl equal to the parameters of the best-fitting Gaus-

sian to the observed VP at constraint position l, which are the observationally de-
termined quantities. This implies hobs

1,l = hobs
2,l = 0 for the first- and second-order

observed Gauss-Hermite moments. When one requires that the predicted moments
h1,l and h2,l should reproduce this, the model VP automatically has the correct mean
velocity and velocity dispersion (as determined through a Gaussian fit). So these
latter quantities need not be fitted separately. As for the errors ∆hobs

1,l and ∆hobs
2,l

that correspond to the observationally quoted errors ∆V in Vl and ∆σ in σl, one can
obtain them using the following equations:

∆h1 = −1

2

√
2 ∆V/σ, ∆h2 = −1

2

√
2 ∆σ/σ. (2.30)

The question of the zeroth-order moment h0 is resolved by not including this quan-
tity in the fit, because it is not accessible observationally. It determines the unknown
difference in the line strength between the galaxy spectrum and the template spec-
trum. In practice one can safely use the assumption h0 = 1.

After the calculation of the properties of all the orbits is finished for all constraint
positions one proceeds with the evaluation of the non-negative superposition of orbital
weights γk that best matches the observational constraints within the error bars.
When the observational errors are normally distributed, the quality of the fit to the
data is determined by the χ2 statistic:

χ2 ≡
Np
∑

l=1

(

Mobs
l −∑γkMk

l

∆Mobs
l

)2

+

Nc
∑

l=Np+1

M
∑

m=1

(

Mobs
l hobs

m,l −
∑

γkMk
l hk

m,l

∆(Mobs
l hobs

m,l)

)2

. (2.31)

Here, Np are photometric constraints and Nk = Nc − Np are kinematic constraints
(Nc is the number of constraint positions). We have chosen the number M of Gauss-
Hermite moments that can be extracted from spectroscopic observations to be M = 4,
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since the kinematic parameters extracted from spectra are v, σ, h3 and h4. There-
fore when higher order moments can be routinely extracted from spectra it will be
straightforward to include them in the fitting procedure also.

When one divides all quantities by their observational uncertainties,
e.g., Mobs

1 → Mobs
1 /∆Mobs

1 , M1
1h1

1,1 → M1
1 h1

1,1/∆(Mobs
1 hobs

1,1 ), etc., the χ2 minimiza-
tion is converted into a least squares problem:
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(2.32)

Here, M denotes mass fractions, “obs” is related to the observed quantities. The
total number of orbits is N0 (we used 729, and Rix et al. used 420 orbits). This
least squares problem has to be solved for the occupation vector (γ1, ..., γN0

), with
the constraints γk ≥ 0, for k = 1, . . . , N0 for m = 1, 2, 3, 4. We have used, as did Rix
et al. (1997), a non-negative least-squares (NNLS) procedure described in Appendix
2. The dimension of the vector on the right hand side of the equation is 500. One
hundred points belong to the photometric data and 400 points belong to kinematical
data: 200 are zeros related to velocity and velocity dispersion, 100 points are related
to h3 parameter and 100 points are related to h4 parameter. Since the extraction
of the kinematical parameters provides smaller number of non-equidistant points, we
made a fit to the observational data using Chebishev polynomials to get a hundred
equidistant points that are then included in the vector on the right hand side (similar
procedure is also applied on the photometric data). Obviously, the same grid used
in this fitting is also used when obtaining data on the left hand side of the equation.
Therefore, in the case of 729 orbits and 500 constraints, the dimension of the matrix
on the left hand side is 729 × 500, the dimension of the vector on the left hand side
is 729, and the dimension of the vector on the right hand side is 500. Since this is an
ill-posed problem, the regularization procedure has to be applied (in Appendix 1 we
present the details of the procedure).

For the purpose of the 3I modelling of both galaxies we generated orbit libraries
of 729 orbits in the following way: for the constant mass-to-light potentials and
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axisymmetric logarithmic potentials we used tube orbits and in the case of the triaxial
logarithmic potential we used a mixture of tube and box orbits with both familes
giving the equal contribution. In the case of the logarithmic potentials, tests were
done using p = 0.8, q = 0.7 in the case of the triaxial potential and q = 0.8 in the
case of the axisymmetric potential, where p is the flattening of the potential on the
y axis and q represents the flattening of the potential on the z axis. We checked
the existence of the third integral visually following the prescription of Binney and
Tremaine (Chap. 3.2.2) in the (R, VR) plane. Our procedure differs from that of Rix
et al. in that we used also axisymmetric and triaxial potentials (as described above)
in addition to spherical models, we used the SOMs for a quick extraction of velocity
profiles from the orbit libraries and we also model velocity and the h3 parameter.
We are aware that other dynamical modelling procedures are possible which include
different dark matter profiles, but since in our two cases we did not find much evidence
for dark matter (based on the declining velocity dispersion profile and the 2I dynamical
modelling) we restricted our 3I modelling to the simple logarithmic potentials; we,
however, do not exclude application of more complex dark matter models in future
work.

The code that we have created was used for testing several astrophysically impor-
tant potentials (details in Appendix 3) for the different samples of galaxies that we
had. Results and discussion are given below.

2.2.2. MODELLING RESULTS

Using the three-integral modelling procedure we analyzed the galaxies which belong
to Sample 1. We again assume symmetry about the y-axis and therefore we folded
all the observational data taking into account that velocity and h3 are odd functions
of the radius, and that velocity dispersion and h4 are even functions of the radius.

Sample 1

IC 3370

Fig. (2.23) shows several examples of the modelling of IC 3370 for the major axis
(left) and the minor axis (right). The inclination angle of 50◦ was used in all the
cases. Again, as in the case of IC 1459, in the discussion that follows we address only
the major axis case, because for the minor axis all the models tested tend to give
very similar results. We note that our 3I modelling package is suitable for the fast
extraction of kinematical parameters for major and minor axis, and therefore we did
not model the intermediate axis.

Again two examples of modelling using a constant mass-to-light ratio are given: a
case with M/LB = 7 is now plotted using a thick solid line, and a case with a larger
M/LB = 10 is plotted using a thin solid line. We can exclude the M/LB = 10 case
because it does not provide a good fit to the h3 parameter and it provides a worse fit
to the h4 parameter with respect to to the M/LB = 7 case. In all the cases the values
of the χ2/Ndof was typically 0.5 <

∼ χ2/Ndof
<
∼ 1 except for the h3 parameter for the

M/LB = 10 for which we found χ2/Ndof ∼ 4. Tests with the logarithmic potentials
were made using a constant circular velocity of 125 km s−1 and the core radius of 10
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arcsec because it was found that these values provided the best fit to the observed
rotation curve of IC 3370. We again present two different tests made using logarithmic
potentials: now the dotted line represents the axisymmetric logarithmic potential
and the dot-dashed line is for the triaxial logarithmic potential. Both logarithmic
potentials provide similar (good) fit to observed kinematics. Therefore, using a 3I
modelling we can conclude that dark matter is not dominant within ∼ 3Re because a
satisfactory fit can be obtained using a constant mass-to-light potential (M/LB ∼ 7).
However, we note that a logarithmic potential can also provide a good fit to the data.
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Figure 2.23: Predictions of the three-integral models for IC 3370. Inclination angle used

was 50◦ in all the cases. Thick solid line: constant mass-to-light ratio, M/LB = 7. Thin

solid line: constant mass-to-light ratio, M/LB = 10. Dot-dashed line: triaxial logarithmic

potential with flattening q = 0.8, q = 0.7. Dotted line: axisymmetric logarithmic potential

with flattening p = 0.8. One effective radius is given as a vertical dotted line. Left: major

axis predictions. Right: minor axis predictions.
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Figure 2.24: Predictions of the three-integral models for IC 1459. Inclination angle used

was 65◦ in all the cases. Dotted line: constant mass-to-light ratio, M/LB = 7. Dot-dashed

line: constant mass-to-light ratio, M/LB = 10. Thin solid line: axisymmetric logarithmic

potential with flattening q = 0.8. Thick solid line: triaxial logarithmic potential with

flattening p = 0.8, q = 0.7. One effective radius is given as a vertical dotted line (only in

the case of the major axis). Left: major axis predictions. Right: minor axis predictions.

IC 1459

In Fig. (2.24) we present several examples of the modelling of IC 1459 for the major
axis (left) and the minor axis (right). They were all made with the inclination angle
of 65◦. In the discussion below we address only the major axis case, because for the
minor axis models tend to give very similar results (note again that for the minor axis
the data which we had extend only to 30 arcsec).

82



DYNAMICAL MODELLING OF ELLIPTICAL GALAXIES: TWO- AND THREE-INTEGRAL APPROACHES

Two examples of modelling using a constant mass-to-light ratio are given: a case
with M/LB = 7 is plotted using a dotted line, a case with a larger M/LB = 10 is
plotted using a dot-dashed line. Tests with the logarithmic potentials were done using
a constant circular velocity of 110 km s−1 and the core radius of 50 arcsec because it
was found that these values provided the best-fitting to the observed rotation curve
of IC 1459 beyond 20 arcsec. We present two different tests made using logarithmic
potentials: the thick solid line represents the triaxial logarithmic potential and the
thin solid line is for the axisymmetric logarithmic potential. The h3 parameter can be
fitted throughout the whole galaxy, but the obtained fit for is however not particularly
good (typical value of the χ2/Ndof ∼ 5). None of these potentials could provide a
good fit to the h4 parameter beyond ∼ 2Re. In addition to the tests shown here we
performed numerous other tests with different combinations of parameters (adding,
for example, more mass): none of the models tested could produce significant positive
values of h4. The χ2/Ndof interior to ∼ 50 arcsec is ∼ 1.1, while throughout the whole
galaxy its value is typically ∼ 2.1. Therefore, in the case of IC 1459 it is difficult
to draw a conclusion concerning the existence of dark matter judging from the 3I
modelling alone.

2.3. SUMMARY OF THE DYNAMICAL MODELLING

In this Chapter we performed different kinds of the dynamical modelling of elliptical
galaxies based on the integrated stellar spectra. First, we used the two-integral (2I)
models based on the solving of the Jeans equation. Two different approaches were per-
formed: the axisymmetric one which we called detailed Jeans modelling which takes
into full kinematic profile (velocity, velocity dispersion, h3 and h4 parameters) and
the spherical one which we called simple Jeans modelling which provides predictions
of the velocity dispersion only (but takes into account the anisotropies given with the
h4 parameter). Second, we used the three-integral (3I) modelling technique based on
the Schwarzschild approach which is based on the calculation of the stellar orbits in
axisymmetric and triaxial potentials. Our results – based on the observations which
we had at our disposal and which include galaxies in different environments – strongly
suggest that dark matter does not dominate interior to ∼ 3Re (IC 3370 and IC 1459:
the galaxies for which we had the best observational data which extend out to ∼ 3Re)
although there are indications that the mass-to-light ratio does have a tendency of
increase beyond ∼ 1−2Re in some cases (NGC 1339, NGC 1373 and NGC 2434). The
most important conclusion of this Chapter is that beyond ∼ 3Re we might expect
that dark matter starts to dominate and it is therefore only natural to ask what is the
mass-to-light ratio beyond this galactocentric distance: unfortunately because of the
reasons given in Introduction the integrated stellar spectra are not suitable for this
purpose. However, in Chapters 3 and 5 we use other mass tracers and give the answer
to this question. We anticipate that the influence of dark matter becomes stronger
beyond ∼ 3Re and that at larger distances from the center (for example at ∼ 8Re

for the galaxy NGC 1399 already discussed in this Chapter) dark matter dominates
luminous matter.
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Chapter 3

GALAXIES WITH X-RAY HALOES

3.1. BASIC CONCEPTS

It is known that massive haloes of hot plasma exist around some, but not all elliptical
galaxies (see, for example, Sansom et al. 2006). In the sample of galaxies that we
analyzed using our reduced integrated stellar spectra (Samples 1, 2 and 3)5 and several
galaxies are catalogued as X-ray sources: IC 1459, NGC 1399, NGC 1404, NGC 4105
and NGC 3379. The galaxy NGC 5128 will be analyzed in Chapter 5 using X-rays,
planetary nebulae (PNe) and globular clusters (GCs). X-rays are important for the
early-type galaxies because they can provide independent constraints on the masses
and mass-to-light ratios out to large radii (for a review see Danziger 1997, Mathews
and Brighenti 2003a, hereafter MB03). Some of the results presented here are given
in Samurović and Danziger (2005).

The Einstein Observatory detected X-ray haloes around these galaxies, and
the mass of the hot gas was estimated to be equal ∼ 1010 M�. Originally, Fabricant,
Lecar and Gorenstein (1980) found that the mass of the dark halo of M87 lies between
1.7 × 1013 M� and 4.0 × 1013 M�, and that the dark halo extends out to 50 arcsec
(or 230 kpc). Therefore, an M/L ratio of 180 can be estimated from these data. The
basics for the mass calculations inferred from X-rays were given in this paper, and we
here only briefly present basic assumptions and formulas. One assumes that spherical
symmetry holds, and that the condition of hydrostatic equilibrium is valid:

dPgas

dr
= −GM(r)ρgas

r2
, (3.1)

where M(r) is the mass interior to the radius r, and the gas obeys the perfect gas
law:

Pgas =
ρgaskTgas

µmH
, (3.2)

where µ is the mean molecular weight for full ionization (taken to be 0.61), and mH is
the mass of the hydrogen atom. From these two equations one can give the expression

5Note that the galaxies NGC 2434 and NGC 5018, from Sample 4, which we took from the
literature (Carollo et al. 1995) also possess an X-ray halo, see, for example, Diehl and Statler (2006)
and Fukazawa et al. (2006).
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for the gravitating mass interior to radius r (e.g. Danziger 1997):

M(r) = −kTgasr

Gµmp

(

dlnρ

dlnr
+

dlnTgas

dlnr

)

. (3.3)

In the parenthesis on the right-hand-side one can add a term related to an additional
nonthermal turbulent, magnetic, or cosmic ray pressure Pnt (e.g. MB03), so that the
previous formula would read:

M(r) = −kTgasr

Gµmp

(

dlnρ

dlnr
+

dlnTgas

dlnr
+

Pnt

Pgas

dlnPnt

dlnr

)

. (3.4)

Although in early-type galaxies that contain strong radio sources one can estimate
the pressure Pnt (MB03) this pressure is usually ignored in mass determinations of
these galaxies, so we will neglect it in this book.

Hot gas in early-type galaxies derives from two sources: internal and external. In-
ternal sources are evolving stars that continuously eject gas at a rate of ∼ 1.3[LB/(1011

LB,�)] M� yr−1, where LB is luminosity in the B-band. As noted by MB03 it is gen-
erally assumed that gas ejected by orbiting red giant stars passes through shocks and
is raised to the stellar kinematic temperature:

T∗ ≈ Tvir ≈ µmpσ
2/k ∼ 107 K ∼ 1 keV, (3.5)

where σ is the stellar velocity dispersion. Also, type Ia supernovae can provide some
additional heating. For some massive galaxies in our sample large X-ray luminosities
of Lx ∼ 1040 − 1043 ergs s−1 for LB > 3 × 1010 LB,�, are detected (see Table 3-1).
This indicates that most of the internally produced gas is currently trapped in the
galactic or group potential. At times when most of the galactic stars were forming,
type II supernovae were driving winds of metal-enriched gas into the inter-galactic
environment. The gas that was expelled in this way enriched the hot gas in the outer
regions of the early-type galaxies. Later, some of this local gas fell back into the central
galaxy, thus providing an external source of gas. An additional source of external gas
was provided by a continued accretion from the ambient cosmological flow that was
gravitationally bound to the group or cluster (MB03). The diffuse external gas that
arrived after having fallen through the deeper potential well of the surrounding group
(cluster), was shock-heated to the virial temperature of the galaxy group (cluster).
This more distant accreted and shocked gas is hotter than gas virialized to T∗ deeper
in the stellar potential of the early-type galaxy. These two together form an outwardly
increasing gas temperature that is observed (see Fig. (3.1), right). Fig. (3.1) was taken
from MB03 and it shows the dependence ρ∗ ∝ n2

e that was found in the early-type

galaxies. It is obvious that relation ne ∝ ρ
1
2∗ holds over a wide range in galactic

radius. Here, ne is the electron density of the hot gas. In giant elliptical galaxies it is
typically ne(0) ∼ 0.1 cm−3 at the center and declines with radius as ne ∝ r−1.25±0.25.

The total mass of hot gas in massive elliptical galaxies is roughly several times 1010

M� (about ∼< 1 percent of the total stellar mass). This number depends on the extent
of the given galaxy.
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If one wants to calculate the mass and mass-to-light ratio of elliptical galaxy based
upon X-ray observations one can use the following approach (which was used in Kim
and Fabbiano (1995), hereafter KF95, for NGC 507 and NGC 499): one assumes
circular symmetry and derives a radial profile of the X-ray surface brightness measured
in concentric rings centered on the X-ray centroid. In a given range one then fits the
analytic King approximation model:

ΣX ∼
[

1 +
( r

a

)2
]−3β+0.5

(3.6)

(for details see KF95). Here a is the core radius (the radius where the surface bright-
ness falls to half of its central value), and slope β. If the temperature of the X-ray
emitting gas does not change much as a function of radius one can assume isother-
mality – in all cases in this book this assumption is valid because we have dealt
mostly with the internal parts of galaxies (inside at most 3 effective radii, except for
NGC 1399 for which we present the results out to ∼ 13Re because this galaxy will
be also studied in Chapter 5 using globular clusters). Now using this assumption
together with the formula for ne ∝ r−3β (KF95) (see above) one can estimate the
total gravitational mass at a given radius r (assuming hydrostatic equilibrium) in a
convenient form (Kim and Fabbiano (1995)):

MT = 1.8 × 1012(3β + α)

(

T

1keV

)

( r

103 arcsec

)

(

d

10 Mpc

)

M�, (3.7)

here the exponent α is related to the temperature (T ∼ r−α) and is taken to be zero
in all cases below. This formula is valid outside the core region.

The mass-to-light ratio (in the B-band) can be expressed as a function of radius r:

MT

LB
= 1.16 × 10−210

B
2.5 (3β + α)

(

T

1keV

)

( r

103 arcsec

)

(

d

10 Mpc

)−1

, (3.8)

where B is the B magnitude of galaxy inside radius r (Kim and Fabbiano 1995). It is
important to stress that the estimate of the total mass (and the total mass-to-light ra-
tio) of a given galaxy estimated using the X-rays is not plagued with the uncertainties
in the orbits (the well known mass-anisotropy degeneracy, see Introduction).

We present the results for our sample of galaxies with X-ray haloes below, taking
β = 0.5, except for the faint X-ray galaxy NGC 3379 where β = 0.64 (result taken
from Brown and Bregman 2001). In Table 3-1 we present estimated masses and
mass-to-light ratios for the galaxies within the radius for which we had the long-slit
spectra. The data sources are given at the bottom of Table 3-1.
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Figure 3.1: Taken from MB03 (their Figure 2). Left panel: The observed and azimuthally

averaged electron density profile n(r) in NGC 4472 is shown as a function of radius normal-

ized to the effective radius Re = 8.57 kpc at distance d = 17 Mpc. The observations are

from Einstein (Trinchieri, Fabbiano, and Canizares 1986) (filled circles) and Rosat (Irwin

and Sarazin 1996) (open circles); for the inner region MB03 have Abel-inverted Chandra
surface brightness data from Loewenstein et al. (2001) (open squares) and normalized them

to previous observations. The solid line is an analytic fit to the observations. The dashed

line is the square root of the stellar density ρ
1/2
∗ (r) normalized to n at r = Re. Right

panel: Typical temperature profiles for several bright E galaxies, taken from Brighenti and

Mathews (1997), based on the following sources: NGC 1399: Rosat PSPC from Jones et

al. (1997); NGC 5044: Rosat PSPC from David et al. (1994); NGC 4636: Rosat PSPC

from Trinchieri et al. (1994); NGC 4472: Rosat HRI and PSPC from Irwin and Sarazin

(1996). The solid line is an approximate analytic fit to T (r) for NGC 4472. Note that galaxy

NGC 1399 is present in our sample and will be analyzed later.

Using Eq. (3.3) one can estimate the total integrated mass M(r) within a given
radius. Loewenstein and White (1999) using the relationship between the X-ray
temperatures and stellar velocity dispersions (the T −σ relation: < T > ∝ < σ >1.45,
where < ... > denotes mean value) found that minimum values of dark matter core
radii scale as rDM > 4.6(LV /3L∗)3/4 h−1

70 kpc and that the minimum dark matter
mass fraction is >

∼20 % within one optical effective radius reff and is between >
∼39

per cent and 85 per cent within 6 reff , depending on the stellar density profile and
observed value of βspec. Here,

βspec ≡
µmp < σ >2

k < T >
. (3.9)

When dark matter dominates the gravitational potential on large scales, then < T >
is a measure of the dark matter content within the extraction radii (in this case 6
reff (Loewenstein and White (1999)). The Fundamental plane (FP)6 provides a link
between the velocity dispersion and the global luminosity and therefore βspec is a good

6Elliptical galaxies populate a two-dimensional manifold in the space of their observable quan-
tities: effective radius, reff , effective surface brightness (mean surface brightness within reff), and
central velocity dispersion σ. This manifold was named fundamental plane (FP), cf. Djorgovski
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quantity for establishing the dark-to-luminous matter ratio within the optical radius.
One can also use temperature profiles as an additional constraint on dark matter;
unfortunately, these profiles are available only for galaxies that are very bright in
X-rays.

3.2. ANALYSIS OF ELLIPTICAL GALAXIES
WITH X-RAY HALOES

3.2.1. BASIC DATA AND MASS ESTIMATES

Some of the results presented in this Section were published in Samurović and Danziger
(2005). Here we update some of the figures and add some new ones to include new
galaxies which were analyzed since this paper was published.

TABLE 3-1

X-ray and mass properties of galaxies with X-ray haloes

Name r r r/reff B logLX T D M (M
L )B

(′′) (kpc) (erg s−1) (keV) (Mpc) (1011M�)

IC 1459 100 11.7 2.86 11.13 41.191 0.602,3 24.16 3.91 15.53

NGC 1399 70 6.91 1.67 10.25 41.441 1.083 20.36 4.16 8.13

NGC 1404 80 10.79 3.08 10.82 41.271 0.623 27.81 3.72 6.60

NGC 3379 80 5.04 1.45 10.10 39.781 0.264 13.01 0.92 3.86

NGC 4105 30 4.02 0.86 11.26 41.945 0.763 27.66 1.70 4.58

NOTE: References: (1) Brown and Bregman (1998), (2) Fabbiano et al. (2003), (3) Davis

and White (1996), (4) Brown and Bregman (2001), (5) Fabbiano, Kim and Trinchieri

(1992)

In Table 3-1 we give a list of galaxies from different samples that posses X-ray
haloes. The second and third columns give the radius for each galaxy out to which
long-slit spectra extend to (in arcsecs and kiloparsecs, respectively). The fourth
column expresses this in units of effective radii. Total B-magnitudes in the fifth
column were taken from the LEDA catalog. In the sixth column are the data for
X-ray luminosities that were collected from the literature (see the notes to Table
3-1). Temperatures in the seventh column were collected from the paper by Davis
and White (1996), except in the case of NGC 3379 for which the temperature is taken
from the Brown and Bregman (2001) paper that deals with emission mechanisms in
X-ray faint galaxies. In the case of IC 1459 there is also a recent estimate by Fabbiano

and Davis (1987), Dressler (1987), see also Binney and Merrifield (1998). Borriello, Salucci and
Danese (2003) showed that the small scatter around the FP of massive ellipticals can be used to
infer important properties about their dark and luminous matter.
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et al. (2003) that agrees well with Davis and White (1996). Distances in the eighth
column are calculated using the Hubble parameter h = 0.7 (using heliocentric radial
velocities form the NED archive). In the ninth column the mass of each galaxy in
units of 1011M� is estimated using Eq. (3.7) for a radius given in the second column,
and finally, in the tenth column the estimate of the mass-to-light ratio for each galaxy
is given using Eq. (3.8) again for the radius in the second column. It is important to
repeat that in the approximation which we have made in all cases the temperature is
taken to be constant in the given region so α parameter from Eq. (3.7) and Eq. (3.8)
is taken to be zero.

In Figs. (3.2) – (3.6) are presented graphical estimates of the mass-to-light ratios (in
the B-band) for the galaxies from our samples. Shaded regions with indicated lower
and upper limits provide estimates obtained using the value of Tσ for the lower limit
and TX = 1.5Tσ for the upper limit, because Brown and Bregman (1998) for objects
with few counts assumed this latter limit (for example in the cases of NGC 1399 and
NGC 1404). For several galaxies they found that TX ≈ 2Tσ: this relation was used
only in the case of NGC 3379 (for which they do not provide the estimate of TX) thus
giving a corresponding upper limit. The case for which TX = 1.5Tσ is also plotted
as a thick dotted line in Fig. (3.5). Tσ expressed in keV is calculated using Eq. (3.5)
which after insertion of appropriate values becomes:

kTσ = 6.367× 10−6σ2 (3.10)

where σ is expressed in km s−1. Estimates from two-integral (2I) modelling are also
included.

Fukazawa et al. (2006) have recently investigated the dynamical structure of 53 el-
liptical galaxies using the Chandra archival X-ray data. They assumed the hypoth-
esis of hydrostatic equilibrium and derived the total masses (and the mass-to-light
ratios) for the galaxies in the sample. In some cases their inferred masses are in a
disagreement with the results obtained in this book and also with the results found
in the literature (see below when each galaxy is discussed). Humphrey et al. (2006)
also used the Chandra archive to study the mass profiles of 7 elliptical galaxies.
They measured approximately flat mass-to-light profile within an optical effective ra-
dius which rises by an order of magnitude at ∼ 10Re which confirms the presence of
dark matter in the outer regions of ellipticals. Unfortunately, the galaxies in their
sample were the different ones with respect to the galaxies which we analyze, so the
comparison of the results was not possible.

IC 1459 (Fig. (3.2))

The stripe related to the X-rays is determined using the paper by Davis and White
(1996) who found T = 0.60+0.12

−0.13. This is in agreement with Fabbiano et al. (2003) who
estimated T = 0.5-0.6 keV. We have also added a line which corresponds to T = 0.4
keV and which provides the best fit to the 2I modelling. Using virial assumption,
Eq. (3.10), one gets Tσ = 0.73 keV. Only in the case of T = 0.50 − 0.60 keV do we
have a marginal agreement (in region 1.0 < r < 2Re) with results obtained using 2I
modelling techniques.
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0 50 100
0

2

4

6

8

10

12

14

16

18

20

T = 0.70 keV

T = 0.50 keV

0 2 4 6 8 10

Figure 3.2: Cumulative mass-to-light ratio of IC 1459 in the B-band as a function of

radius. The scale of the lower x-axis is given in arc seconds and the upper x-axis is in

kiloparsecs. The effective radius is plotted as a dashed vertical line. Limits on the mass

based on the X-rays are given using lower and upper limits obtained using Davis and White

(1996): T = 0.60 ± 0.10 keV. “2I” refers to two-integral modelling: the stripe in the 2I

case provides the limits within which the kinematics can be fitted (see text for details). One

additional line (see text for details) was also added to the plot: dashed line is for the case

for which T =0.4 keV. The stripe labelled with C02 corresponds to the estimate obtained

by Cappellari et al. (2002) of the M/L ratio which is, after the conversion to the B-band

and the distance used in our paper, M/LB = 8.8 ± 0.5. Filled circle labelled with F06 is

the result from the paper by Fukazawa et al. (2006).

This may mean that:
(i) the 2I integral models systematically underestimate the mass-to-light ratio value.

This is possible but not probable since the estimated values of the mass-to-light
ratio (M/LB was found to be between ∼ 6 and ∼ 10, see the stripe in Fig. (3.2))
are in good agreement with the mean value found in the sample of van der Marel
(1991) which after rescaling to the Hubble constant of 70 km s−1 Mpc−1 becomes
M/LB = 8.33 ± 0.35. This type of modelling precludes the possibility that with
an observed decreased velocity dispersion one could have a dark matter halo with
a consequent increase of a mass-to-light ratio;

90



GALAXIES WITH X-RAY HALOES

0 100 200 300 400 500 600
0

20

40

60

80

100
0 10 20 30 40 50

Figure 3.3: Estimates of the total mass-to-light ratio in the B-band in the solar units

using X-rays assuming hydrostatic equilibrium and isotropic velocity distribution presented

with three shaded regions. Three different regions of the constant temperature were used

beyond one effective radius: region (1) is between 40 and 100 arcsec, region (2) is between

100 and 140 arcsec and the region (3) is between 140 and ∼ 600 arcsec. (1): the shaded

regions interior to 100 arcsec cover the temperatures between 0.61 and 0.92 keV as estimated

in Brown and Bregman (1998). (2): shaded regions between 100 and 140 arcsec have for

a lower value T ∼ 0.88 keV and for an upper value T ∼ 1.2 keV as estimated from the

paper of Jones et al. (1997) (their fig. 3). (3): beyond 140 arcsec T = 1.30 ± 0.05 was

used as estimated by Jones et al. (1997). With a filled square we presented the mass-to-light

ratio found by Grillmair et al. (1994) (MT /LB = 51 ± 13). Vertical dotted line is one

effective radius. The regions shaded with dots are for the case for which β = 0.50 (Paolillo

et al. 2002) and the regions shaded with lines are for the case for which β = 0.35 (Jones et

al. 1997). The result based on the 2I modelling is given with a shaded region which extends

out to 70 arcsec: these are the limits within which the kinematics can be fitted (see text

for details). Filled circle labelled with “F06” is the result from the paper by Fukazawa et

al. (2006).
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(ii) the temperature estimates used above are not correct - note, however, that if we
adopt a lower temperature, e.g. T ∼ 0.5 keV (still allowed by the measurements
of Fabbiano et al. 2003 and Davis and White 1996) a better agreement can be
obtained; the strong rising trend of the mass-to- light ratio will persist making this
new estimate again larger in the outer part of the galaxy. Only T ∼ 0.4 keV (as
calculated in the paper by Brown and Bregman 1998) would provide an agreement
within the whole region (beyond ∼ 1Re) for which we have the 2I mass-to-light
ratio estimate;

(iii) the assumption of the hydrostatic equilibrium for IC 1459 is not correct, so the
usage of Eq. (3.1) is inappropriate which makes Eq. (3.8) inapplicable in this case.
We here refer the reader to a recent important work by Ciotti and Pellegrini (2004)
which investigates the effects of deviations from equilibrium on the mass of ellipti-
cals (see also the discussion on NGC 3379 below).
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Figure 3.4: Cumulative mass-to-light ratio of NGC 1404 in the B-band as a function of

radius. The scale of the lower x-axis is given in arc seconds and the upper x-axis is in

kiloparsecs. The effective radius is plotted as a dashed vertical line. The upper limit given

as “DW96” is based on the paper by Davis and White (1996). Limits on the mass based on

the X-rays are given using lower and upper limits obtained using Davis and White (1996):

T ≈ 0.62 keV. The other limits are given by: the value of Tσ is for the lower limit and

TX = 1.5Tσ is for the upper limit. “2I” refers to two-integral modelling: the stripe in the

2I case provides the limits within which the kinematics can be fitted (see text for details).

Filled circle labelled with “F06” is the result from the paper by Fukazawa et al. (2006).
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NGC 1399 (Fig. (3.3))

The plot in Fig. (3.3) gives the dependence of the mass-to-light ratio in the B-band us-
ing different estimates of the temperature in different regions (see caption of Fig. (3.3)
for details). The problem of the mass-to-light ratio in this galaxy will be discussed in
more detail in Chapter 5 when we compare the results of different techniques. Here
we only note that in the inner region inside ∼ 3Re there is no need for dark matter
because the mass-to-light ratio reaches at most M/L ≈ 10 (in the B-band). The
estimate based on the X-rays interior to ∼ 1.7Re is in agreement with that based on
the 2I modelling. Note that the value of the mass-to-light ratio at 1Re of Fukazawa
et al. (2006) (M/LB = 10.95, no errors given) is somewhat higher than our esti-
mate (this is similar to what they inferred for NGC 3379, for a possible reason for
discrepancy see below).

NGC 1404 (Fig. (3.4))

The case of the galaxy NGC 1404 is an interesting one: beyond ∼ 1Re all the different
estimates are in agreement: both 2I and X-ray predict the mass-to-light ratio which is
in agreement with the lack of dark matter out to ∼ 3Re. The value given by Fukazawa
et al. (2006), M/LB = 5.51 (at 1Re) is in agreement with the results found in this
book.

NGC 3379 (Fig. (3.5))

In the case of NGC 3379 we provide a lower value of the X-ray estimate on the mass-
to-light ratio using T = 0.26 keV. Two upper limits are given: TX = 1.5Tσ represented
by a thick dotted line, and one for which TX = 2Tσ as a solid line. In all these cases
β = 0.64 (from Brown and Bregman 2001) is taken. One additional line is also given:
the dashed line is for T = 0.26 and used a generic value of the β parameter, β = 0.50.
To make a comparison with different mass tracers we also plotted available results
on the mass-to-light ratio that were obtained using PNe (Ciardullo et al. 1993 (C93),
Romanowsky et al. 2003 (R03) and Sluis and Williams 2006 (SW06)). It should be
noted however that the methodology of the PNe and GCs does not provide measures
of h3 and h4 parameters as tests of the models (see the discussion in Chapter 5).

The estimates from 2I modelling are in an agreement with the X-ray estimates.
Our M/L ratios are similar to those obtained for PNe albeit at larger radii. We
note that beyond 120 arcsec (∼ 2.2Re) a discrepancy between PNe estimates and
X-ray estimate occurs. If we reduce the value of the β parameter from 0.64 to 0.5
we obtain a good agreement with the data between ∼ 1Re and ∼ 1.5Re; between
∼ 1.5 and ∼ 3.5Re the mass-to-light ratio in the B-band varies between 5.5 and 9.5.
In Fig. (3.5) we also plotted a point (at 1Re) and a stripe based on the paper by
Gebhardt et al. (2000) which is calculated using their 3I modelling procedure.
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Figure 3.5: Cumulative mass-to-light ratio of NGC 3379 in the B-band as a function of

radius. The meaning of the symbols is the same as in Fig. (3.2). Three additional points

based on the PNe are given in the plot: “R03” refers to Romanowsky et al. (2003), “C93”

to Ciardullo et al. (1993) and “SW06” to Sluis and Williams (2006). Two upper limits are

given: one for TX = 1.5Tσ represented by a thick dotted line, and one for which TX = 2Tσ

as a solid line. The dashed line is for the case for which TX = 0.26 keV and β = 0.5. The

point labelled G00 and corresponding stripe are based on the result from the 3I modelling of

Gebhardt et al. (2000); it has been obtained for the B-band and at the distance of 13 Mpc.

Pierce et al. (2006) very recently found at ∼ 200 arcsec the mass-to-light ratio in the
V -band: M/LV = 18 − 30 (which in the B-band becomes M/LB ∼ 24 − 40; see also
discussion below). These high values seem to favour higher values of the temperature
(see Fig. (3.5), the upper limit for T = 0.52 keV). Very recently, Pellegrini and Ciotti
(2006) attempted to reconcile the optical and X-ray mass using NGC 3379: they
found that a possible discrepancy at large radii of ∼ 2 can be explained by deviations
from hydrostatic equilibrium of the hot gas (see also Ciotti and Pellegrini 2004).

Finally, we mention the recent paper by Fukazawa et al. (2006) who gives the
following estimate of at 1Re: ΥB = 13.93. This is much higher than all the previous
estimates. To address this issue we quote Pierce et al. (2006): “The XMM-Newton
data analyzed by Fukazawa et al. (2006) are limited to the inner 17 arcsec; only 25
per cent of the X-ray luminosity is in the thermal component of the spectrum. The
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authors [Fukazawa et al.] point out that the data constrain the properties of the
interstellar medium but not the mass profile. Hence, their estimate of ΥB = 13.93
cannot be considered to be very robust.” Note also that Sluis and Williams (2006)
performed recently a search for PNe with the Rutgers Fabry-Pérot in NGC 3379.
They “found a remarkably constant mass-to-light ratio” within ∼ 3Re (if one takes
the true value of the effective radius, 55 arcsec) with an overall ΥB ≈ 5.
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Figure 3.6: Cumulative mass-to-light ratio of NGC 4105 in the B-band as a function of

radius. The meaning of the symbols is the same as in Fig. (3.2). The following limits are

given: the upper one for TX = 2Tσ, and the lower one for which TX = 1.5Tσ as a solid

line. The line given as “DW96” is based on the paper by Davis and White (1996), T ≈ 0.76
keV.

NGC 4105 (Fig. (3.6))

Since in the case of this galaxy our data extend only out to ∼ 1Re the comparison of
the X-ray predictions with the results of the 2I modelling interior to this point could
not be done. It is however obvious that if one assumes that the constant mass-to-light
ratio inferred from the 2I modelling is valid beyond 1 Re there is a clear discrepancy
between the predictions of the two methodologies (for 0.6 < T < 0.7 keV): the value

95



SRDJAN SAMUROVIĆ

of the mass-to-light ratio from the X-rays is higher (at ∼ 2Re M/LB ∼ 12 − 18 )
than that obtained using the 2I modelling (assumed to be between ∼ 5 and ∼ 7).
The reason for this discrepancy could be the lack of hydrostatic equilibrium (Ciotti
and Pellegrini 2004). We did not have data related to other mass tracers, so further
comparisons were not possible.

3.2.2. SIMPLE JEANS MODELLING

The modelling performed in this subsection is based on the solving of the Jeans
equation which was explained in Section 2.1.1.2. The mass which is included in the
Jeans equation is calculated in Eq. (3.7). When we speak of the correction for the
velocity dispersion we assume the correction based on the non-zero value of the h4

parameter (see Chapter 2):

σcorr = σGH(1 +
√

6(h4)GH). (3.11)
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Figure 3.7: Dynamical modelling of the uncorrected velocity dispersion of IC 1459 using

X-ray data. The modelling lines based on different masses which correspond to different

temperatures are the following: the case of T = 0.7 keV is given with a solid line, the case

of T = 0.5 keV is given with a dashed line and the case of T = 1.1 keV is given with a dotted

line. In all cases spherical isotropy (β∗ = 0) and hydrostatic equilibrium are assumed.
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Figure 3.8: Dynamical modelling of the velocity dispersion corrected for non-zero values of

the h4 parameter of IC 1459 using X-ray data. The modelling lines based on different masses

which correspond to different temperatures are the following: the case of T = 0.7 keV is

again given with a solid line (β∗ = 0) and a short dashed line is for the case of T = 0.7 keV

(β∗ = β∗(r)). The case of T = 0.9 keV and β = β∗(r) is given with a long dashed line

and the case of T = 1.1 keV and β = β∗(r) is given with a dotted line. Again, in all cases

hydrostatic equilibrium is assumed.

IC 1459 (Fig. (3.7), Fig. (3.8))

First, we tested a spherical isotropic model (β∗ = 0) using different estimates for the
temperature: T = 0.7 keV (solid line), T = 0.5 keV (dashed line) and T = 1.1 keV
(dotted line). In all three cases spherical isotropy (β∗ = 0) and validity of hydrostatic
equilibrium were assumed and the values of the velocity dispersion were uncorrected
(the values of the h4 parameter were not taken into account, see Chapter 2). Only the
case for which T = 0.7 keV can provide a good fit to the observed data out to ∼ 50
arcsec. In the outer regions the observed velocity dispersion tends to decrease and
none of the fits is successful. This best-fitting value of T = 0.7 keV is, as expected, in
an excellent agreement with the value found using a virial assumption (see Eq. (3.10)).
This value, however, is somewhat higher than our preferred value of T = 0.4 − 0.6
keV found with the 2I modelling, thus implying a higher X-ray based mass-to-light
ratio than one inferred from stellar dynamics (as shown in Fig. (3.2)).
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Figure 3.9: Dynamical modelling of the velocity dispersion NGC 1399 using X-ray data.

For all the tests: β∗ = 0. Solid line is for the case for which T = 1.08 keV (from Davis and

White 1996), the dashed line is for the case for which T = 0.98 keV and the dotted line is

for the case for which T = 0.65 keV.

Second, since for IC 1459 (see Chapter 2) we have departures from zero of the
h4 which imply that radial orbits dominate (h4 > 0 beyond ∼ 20 arcsec) we have
also modelled the corrected values of the velocity dispersion (see Eq. (3.11)). For the
relations between h4 and β∗ see van der Marel and Franx (1993) and Gerhard (1993).
The fit which uses T = 0.7 keV and β∗ = 0 (the same as in Fig. (3.7) repeated here
again with solid line) can produce a reasonable agreement with the data. If we now
allow anisotropies (β∗ = β(r)) based on our observed h4(r) values as given above we
can see that T = 0.7 keV, except for the central parts (interior to ∼ 20 arcsec) this
fit given with the short dashed line fails to fit the corrected velocity dispersion. We
assume that h4 ∼ 0 (β∗ ∼ 0) in the inner regions of the galaxy and in the outer parts
at ∼ 3Re h4 is ∼ 0.2 (β ∼ 1). A slightly higher value of the temperature of T = 0.9
KeV, taken together with the same anisotropies (β∗ = β(r)) provides a better fit
especially in the intermediate region (between ∼ 10 and ∼ 50 arcsec). Finally, a fit
which used T = 1.1 KeV and β∗ = β(r) provides the best fit (among the ones tested)
in the region between ∼ 20 and ∼ 100 arcsec. Again, in the case of the modelling
of the corrected velocity dispersion data the value of the temperature based on the
X-rays is higher than that inferred from stellar dynamics (T ∼ 0.4 − 0.5 keV): the
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preferred value of T = 1.1 keV is higher than that in the uncorrected case (T = 0.7
keV). The reason for this discrepancy could be due to the inherent assumptions of
the two methodologies (such as the validity of hydrostatic equilibrium and constant
value of the temperature in the case of the X-rays and mass profile used in the case
of the detailed Jeans modelling; see also the discussion about the mass-to-light ratio
of IC 1459 earlier in this Section). It is important to stress that before we can use
the X-ray temperatures to model the velocity dispersion we need to understand the
reasons for the differences which might be due to different types of mass profiles
and/or problems with the 2I models.

NGC 1399 (Fig. (3.9))

When we modelled the corrected values of the velocity dispersion of NGC 1399 we
again applied the hypothesis of isotropy (β∗ = 0, based on the h4 parameter consistent
with zero throughout the galaxy). The best agreement with the observed data is
attained when T = 0.65 keV (this corresponds to a lower mass-to-light ratio, M/LB ≈
4 − 7). If one adopts this value of the temperature, this would mean that out to
∼ 1.7Re (the distance out to which we have long-slit observations) dark matter does
not play an important role.
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Figure 3.10: Dynamical modelling of the velocity dispersion NGC 1404 using X-ray data.

For all the tests: β∗ = 0. Solid line is for the case for which T = 0.40 keV and the dotted

line is for the case for which T = 0.62 keV (from Davis and White 1996).
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NGC 1404 (Fig. (3.10))

Because of the huge error bars taken into account when the corrected values of the
velocity dispersion are plotted the simple Jeans modelling of NGC 1404 cannot tell
us much. It is however obvious that for the isotropic modelling (β∗ = 0, based on
the h4 parameter consistent with zero throughout the galaxy) the lower value of the
temperature (T = 0.40 keV) is preferred. We remind the reader that both quoted low
value and the high value (T = 0.62 keV) of the temperature were permitted when we
compared the X-ray estimates of the total mass-to-light ratio to those based on the
2I modelling (see Fig. (3.4)).
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Figure 3.11: Dynamical modelling of the velocity dispersion of NGC 3379 using X-ray

data. Observational points are folded about y-axis and are taken from Statler and Smecker-

Hane (1999). Long dashed line is the spherical isotropic case (β∗ = 0), when hydrostatic

equilibrium is assumed. Thin solid line is for the case when hydrostatic equilibrium is

assumed for which radial orbits dominate (β∗ = 0.4). The short dashed line is based

on the estimate of the β∗-parameter obtained for the constant mass-to-light ratio model

(“cst” model) of Kronawitter et al. (2000) and the dotted line is based on the estimate of

the β∗-parameter obtained for the “best model” (“bm”) of Kronawitter et al. (2000): they

extend only interior to ∼ 100 arcsec. Two outermost points given as filled circles taken from

Romanowsky et al. (2003) are based on PNe and two outermost points given as filled squares

are taken from Pierce et al. (2006) and are based on GCs.
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Figure 3.12: Dynamical modelling of the velocity dispersion NGC 4105 using X-ray data.

Solid line is for the spherical isotropic case (β∗ = 0), the dashed line is for the case of

β∗ = −0.2 (predominantly tangential orbits) and the dotted line is for the case of β∗ = 0.2
(predominantly radial orbits).

NGC 3379 (Fig. (3.11))

Here we modelled uncorrected values of the velocity dispersion because the departures
of the h4 parameter are only marginally inconsistent with zero. In our modelling we
have used the temperature T = 0.26 keV, as given in Table 3-1. A spherical isotropic
model (β∗ = 0) is excluded: in this case the model is completely inconsistent with
the observed data. Two models based on the paper by Kronawitter et al. (2000) do
not provide a good fit to the data either: the case of the “best model” (dark matter
implied: 0 < β∗ < 0.3) provides marginally better fit than that of the constant M/L
ratio (0 < β∗ < 0.2). After a failure to obtain a successful fit using β∗ values taken
from the literature we experimented with different (positive and constant) values of
β∗: the case of β∗ = 0.4 provides a very good fit to the data. Thus we can conclude
that using the approach based on the X-rays (two-integral approach) we can say that
for NGC 3379 the dark matter is not dynamically dominant to ∼ 1.5Re because at
∼ 1.5Re one can get the same cumulative mass-to-light ratio as it is obtained using
stellar dynamical modelling. Note that the gradient of the mass seen in the X-rays
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is not consistent with the constant mass-to-light ratio. However, as in Mathews and
Brighenti (2003b) the value of the β∗ parameter is larger than that obtained using
stellar dynamics although not much. Note that in our 2I dynamical modelling we
have used the h4 parameter to describe the anisotropies and not β∗. We find that the
positive value of the β∗ parameter (β∗ ∼ 0.4) is in agreement with the positive values
of the h4 parameters (h4 ∼ 0.05) extracted from the observations and indicating radial
anisotropies in the outer parts of NGC 3379 (for the relations between h4 and β∗ see
van der Marel and Franx 1993, Gerhard 1993).

In a recent paper Pierce et al. (2006) studied Gemini/GMOS spectra for 22 globular
clusters associated with NGC 3379. Their results for the velocity dispersion are
incompatible with those of Romanowsky et al (2003), but are in agreement with the
predictions based on the X-rays found in this book (paragraph above; also published in
Samurović and Danziger 2005). Both our isotropic (β∗ = 0) and radially anisotropic
(β∗ = 0.4) predictions are in agreement with the results obtained by Pierce and
collaborators. It is however interesting to note that at larger distances from the
center isotropic case provides better agreement with the observed data. One of the
consequences of the results of Pierce et al. (2006) is the increasing mass-to-light ratio
in the outer regions of NGC 3379: they found at ∼ 200 arcsec that M/LB = 24 − 40
(in the B-band). The reason for the discrepancy with the results of Romanowsky et
al. (2003) is unclear because the modelling techniques used in two works are different7;
as stated by Pierce et al.: “For detailed comparison to such a model [Romanowsky et
al.], the dynamical characteristics and projection effects for both GCs and PNe would
need to be taken into account, which is beyond the scope of this work”.

A conclusion which emerges from different studies (some from this book and some
found in the literature) is the following: interior to ∼ 3Re (≈ 170 arcsec, that is
≈ 10 kpc) dark matter does not dominate because the total mass-to-light ratio in the
B-band is ΥB ≈ 5. Beyond ∼ 3Re the influence of dark matter starts to increase,
and most probably, at these higher radii it starts to dominate. More detailed studies
of different mass tracers (PNe and/or GCs) together with the X-rays studies will
hopefully clarify this.

NGC 4105 (Fig. (3.11))

In the modelling which we performed we have used the temperature T = 0.76 keV,
as given in Table 3-1. A spherical isotropic model (β∗ = 0) provides a good fit to
the observed data (note that we again neglected possible influence of NGC 4106). We
have also tested a case with β∗ = 0.2 (predominantly radial orbits) which provides
a reasonable fit to the observed velocity dispersion and a case with (β∗ = −0.2)
(predominantly tangential orbits) which does not provide a good fit to the data. Note
that in the case of NGC 4105 the error bars for the temperature of the X-ray halo
given by Davis and White (1996) are huge (especially the upper one): TX = 0.76+4.40

−0.69

keV. However, as can be seen in Fig. (3.6) the value TX = 0.76 keV falls just in
the middle between the upper and lower limit as obtained from the stellar velocity
dispersion which justifies its usage in the dynamical modelling which we performed.

7See the discussion on NGC 3379 above for a possible reasons for a discrepancy.
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As a side note, we stress that with the upper limit of TX = 0.76 + 4.40 = 5.16 keV no
fit could be obtained to the velocity dispersion even in the case when the maximum
allowed value of β∗ = 1 was used: velocity dispersion values were always grossly
exaggerated: σ > 450 km s−1 throughout the whole galaxy.

3.3. SUMMARY OF THE GALAXIES WITH X-RAY HALOES

In this Section we presented the X-ray data and modelling of the galaxies from our
sample which possess an X-ray halo. A detailed stellar dynamical modelling of these
galaxies was given in Chapter 2 of this book. Here we note that Figures (3.2) – (3.6)
show in graphical form how X-rays can be used as an independent tracer of the mass
of the early-type galaxy: they show an overlapping (in some cases good, in other cases
poor) of X-ray data with the estimates obtained using stellar dynamical models.

A careful inspection of Figures (3.2) – (3.5) shows that there is an overlapping of
the mass-to-light ratio predictions based on the X-rays calculations and those based
using other methods (2I modelling, PNe, GCs). From the Figures presented in this
Chapter one can see that agreement between 2I modelling and other tracers and X-ray
estimates is: poor/good for IC 1459 and very good for NGC 1399, NGC 1404 and
NGC 3379. Here we obviously excluded the galaxy NGC 4105 for which our long-slit
data extended to only ∼ 1Re.

The case of IC 1459 (the galaxy with the counterrotating core) is the only one for
which there is a strong discrepancy between the X-ray and stellar dynamics estimate.
The reason for a poor agreement in the case of IC 1459 may lie in the temperature
determination in the inner parts of the galaxy (inside 3 Re): lower temperature
(T ∼ 0.6 keV, taken from Davis and White 1996) does provide at least a marginal
concordance with the 2I modelling; the estimate based on Tσ (Eq. (3.10)) is large
which is a consequence of the large central velocity dispersion of this galaxy.

Using the PNe observations that provide mass-to-light ratio estimates out to much
larger radii, one can see that the conclusions based on the X-rays for NGC 3379 are
inconsistent with the observations (see Fig. (3.5)) beyond 3Re. The behaviour of the
mass-to-light ratio in this galaxy based on the GCs is in agreement with the X-ray
estimates.

Using these findings, together with the result of Peng et al. (2003) who have found
that for NGC 5128 at 15 Re the mass-to-light ratio is only 13 (in the B-band) (much
lower than the value expected from the X-rays analysis: M/LB ∼ 112 ± 28, cf.
Bahcall, Lubin and Dorman 1995), one can infer that there is a discrepancy between
the mass-to-light ratios calculated using X-rays and PNe techniques at the large radii
(beyond 3Re) from the center (see the discussion in Chapter 5 for more details).
One possible reason could be that the initial assumptions about the hot gas are not
correct. In a recent review Bosma (2004) writes: “Yet the new Chandra and XMM
data show a wealth of detail in the images of the X-ray gas of individual galaxies,
so much that one can question the validity of the hydrostatic equilibrium equation
used to evaluate masses”. Bosma (2004) notes that another complication related to
the mass determinations based on the X-rays is the contribution to the X-ray flux
of low mass X-ray binaries, which presumably occur in globular clusters and in the
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field. Ciotti and Pellegrini (2004) and Pellegrini and Ciotti (2006) also question the
existence of hydrostatic equilibrium in elliptical galaxies and discuss the influence of
departures from equilibrium on the estimate of the mass in these galaxies. Diehl and
Statler (2006) used a sample of 54 normal ellipticals from the Chandra archive and
found that there is no correlation between optical and X-ray ellipticity as would be
expected had the gas settled into hydrostatic equilibrium with a given gravitational
potential (see also Chapter 5 when we discuss the galaxy NGC 5128). Their analysis
lead them to conclude that, in the sample which they studied, “the gas appears to be
very disturbed and that the general perception of normal elliptical galaxies hosting
calm, hydrostatic gas has to be revised.”
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Chapter 4

LINE STRENGTH INDICES

In this Section we define spectral indices and present their measurements for the
galaxies from our samples. We then compare the results from the up-to-date chemical
evolution models with measurements in order to gain insights about the existence of
dark matter in the objects which we analyzed.

4.1. MEASUREMENTS

Sandra Faber initiated in 1972 a long-term spectroscopic project that was aimed at
the study of the stellar populations in globular clusters and early-type galaxies. For
this purpose the Image Dissector Scanner (IDS) on the Shane 3m telescope of
Lick Observatory was used. Faber and her collaborators observed a large number of
galaxies, and stars of all types, field and cluster giants, subgiants and dwarfs in the
spectral range from ∼ 4000 Åto ∼ 6200 Åwith a ∼ 8.6 ÅFWHM resolution. The Lick
group defined and measured 21 indices to monitor the strength of spectral features in
stars and galaxies (see Gonzalez 1993).

Spectral indices were defined in Faber et al. (1985) and reprinted in Binney and
Merrifield (1998)8. Note, however, that since the early papers of the Lick group the
wavelength accuracy has improved and new definitions are now valid. All of our
calculations were based on the updated version of the indices table taken from the
WWW site of G. Worthey9.

In order to define an index one should define a central band of width ∆0 and two
side bands. The “side-band level” Is is defined to be the mean intensity over the
two side bands, and the intensity of the central feature Ic is the mean intensity in
the central band. There are two groups of indices: one is measured as an equivalent
width (for example iron indices):

w =

(

1 − Ic

Is

)

∆0

and the other is measured in magnitudes (for example Mg2):

w = −2.5 log

(

1 − Ic

Is

)

.

8Note the misprint in the book of Binney and Merrifield, for the Mg2 index the central band
should read: 515.600–519.725 nm instead of 515.600–519.750 nm, cf. Faber et al. (1985).

9http://astro.wsu.edu/worthey/html/index.table.html.
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The spectra that we had were centered to be near the Mg2 feature (∼ 5150 Å). For
the comparison with the models we will use Mg2 and iron indices and their definitions
are given in Table 4-1 (for a full list of definitions see WWW site of G. Worthey).

TABLE 4-1

Definitions of indices used in this book

Name Index band blue continuum red continuum Units

Mg2 5154.125 5196.625 4895.125 4957.625 5301.125 5366.125 mag
Fe5270 5245.650 5285.650 5233.150 5248.150 5285.650 5318.150 ang
Fe5335 5312.125 5352.125 5304.625 5315.875 5353.375 5363.375 ang

NOTE: Units: “mag” refers to the index measured in magnitudes, and “ang” refers to the

index measure in Angstroems.

For the purpose of measuring of the line strength indices we have written a set of
routines in FORTRAN that we embedded in the MIDAS scripts in order to extract indices
from the long-slit spectra. We relied on the AVINT routine by Davis and Rabinowitz
(1984) that was included in the SLATEC library of programs10. This routine, based
on overlapping parabolas, calculates the integral

b
∫

a

f(x)dx

when f(x) is tabulated in nonequally spaced abscissas – this is the most general case:
in our calculations abscissas were equally spaced. We tested the routine using some
elementary functions and also some standard spectra obtained from the site of G.
Worthey and the agreement was excellent with the elementary functions and very
good in the case of the Worthey’s spectra.

We performed two tests to verify the accuracy of our spectral indices calculations.
The first test is an example (p. 61) from Chapter 2.3 of Davis and Rabinowitz (1984):
integrals of four functions given in Table 4-2 over [0,1] are calculated using the AVINT
algorithm. The functions are calculated at x = 0.00, 0.10, 0.15, 0.20, 0.23, 0.25, 0.30,
0.40, 0.45, 0.48, 0.53, 0.62, 0.78, 0.82, 0.89, 0.92 and 1.00. The agreement with both
theoretical and values calculated by Davis and Rabinowitz is extremely good. In the
second test we calculated the aforementioned three indices for all seven IDS stars
whose spectra and indices are given on the WWW site of G. Worthey (see Table
4-3). The agreement, is typically very good, although we note that in the case of
a very low Mg2 (HYA VB 95) and a very low Fe5335 (HYA VB 103R) there are
some discrepancies. We also note the discrepancy with the Worthey’s calculations
in the case of HR 6770 (in iron indices). As an additional test we will compare our
results with the results of other authors when such data exist for the internal parts
of early-type galaxies.

10http://www.netlib.org/slatec/src.
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TABLE 4-2

Comparison of calculations of integrals of analytic functions

function exact this book Davis and Rabinowitz

x1/2 0.6666 6667 0.6634 2467 0.6634 2607

x1/4 0.8000 0000 0.7883 1637 0.7883 1842
x1/8 0.8888 8889 0.8676 3126 0.8676 3089

x1/16 0.9411 7647 0.9126 5356 0.9126 5294

TABLE 4-3

Comparison with the Worthey’s calculations

Name calc. Mg2 Fe5270 Fe5335

HYA VB 111 (W) 0.0294 1.2326 0.5729
HYA VB 111 (S) 0.0296 1.2866 0.6132

HYA VB 112 (W) 0.0368 0.9764 0.7577
HYA VB 112 (S) 0.0367 0.9562 0.7827

HYA VB 103R (W) 0.0264 2.3431 -0.1757
HYA VB 103R (S) 0.0267 2.2108 -0.0804

HYA VB 103R+L (W) 0.0298 1.3770 0.3774
HYA VB 103R+L (S) 0.0300 1.3709 0.4655

HYA VB 95 (W) 0.0181 0.3502 0.2472
HYA VB 95 (S) -0.0082 0.3585 0.5283

HR 6770 (W) 0.1490 3.4392 2.5624
HR 6770 (S) 0.1371 2.4596 0.8761

HR 7429 (W) 0.3599 3.6879 3.5034
HR 7429 (S) 0.3613 3.8625 3.5029

NOTE: Letter “W” refers to the calculations of Worthey, and letter “S” refers to the results

obtained using AVINT routine in this book. Note that in the case of HYA VB 103 two

different spectra were given.

The routines that we have written were used on the deredshifted spectra, and
measurements were standardized to a Lick system. Two steps were necessary to
transform the spectra into the Lick system (see for example Halliday 1998):
1. correction to zero velocity dispersion, and
2. correction to the Lick IDS spectral resolution (∼ 8.2Åat ∼ 5200 Å).
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The correction for the effects of the velocity dispersion included the following steps:
different stellar spectra were smoothed by Gaussians of various widths that correspond
to measurements of σ = 0−400 km s−1 in the intervals of 35 km s−1. The smoothing
was done using IRAF task gauss. Then a correction factor is calculated by a compar-
ison of the each smoothed spectrum with a measurement for the original unsmoothed
stellar spectrum. In the case of the molecular index Mg2 the correction factor is
defined as a difference between the measurement of the original unbrodened stellar
spectrum and that of the spectrum broadened to a particular velocity dispersion:

C(σ) = Iorig − Iσ .

For the atomic indices (Fe5270 (often abbreviated to Fe1), Fe5335 (often abbrevi-
ated to Fe2))11 correction factor is defined as the ratio between the original and the
smoothed line indices:

C(σ) = Iorig/Iσ .

Because the bands are wide, the corrections for Mg2 are very small, so we do not
apply them. On the contrary, the corrections for the iron indices can be significant,
and we present in Fig. (4.1) the calculated values of the corrections for the iron indices
in the case of IC 3370.

The second correction is related to the different spectral resolution of our observa-
tions and those of the Lick IDS. The spectra of the calibration lamps (for example
Helium-Argon) were inspected to measure the instrumental resolution and then the
galaxy frames were broadened so as to match the Lick spectral resolution (∼ 8.2Åat
∼ 5200 Å).

Following the paper of Carollo, Danziger and Buson (1993) the estimate of the
errors for the indices was calculated using:

εi =

√

OBJ + 2 × DK +
(

1 + 1
Nrows

)

× SKY + ron2

OBJ
,

where OBJ is the total count in the object, SKY is the total count in the sky, DK
is the total count in dark, and ron is the read-out noise of the CCD. The term 1

Nrows

comes from a subtraction of a sky averaged on Nrows(=30) rows from the galactic
spectra. One can now define the error on the line-strength index:

ε = coeff ×
√

∑

i=c1,c2,b

ε2i ,

where c1, c2 and b indicate respectively the two continua and the index band. The
coefficient is equal to 1.08(= −2.5log e) for the Mg2 index (and is mentioned here
only for the sake of completeness, because the Mg2 correction was not applied), and

to
(Cfeat×Wpix)

Ccont
for the iron indices (Cfeat is the total count in the feature, Wpix is the

pixel width in Å, and Ccont is the average continuum).

11As usual, one defines < Fe >= Fe5270+Fe5335
2

.
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Figure 4.1: The corrections for the iron indices for IC 3370. Left: Dependence of the

velocity dispersion on the radius. Right: Values of the corrections of the iron indices: black

circles denote Fe5270 and open circles denote Fe5335.

In the case of Sample 2 (Fornax galaxies) we had spectra of three template stars:
HD4188, HD26846 and HD4128. Since for HD4188 the calculated Mg2 index was
negative, for HD26846 Fe5335 was negative and for HD4128 both Mg2 and Fe5335
were negative, no reliable corrections could have been obtained and therefore for this
Sample we do not present result of calculations of indices. The stellar populations of
early-type galaxies in the Fornax cluster are given in detail in Kuntschner (2000).

The results which we obtained are in good agreement with these of Carollo, Danziger
and Buson (1993) for IC 1459 (Mg2 is in an excellent agreement, Fe5270 that we ob-
tained is somewhat higher ∼ 3.8 in the center whereas they obtained ∼ 3.4) and
IC 3370 (Mg2 in an excellent agreement, iron indices for IC 3370 are not given in
Carollo, Danziger and Buson 1993). For NGC 3379 both Mg2 and iron indices that
we obtained are in a very good agreement with these obtained by Kuntschner et
al. (2001). Finally, for NGC 4105 the central value for Mg2 that we obtained (∼ 0.26)
is a bit lower than that given by Davies et al. (1987) (∼ 0.3). Iron indices were not
compared for NGC 4105 because they are not given in Davis et al. (1987).

4.2. MODELLING

The modelling of the indices in this book was based on the Pipino and Matteucci
(2003) paper and the models were calculated by A. Pipino. Here, we briefly present
the basics of the model.

This is a multi-zone photo-chemical evolution model for elliptical galaxies that takes
into account detailed nucleosynthetic yields, feedback from supernovae and an initial
infall episode. Its basic prediction is that for galaxies with higher mass the infall and
the star formation timescales are shorter: the most massive objects are older than the
less massive ones (the larger galaxies stop forming stars at earlier times). According
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to this scenario, the galaxies are created outside-in: the outermost regions accrete
gas, form stars and develop a galactic wind very quickly, whereas in the central core
the star formation can last up to ∼ 1.3 Gyr.

This monolithic collapse model in which ellipticals formed relatively quickly and
at high redshifts is opposed to the hierarchical clustering model according to which
ellipticals form over a large redshift interval. An evidence in favour of the monolithic
collapse (for a full list see e.g. Calura 2004) is the increase in the strength of the
metal metal absorption lines (Mass-metallicity relation) with the velocity dispersion
(see Fig. (4.9)). The sample of five galaxies (especially galaxies with different pecu-
liarities, such as counterrotating core, isophotal twisting, possible lack of dark matter)
is of course too small to draw statistically significant conclusions, but the trend of
increasing strength with the velocity dispersion is obvious.

Several different models were run with a calibration derived in the Pipino and Mat-
teucci (2003) paper that uses calibration relations of Worthey (1994). This calibration
is derived for a 12 Gyr old simple stellar population (SSP) with solar abundance ratios
and [Fe/H]> −0.5 and the relations are:

Mg2 = 0.187 · [Fe/H] + 0.263,

< Fe >= 1.74 · [Fe/H] + 2.97,

where notation [Fe/H] is defined to be:

[Fe/H] ≡ log10

(

n(Fe)

n(H)

)

galaxy

− log10

(

n(Fe)

n(H)

)

�
,

where n(Fe)/n(H) is the abundance (by number) of iron relative to hydrogen.
There exists a significantly different calibration based on the synthetic indices by

Tantalo et al. (1998). At present the quality of fit with this calibration is not good,
especially for the Mg2 index where unphysical results occur. One suspects that this
calibration needs to be revised.

Results of different runs are given in Figs. (4.10)–(4.13). In several runs a dark
matter halo was included for which the profile was taken from Bertin et al. (1992). The
assumption that was made in this case is that the total mass of the dark component
is ten times larger than that of the luminous one. Dark halo has a scale radius of 10
Re. Because of the fact that no significant amount of dark matter was found in this
book from the dynamical modelling, several runs were made without the dark matter
component. Physically, the lack of the dark matter means that the galactic wind in
a given galaxy stars earlier at a given radial distance from the center but does not
affect the chemical evolution. These runs seem to provide a better agreement with
the observed data (see below).

An important conclusion from the paper of Pipino and Matteucci (2003) is that the
variations of Mg2 depend on the radial gradients in [Fe/H] and [Mg/Fe] (see Fig. 7 in
their paper), while the predicted <Fe> gradient reflects instead the variation of the
real abundance, [Fe/H], as a function of galactic radius (see their Fig. 8). Therefore,
one can conclude that the modelling of the iron indices is more reliable in establishing
the real variation of the metallicity with the radius.
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The results of the modelling are as follows. Two cases for which we had the spectra
that extend out to large radial distances are especially difficult ones: IC 1459 (with a
counterrotating core) and IC 3370 (with the large isophotal twisting). The calibration
based on Worthey (1994) provided various degrees of fit to the observed data. Several
tests were done for each galaxy, and only the best fits to the observed values were
plotted. The masses that were used are given in captions of Figs. (4.10)–(4.13).
Different input parameters are given in Pipino and Matteucci (2003): the best model
“IIb” was used. For IC 3370 (see Fig. (4.10)) the model with dark matter can provide
a good fit for the iron index, but fails for Mg2, whereas the test done without the dark
matter provides better agreement for Mg2 throughout the whole galaxy. None of the
computed models could provide a good fit for Mg2 index of IC 1459 (see Fig. (4.11)).
The model which is devoid of dark matter provides better agreement in the outer parts
of IC 1459 (beyond 1Re). The observational results for NGC 3379 (see Fig. (4.12))
unfortunately do not extend out to a large radial distance and firm conclusions cannot
be drawn. Finally, in the case of NGC 4105 (see Fig. (4.13)) the models provide an
excellent fit to the Mg2 index (again for the test done without the dark matter); none
of the models run could fit the iron index.

As we have shown, the approach of Pipino and Matteucci can provide satisfactory
fits in several difficult cases with the assumption of the absence of the dark halo in the
given galaxy. One may argue that the changes of different input parameters to the
model could improve the fit for a given galaxy without depriving it of its dark matter
content. Several such tests were run: (i) the efficiency of star formation (ν) was varied
but without a significant improvement of the fit (in the case of IC 3370, for example),
(ii) the infall timescale (τ) was varied but again without a significant improvement
of the fit (again for IC 3370). Only the exclusion of the dark matter halo could
improve the fit to the data. It is probably premature to draw a conclusion about the
dark matter content in early-type galaxies based on this kind of modelling (certainly,
more tests are needed on a larger sample), but this approach in combination with the
dynamical analyses could provide some insights into the chemo-dynamical properties
and history of these galaxies.
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Figure 4.2: Mg2 and iron indices (Fe5270, Fe5335, and <Fe>) for the major axis of IC 3370.
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Figure 4.3: Mg2 and iron indices (Fe5270, Fe5335, and <Fe>) for the minor axis of IC 3370.
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Figure 4.4: Mg2 and iron indices (Fe5270, Fe5335, and <Fe>) for the intermediate axis of

IC 3370.
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Figure 4.5: Mg2 and iron indices (Fe5270, Fe5335, and <Fe>) for the major axis of IC 1459.
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Figure 4.6: Mg2 and iron indices (Fe5270, Fe5335, and <Fe>) for the major axis of

NGC 3379.
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Figure 4.7: Mg2 and iron indices (Fe5270, Fe5335, and <Fe>) for the major axis of

NGC 4105.
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Figure 4.8: Mg2 and iron indices (Fe5270, Fe5335, and <Fe>) for the minor axis of

NGC 4105.
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Figure 4.9: Mass-metallicity relation for the galaxies in our samples. Top: Mg2 index (in

magnitudes) vs. velocity dispersion (in km s−1). Bottom: <Fe> index (in Å) vs. velocity

dispersion (in km s−1).
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Figure 4.10: Modelling of Mg2 index (above) and <Fe> (below) for IC 3370 using model

of Pipino and Matteucci (2003). Thin solid lines are for the case for which the total mass

is 1.15 × 1011M�, with dark matter, thicker solid lines are for the case for which the total

mass is 4.00 × 1011M�, with dark matter, and finally, the thickest solid lines are for the

case for which the total mass is 1.15 × 1011M� and without dark matter.
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Figure 4.11: Modelling of Mg2 index (above) and <Fe> (below) for IC 1459 using model

of Pipino and Matteucci (2003). Thin solid lines are for the case for which the total mass

is 6.00 × 1011M�, with dark matter, thicker solid lines are for the case for which the total

mass is 2.38 × 1011M�, with dark matter, and finally, the thickest solid lines are for the

case for which the total mass is 6.00 × 1011M� and without dark matter.
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Figure 4.12: Modelling of Mg2 index (above) and <Fe> (below) for NGC 3379 using model

of Pipino and Matteucci (2003). Thin solid lines are for the case for which the total mass

is 1.00 × 1011M�, with dark matter, thicker solid lines are for the case for which the total

mass is 1.82 × 1011M�, with dark matter, and finally, the thickest solid lines are for the

case for which the total mass is 1.00 × 1011M� and without dark matter.
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Figure 4.13: Modelling of Mg2 index (above) and <Fe> (below) for NGC 4105 using model

of Pipino and Matteucci (2003). Thin solid lines are for the case for which the total mass

is 5.00 × 1010M�, with dark matter, thicker solid lines are for the case for which the total

mass is 2.00 × 1011M�, with dark matter, and finally, the thickest solid lines are for the

case for which the total mass is 5.00 × 1010M� and without dark matter.
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Chapter 5

MASS ESTIMATES BASED ON PLANETARY

NEBULAE AND GLOBULAR CLUSTERS

As already mentioned in Introduction (Sec. I.2b) planetary nebulae (PNe) and glob-
ular clusters (GCs) represent very important tracers of the total mass of a given
elliptical galaxy at large radii from the center. The case of the galaxy NGC 3379
already mentioned in the previous Chapters is an interesting one: integrated stellar
spectra interior to ∼ 1.5Re suggest the lack of dark matter there. Ciardullo, Jacoby
and Dejonghe (1993) used 29 PNe to infer that there was no dark matter within
∼ 3.5Re (Re was taken to be ∼ 55 arcsec). Ten years later a paper by Romanowsky
et al. (2003) attracted a lot of attention in the scientific community interested in dark
matter because it claimed that in the sample studied which consisted of three early–
type galaxies (NGC 821 out to ∼ 3.5Re, NGC 3379 out to ∼ 5.5Re

12 and NGC 4494
out to ∼ 3Re) there was no need for dark matter because of declining trend in the
velocity dispersion of the observed galaxies. Very recently, Pierce et al. (2006) have
obtained Gemini/GMOS spectra for 22 GCs associated with NGC 3379 and found
that, in contrast to the results of Romanowsky et al. (2003), their results suggest a
constant value of the velocity dispersion (out to ∼ 200 arcsec) which imply a normal–
sized dark matter halo. They do note, however, that due to possible anisotropies (see
below) they could not rigorously determine the dark halo mass. The result by Pierce
et al. (2006) is the confirmation of the trend in the velocity dispersion obtained using
solving the Jeans equation based on the X–ray observations in Chapter 3 (see also
Samurović and Danziger 2005). Throughout this section it is assumed, as previously,
the following value of the Hubble constant: h0 = 0.70.

In this Chapter some basic concepts regarding calculation of the basic quantities
(such as velocity dispersion and total mass) will be given. Later in the Chapter this
formalism will be applied to two large ellipticals: NGC 1399 (central galaxy of the
Fornax galaxy cluster, already discussed using integrated stellar spectra in Chapters
2 and 3) and NGC 5128 (also known as the radio source Centaurus A). Since both of
these galaxies possess an X–ray halo, the comparison with the results based on the
X–ray methodology will also be given. In the case of NGC 5128, the Jeans modelling
of the velocity dispersion will also be presented. The results from this Chapter are

12Note that Romanowsky et al. used Re = 35 arcsec; the last observed point is thus observed at
∼ 3.5Re which is the same distance found in Ciardullo et al. (1993). It is also worth noting that
Romanowsky et al. observed 109 PNe.
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given in Samurović and Danziger (2006, for NGC 1399) and Samurović (2006, for
NGC 5128).

5.1. MATHEMATICAL BACKGROUND

5.1.1. VELOCITY DISPERSION

The most important quantity that is calculated from both GCs and PNe radial veloc-
ity observations is the velocity dispersion. Frequently authors do not explicitly state
how they obtained their estimates of this quantity, so one is led to the conclusion that
the adopted velocity distribution is purely Gaussian or that the authors have used
a simple statistical definition of the standard deviation to calculate it. For example,
in a recent series of papers Dirsch et al. (2003), Richtler et al. (2004) and Dirsch et
al. (2004) analyzed the GC system of the galaxy NGC 1399, the central galaxy of the
Fornax cluster. They used 468 radial velocities assuming a pure Gaussian distribution
to conclude that the velocity dispersion of this galaxy remains approximately constant
between 2 and 9 arcmin, corresponding to 12 kpc to 54 kpc, which corresponds to
approximately 2.86 and 12.86 Re, under the assumption that one effective radius is 42
arcsec. This value of the effective radius comes from the RC3 catalog (de Vaucouleurs
et al. (1991)) and we verified it using the growth curve of NGC 1399.

When dealing with the velocities related to the GCs and/or PNe one usually as-
sumes a pure Gaussian velocity distribution: for example, Grillmair et al. (1994)
analyzed 47 GCs within 9 arcmin in NGC 1399 using the methodology developed by
Morrison et al. (1990) to calculate a velocity dispersion (σ = 388 ± 54 km s−1) and
a mass-to-light ratio in the B-band (M/LB = 79 ± 20, interior to 9 arcmin). This
technique uses a maximum likelihood approach and, Morrison et al. state that since
this technique is model–dependent slightly non–Gaussian distributions can have sig-
nificant effects on the performance of estimators resulting in the possibility that this
model dependence may be important and should be recognized. Richtler et al. (2004)
used the maximum likelihood dispersion estimator given in Pryor and Meylan (1993).
The Gaussian estimator can be expressed as:

fG(vi) =
1

√

2π(σ2 + δ2
i )

exp

(

− (vi − v)2

2(σ2 + δ2
i )

)

, (5.1)

where σ is the velocity dispersion, and it is assumed that each velocity vi (the GC ve-
locity from which the systemic velocity, vsys, is subtracted — in the case of NGC 1399
vsys is fixed to 1441 km s−1 and in the case of NGC 5128 is fixed to 541 km s−1) is
drawn from the normal, Gaussian, distribution. v is the mean velocity and δi is a
known measurement uncertainty of vi.

The maximum likelihood function is then given as

LG =
∏

i

1
√

2π(σ2 + δ2
i )

exp

(

− (vi − v)2

2(σ2 + δ2
i )

)

. (5.2)

Taking the logarithm of Eq. (5.2) and finding

∂lnLG

∂σ
= 0, (5.3)
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one can calculate the velocity dispersion using an iteration procedure as:

∑

i

(vi − v)2

(σ2 + δ2
i )2

=
∑

i

1

σ2 + δ2
i

, (5.4)

where the sum includes all the velocities in a given bin. In all our calculations below
we always have v = 0. Using expressions given in Pryor and Meylan (1993) one can
then calculate uncertainty of the resulting velocity dispersion.

5.1.2. MASS ESTIMATES

Evans et al. (2003) introduced a new “tracer mass estimator” which provides an
estimate of the enclosed mass from the projected positions and line–of–sight velocities
of a given tracer population (such as GCs and PNe). One can assume that the tracer
population is spherically symmetric and has a number density which obeys a power
law:

ρ(r) = ρ0

(a

r

)γ

(5.5)

where a is constant, and radius r ranges between rin and rout, inner and outer points
of the given population (in this case GCs and PNe), respectively. The parameter
γ can be determined using the surface density of the tracer population between rin
and rout. Evans et al. provide the following formula for the mass enclosed within
rin and rout for the isotropic (“iso” in the formulas below) case (“los” stands for
line–of–sight):

M =
Ciso
GN

∑

i

v2
losiRi, (5.6)

where constant Ciso is given as:

Ciso =
4(α+γ)

π

4−α−γ

3−γ

1−(rin/rout)3−γ

1−(rin/rout)4−α−γ
. (5.7)

The parameter α for an isothermal potential is equal to zero and this value was taken
in all the calculations which we performed below. This is a reasonable assumption
(see Evans et al. 2003 for details). In this book we dealt with the isotropic case,
because of the hint of the small departures from the Gaussian distribution (as given
by the s3 and s4 parameters, see below). The isothermal potential predicts a quasi–
constant velocity dispersion profile and this is applicable in the cases of NGC 1399 and
NGC 5128 (see below). Note that the formalism of Evans et al. (2003) permits one
to perform calculations related to an anisotropic case: in such a case the coefficient
Ciso will be modified. These authors however strongly recommend the usage of the
isotropic case “unless there are compelling reasons to the contrary (e.g., a highly
flattened system supported by an anisotropic velocity dispersion)”.
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5.2. NGC 1399

5.2.1. KINEMATICS OF GCs OF NGC 1399

The basic data related to the early–type galaxy NGC 1399 were given in Chapter 1
and this Section we only presented the data and analysis related to its GCs. The
already obtained results from the X–rays methodology (from Chapter 3) will be used
for comparison.

The globular cluster system of NGC 1399 was presented in Dirsch et al. (2003,
wide–field photometry), Richtler et al. (2004, kinematics) and Dirsch et al. (2004,
spectroscopy and database). In our analysis, we use the set of 445 GCs for which
the estimated uncertainties are δi < 60 km s−1. This selection enabled us to have a
sufficiently large number of clusters in each chosen radial bin and it was also useful
in the construction of the bins given in Table 5-2, which contain approximately 50
clusters each. We took as a center of NGC 1399 the coordinates (J2000.0) given in
the NED database: α = 03h38m29.s08 and δ = −35◦27′02.′′7. In Fig. (5.1) we present
the comparison of our results (open circles) with those of Richtler et al. (2004) (filled
circles; the second column of their Table 2, no selection was performed). In this case a
pure Gaussian distribution is assumed and the agreement is very good. In Fig. (5.2)
we present the comparison of our results (open symbols) with those of Richtler et
al. (2004) (filled symbols) for red (C −R > 1.6) and blue (C −R < 1.6) clusters using
the Richtler et al. bins (see also Table 5-1 (where the data for Washington C and
Kron–Cousins R are taken from Dirsch et al. 2004). Our total number of red and blue
clusters used in this comparison is 412: we have taken into account all the clusters for
which we had colours and for which δi < 60 km s−1. A pure Gaussian distribution is
assumed. If we place all GCs of a given colour in one bin our results are in very good
agreement with those of Richtler et al. : for red GCs we found σred = 259±11 km s−1

and they found σred = 255± 13 km s−1, and for blue GCs we found σblue = 295± 12
km s−1 and they found σblue = 291 ± 14 km s−1. However, there are discrepancies
related to the individual bins for the velocity dispersion values of Richtler et al. which
we may attribute to our selection criterion: we took only GCs for which δi < 60
km s−1.

In Table 5-1 we list our results for the projected velocity dispersion in the case of
the pure Gaussian velocity distribution (with δi < 60 km s−1) for the total sample of
clusters. In this Table we also give our results for blue and red clusters. We have used
the bins defined in the Richtler et al. (2004) paper: as can be seen from Fig. (5.3)
with these bins the velocity dispersion remains approximately constant throughout
the galaxy. Errors were calculated using the lengthy expressions of Pryor and Meylan
(1993). With Richtler et al. binning of the data there exists a significant overlap
of the bins: that is, there are many of the same clusters present in two different
bins. Therefore, we bin the data taking approximately 50 GCs in each separate
bin (see Table 5-2): using this approach and assuming a Gaussian distribution
we see a decreasing trend in the velocity dispersion between ∼ 3 and ∼ 7 arcmin
(see also Fig. (5.4); more details are given below in this Section). We checked the
projected velocity dispersion for the cases of departure from a pure Gaussian velocity
distribution using s3 and s4 parameters presented in Table 5-2 and we did not find
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Figure 5.1: Comparison between our calculation of the velocity dispersion of NGC 1399

(open circles) and calculations of Richtler et al. (2004) (filled circles), when a pure Gaussian

distribution is assumed. Note that for the outermost point the two values overlap.

large differences: the calculated values thus obtained are equal to the ones obtained
using a pure Gaussian within the error bars.

For example, using large (Richtler et al. ) bins the last measured point was calcu-
lated for all GCs beyond 6.5 arcmin and some clusters (73 clusters between 6.5 and
7.5 arcmin) were already taken into account in a preceding bin. For all the given
bins we calculated the velocity dispersion and the skewness and kurtosis parameters,
s3 and s4, using standard definitions and the NAG routine G01AAF (see Table 5-2
in which we present the results based on the maximum likelihood function and, for
comparison, the result obtained using the standard statistical definition). We are not
trying to reconstruct the full line–of–sight velocity distribution, because it is known
(see Merritt 1997) that for small samples such as ours which contain less than a few
hundred objects per bin this is not possible — we simply calculate skewness and kur-
tosis parameters (we do not attribute much of significance to the numerical values
of these parameters) in order to determine whether in some bin a significant depar-
ture from a Gaussian distribution exists. The parameter s3 corresponds to h3 and s4

corresponds to h4 where h3 and h4 are quantities extracted from integrated stellar

126



MASS ESTIMATES BASED ON PLANETARY NEBULAE AND GLOBULAR CLUSTERS

0 2 4 6 8 10
150

200

250

300

350

400

Figure 5.2: Comparison between our calculation of the velocity dispersion of NGC 1399

for red (open rectangles) and blue clusters (open triangles) and calculations of Richtler et

al. (2004) for red (filled rectangles) and blue clusters (filled triangles). In all the cases we

assumed a pure Gaussian distribution.

spectra, as shown in Chapter 1. This is similar to the approach applied by Teodorescu
et al. (2005) in their Figure 18. The results are graphically presented in Fig. (5.3)
(left). The results based on the maximum likelihood function and those based on the
standard statistical method are in very good agreement. In order to test whether
differences in binning affect our calculations we also performed the calculations using
different binning with variable numbers of the GCs within a bin of fixed length (2
arcmin) without overlap of the bins. In Tables 5-3 and 5-4 we present the results for
the blue and red clusters, respectively. Here we have used a bin width of 2 arcmin in
order to include in each bin a statistically significant number of clusters. In Tables
5-5 and 5-6 we present two different types of binnings for which the center of each bin
is placed on odd and even values of the radius, respectively (the obvious exceptions
are the first and the last bin in Table 5-6). Table 5-7 presents the results of
one additional binning check for which each bin contains approximately 75 clusters
(instead of 50). The results for the blue, red and the total sample (which includes
both blue and red clusters) given in Tables 5-3 – 5-7 were obtained using the same
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Figure 5.3: Kinematics of NGC 1399 based on the total sample of red and blue GCs. Left:
From top to bottom: radial velocity of the GCs in km s−1, velocity dispersion calculated in a

given bin using a maximum likelihood method (open squares) and using standard statistical

procedures (filled circles), s3 and s4 parameters. In all the bins the total number of clusters

per bin was approximately 50. Right: The meaning of the data on the ordinate is the same

as in the left panel. It combines results for binning methods given as follows: filled circles

represent the data in Table 5-5, open circles are for the data given in Table 5-6 and

open triangles are for the data from Table 5-7.

standard statistical procedure based on the same NAG routine; they are graphically
presented in Fig. (5.3) (right) and Fig. (5.4). Although in Fig. (5.3) (left) we can see
a declining trend in the velocity dispersion, the reduced χ2 value is low for a constant
velocity dispersion of 330 km s−1 and is equal to 1.1 (the best fit case, when the first
point is excluded). The constant value of the velocity dispersion that ranges between
320 and 330 km s−1 provides the best fit case when N = 75 (the right hand panel of
Fig. (5.3)), but then χ2 ≈ 1.3 (all points are included in the fit).
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Figure 5.4: Kinematics of NGC 1399 based on the total sample of blue (left) and red (right)

GCs. From top to bottom: radial velocity of the GCs in km s−1, velocity dispersion, s3 and

s4 parameters calculated in a given bin from Tables 5-3 and 5-4.

For the total sample of clusters (Fig. (5.3)) we see a low velocity dispersion in
the inner region (interior to ∼ 2 arcmin), a higher value of the velocity dispersion
(beyond ∼ 2 arcmin) and a decrease of the velocity dispersion between ∼ 3 and ∼ 7
arcmin (more evident in the left panel of Fig. (5.3), because of the binning applied).
Beyond ∼ 8 arcmin we notice an increase in the velocity dispersion. We confirm the
finding of Richtler et al. (2004) regarding the innermost point (< 2 arcmin). Beyond
∼ 2 arcmin our results differ somewhat from those by Richtler et al. because of the
binning and selection criteria used.

The red clusters show a lower velocity dispersion than the blue clusters (see Fig.
(5.4)) and for a possible explanation we refer the reader to §4 of the paper by Richtler
et al. (2004). Although both s3 and s4 parameters are small we see that while the
calculated s3 parameters for blue clusters differ from those for red clusters, the s4
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parameters for both classes are very similar. The binning in both cases was such that
we kept the bin width constant and equal to 2 arcmin in order to have enough clusters
per bin.

Forte et al. (2005) state there are indications (albeit not conclusive) that there
could be an association between the red GCs and the stellar component and that
blue GCs show a spatial distribution which is similar to that inferred for dark matter.
However any attempt to draw conclusions from this is outside the province of this
book.

As an additional test we also calculated the velocity dispersion in the inner part
of NGC 1399 (interior to ∼ 2 arcmin) in which we have 14 GCs (the innermost at
∼ 1.3 arcmin and the outermost at ∼ 2 arcmin). We calculated that for the total
sample of blue and red clusters the velocity dispersion is 232 ± 62 km s−1. We note
that this result is in agreement with the integrated stellar light observations thus
giving credence to the feasibility of calculating galaxy kinematics even with the small
number of mass tracers in a given bin.

5.2.2. X–RAY MODELLING OF NGC 1399

The reader is referred to Chapter 3 of this book for the details regarding the X–ray
properties of NGC 1399. Here we note that although the X–ray data suggest that
beyond ∼ 3Re in NGC 1399 there should be a significant amount of dark matter,
we note, however, that since NGC 1399 is a central galaxy of the Fornax cluster, the
confinement of the hot gas may be assisted by the external pressure of the intercluster
medium (ICM) and is not wholly due to the gravitational field of NGC 1399 (Bertin
2000).

5.2.3. MASS ESTIMATES OF NGC 1399 BASED ON GCs

For the application of Eq. (5.6) we split the total sample of GCs into 5 bins: each bin
(except the first one which is 2 arcmin wide) contains the previous one in addition
to a fixed width of 2 arcmin. Our results (for mass and mass-to-light ratios) for the
isotropic case are given in Table 5-8. In this Table for comparison we also provide
estimates for mass and mass-to-light ratio obtained using X–ray methodology in the
same bins. The errors for the estimates based on the X–rays reflect uncertainty in the
temperature. In the calculation of the mass (and mass-to-light ratios) based on the
GCs we used γ = 1.54 which was derived using a least–squares fit applied to the data
published by Dirsch et al. (2003) for all the clusters in the sample. The outermost
point at 10 arcmin was taken. The data from the Table 5-8 are graphically presented
in Fig. (5.5). The large box contains estimates for the total mass-to-light ratio (open
and filled triangles are for the determination based on the X–ray technique assuming
hydrostatic equilibrium (open triangles are for β = 0.35 and filled triangles are for
β = 0.50) and open circles are for the estimate based on GCs assuming isotropy. In
the estimates of the mass-to-light ratio based on the X–rays we take T = 1 keV in
the first bin, and T = 1.30 keV in all the other bins. In a small inserted box we plot
the estimates for the mass: the symbols have the same meaning as in the large box.
In the inner regions (interior to ∼ 6 arcmin) of NGC 1399 we have good agreement
between the two techniques. At ∼ 6 arcmin and beyond the estimate of the mass

130



MASS ESTIMATES BASED ON PLANETARY NEBULAE AND GLOBULAR CLUSTERS

(and the mass-to-light ratio) based on β = 0.50 starts to diverge from the estimate
based on the GCs, whereas the estimate based on β = 0.35 is consistent with it up
to 8 arcmin. Note also that the estimate of Grillmair et al. (1994) is consistent with
both results based on the GCs and X–rays (β = 0.35 case).
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Figure 5.5: Mass estimates using the GCs and X–ray methodology for NGC 1399. Large
box: estimates for the total mass-to-light ratio in the B-band in the solar units as a function

of radius; the triangles are for the determination based on the X–ray technique assuming

hydrostatic equilibrium (the open triangles for β = 0.35 and the filled triangles for β =
0.50), the open circles are for the estimate based on GCs assuming isotropy. The large open

circle is the value obtained in the paper by Grillmair et al. (1994) scaled to the distance used

in this book (see text for details). The open square is the value obtained in the paper by

Saglia et al. (2000) scaled to the distance used in this book. The filled square is the value

obtained in the paper by Jones et al. (1997) scaled to the distance used in this book. The

temperature is taken to be 1 keV in the first bin and 1.30 keV in all the other bins. Small
inserted box: estimates of the total mass in units of 1011M� as a function of radius; the

symbols have the same meaning as in the large box. The large open pentagon in the small

box is for the estimates of Richtler et al. (2004) for the mass based on the Navarro, Frenk

and White profile and the logarithmic potential.
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The only point for which there seems to be a discrepancy between the X–ray and
the GC estimates is the one at 10 arcmin: the X–rays (with β = 0.35) predict the
mass-to-light ratio of 59 ± 2 whereas the estimate based on the GCs gives 46 ± 8.
There may be two possible sources of this discrepancy:

(i) The errors given in the X–ray case should be understood as minimal, because in
these estimates we took into account only the uncertainty in temperature (T =
1.30 ± 0.05) keV. Note that Jones et al. (1997) at 10 arcmin calculated M/LB =
55±17 (scaled to the distance used in this book; see their Fig. 7 – in our Fig. (5.5)
we plotted the points at 3 and 10 arcmin based on their plot); note also that at
∼ 10 arcmin their best fit for the temperature is 1.22 keV which is somewhat lower
than the value we took thus implying a lower mass-to-light ratio which is closer to
that obtained using GC methodology.

(ii) The discrepancy between the two results may be real and might be attributed
to the effect of a contribution to the X–ray gas pressure by the ICM referred to
above, i.e. the assumption of hydrostatic equilibrium fails in this case. As it is
shown below for the galaxy NGC 5128, the data based on the GCs and PNe that
between 50 and 80 kpc M/LB ∼ 11 − 14 which suggests even smaller amounts of
dark matter in the outer parts of this galaxy.
Different cosmological models and their predictions for the mass may in principle

be tested. Richtler et al. (2004) (references therein) tested among others, logarithmic
potentials and Navarro, Frenk and White (NFW) (1996) mass profiles. With the data
which extend out to ∼ 10 arcmin it is difficult to draw firm conclusions; the mass
predicted by both NFW profile and the logarithmic potential is closer to the mass
based on GCs and X–rays for which β = 0.35 than to the X–rays for which β = 0.50:
M ∼ 2.15× 1012M� at ∼ 10 arcmin (scaled to the distance used in this book; see the
large open pentagon in the small inserted box of Fig. (5.5)).

We see in Fig. (5.5) that there is agreement between the following four different
estimates of the total mass-to-light ratio: (i) our estimate based on the GCs, (ii) our
estimate based on the X–rays (the case with β = 0.35), (iii) the estimate based on
the Grillmair et al. (1994) paper based on the GCs and (iv) the estimate based on the
NFW approach (this last one is given only in the small inserted box of Fig. (5.5)).
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TABLE 5-1

Projected velocity dispersion measurements of NGC 1399
for a Gaussian distribution (δi < 60 km s−1)

radial bin < r > σtot Ntot σblue Nblue σred Nred

(arcmin) (arcmin) (km s−1) (km s−1) (km s−1)
(1) (2) (3) (4) (5) (6) (7) (8)

All r – 331 ± 11 445 295 ± 12 196 259 ± 11 216
r < 3.5 1.75 320 ± 21 124 223 ± 15 51 241 ± 15 66
2.5 < r < 5.5 4.00 359 ± 18 201 265 ± 14 80 255 ± 13 107
4.5 < r < 7.5 6.00 315 ± 16 209 266 ± 14 90 230 ± 12 103
r > 6.5 8.50 316 ± 28 127 248 ± 14 67 243 ± 16 53

NOTES – Col. (1): radial bin. Col. (2): central point for a given bin. Col. (3): velocity

dispersion with the estimated uncertainty for a total sample of clusters. Col. (4): number

of objects in a given bin for a total sample of clusters. Col. (5): velocity dispersion with the

estimated uncertainty for blue clusters. Col. (6): number of objects in a given bin for blue

clusters. Col. (7): velocity dispersion with the estimated uncertainty for red clusters. Col.

(8): number of objects in a given bin for red clusters.

TABLE 5-2

Projected velocity dispersion measurements of NGC 1399
for a Gaussian distribution with a fixed number

of clusters per bin (δi < 60 km s−1, N ≈ 50)

NOTES – Col. (1): radial bin. Col. (2): central point for a given bin. Col. (3): velocity

dispersion for a Gaussian distribution. Col. (4): formal errors for the velocity dispersion.

Col. (5): velocity dispersion obtained using the standard statistical definition. Col. (6):

formal errors for the velocity dispersion obtained using standard statistical definitions. Col.

(7): s3 parameter. Col. (8): formal errors for the s3 parameter. Col. (9): s4 parameter.

Col. (10): formal errors for the s4 parameter. Col. (11): number of clusters in a given bin.
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TABLE 5-3

Kinematics data for NGC 1399 for the blue clusters

radial bin σblue err σblue s3blue err s3blue s4blue err s4blue N
(arcmin) (km s−1) (km s−1)
(1) (2) (3) (4) (5) (6) (7) (8)

1 185 59 0.14 1.10 -1.60 4.80 5
3 352 33 -0.07 0.32 0.20 0.41 58
5 389 38 0.35 0.33 0.60 0.44 54
7 344 31 -0.07 0.32 0.00 0.40 60
9.2 382 62 -0.35 0.56 -0.80 1.26 19

NOTES – Col. (1): central point for a given bin. Col. (2): velocity dispersion for the blue

clusters. Col. (3): formal errors for the velocity dispersion of the blue clusters. Col. (4): s3

parameter for the blue clusters. Col. (5): formal errors for the s3 parameter for the blue

clusters. Col. (6): s4 parameter for the blue clusters. Col. (7): formal errors for the s4

parameter for the blue clusters. Col. (8): number of clusters in a given bin. In all the cases

δi < 60 km s−1.

TABLE 5-4

Kinematics data for NGC 1399 for the red clusters

radial bin σred err σred s3red err s3red s4red err s4red N
(arcmin) (km s−1) (km s−1)
(1) (2) (3) (4) (5) (6) (7) (8)

1 223 56 0.42 0.87 -0.80 3.00 8
3 325 27 -0.42 0.28 0.80 0.32 75
5 286 26 -0.56 0.31 1.60 0.39 61
7 284 26 -0.42 0.32 -0.40 0.40 60
9.2 275 56 0.49 0.71 -0.60 2.00 12

NOTES – The same as in Table 5-3 but for the red clusters.
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TABLE 5-5

Kinematics data for NGC 1399 for the total sample of blue and red
clusters (part 1)

radial bin σtotal1 err σtotal1 s3total1 err s3total1 s4total1 err s4total1 N
(arcmin) (km s−1) (km s−1)
(1) (2) (3) (4) (5) (6) (7) (8)

1 233 44 0.14 0.65 -1.00 1.71 14
3 334 20 -0.28 0.21 0.60 0.18 135
5 335 22 0.00 0.23 1.20 0.21 117
7 317 20 -0.14 0.22 0.00 0.20 120
9.2 348 44 0.00 0.44 -0.80 0.77 31

NOTES – The same as in Table 5-3 but for the total sample of blue and red clusters (bins

centered on odd values of radius, see text for details)

TABLE 5-6

Kinematics data for NGC 1399 for the total sample of blue and red
clusters (part 2)

radial bin σtotal2 err σtotal2 s3total2 err s3total2 s4total2 err s4total2 N
(arcmin) (km s−1) (km s−1)
(1) (2) (3) (4) (5) (6) (7) (8)

1.5 332 27 -0.28 0.28 1.00 0.32 76
4 321 21 -0.42 0.22 0.20 0.20 119
6 317 19 0.07 0.21 1.00 0.17 139
8 335 29 0.21 0.30 0.20 0.36 67
9.69 396 70 0.00 0.61 -1.20 1.50 16

NOTES – The same as in Table 5-3 but for the total sample of blue and red clusters (bins

centered on even values of radius, see text for details)
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TABLE 5-7

Kinematics data for NGC 1399 for the total sample of blue and red
clusters (part 3)

radial bin σtotal3 err σtotal3 s3total3 err s3total3 s4total3 err s4total3 N
(arcmin) (km s−1) (km s−1)
(1) (2) (3) (4) (5) (6) (7) (8)

1.47 322 26 -0.28 0.28 1.40 0.32 75
3.40 362 30 0.69 0.28 2.40 0.32 75
4.51 330 27 -0.56 0.28 0.20 0.32 75
5.68 329 27 0.42 0.28 1.40 0.32 76
6.73 281 23 -0.14 0.28 1.40 0.32 75
8.81 352 30 0.07 0.30 -0.80 0.35 68

NOTES – The same as in Table 5-3 but for the total sample of blue and red clusters. The

number of clusters per bin is approximately 75, see text for details.

TABLE 5-8

Mass estimates of NGC 1399 using globular clusters and X–rays

NOTES – Col. (1): radius interior to which a given quantity is calculated. Col. (2):

estimate of the total mass based on the X–ray methodology expressed in units of 1011M�
for β = 0.35 (the temperature was taken to be 1 keV in the first bin and 1.30 keV in all

the other bins). Col. (3): mass-to-light ratio based on the X–ray methodology in the B-

band in solar units for β = 0.35. Col. (4): estimate of the total mass based on the X–ray

methodology expressed in units of 1011M� for β = 0.50 (the temperature was taken to be 1

keV in the first bin and 1.30 keV in all the other bins). Col. (5): mass-to-light ratio based on

the X–ray methodology in the B-band in solar units for β = 0.50. Col. (6): estimate of the

total mass based on the GCs assuming isotropy (see text for details). Col. (7): mass-to-light

ratio based on the GCs assuming isotropy in solar units (see text for details). Col. (8): the

number of clusters in a given bin.
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5.2.4. SUMMARY OF THE RESULTS RELATED TO NGC 1399

The summary of the results related to the galaxy NGC 1399 is as follows.

(1) We show that the departures from the Gaussian distribution (given by the skewness
and kurtosis parameters, s3 and s4, estimated from the radial velocities) are not
large and that the estimates of the velocity dispersion calculated using standard
statistical procedures and the maximum likelihood approach do not differ much.
Using different binning we showed that slightly different trends in the velocity
dispersion profile might be inferred.

(2) We find that inside ∼ 2.5Re the mass is not dominated by dark matter (only for
the case for which β = 0.50 and T ∼ 0.92 keV might one infer dark matter in
this region). However, beyond ∼ 3Re the high velocity dispersion and the X–rays
indicate the presence of dark matter. This is not inconsistent with the results
results obtained so far in this book for 2 early–type galaxies (IC 1459, IC 3370) for
which dark matter interior to ∼ 3Re did not appear to dominate (Samurović and
Danziger 2005). Our estimates of the total mass (and mass-to-light ratio) based
on the X–ray and GC methodology imply β = 0.35 – this is in agreement with the
value found in the paper by Jones et al. (1997). Beyond 8 arcmin there seems to be
a discrepancy between the two methodologies: the GC data imply a smaller total
mass than that obtained using X–rays; it is not clear whether this discrepancy lies
within the uncertainties or not.

(3) Using the new “tracer mass estimator” of Evans et al. (2003) we find that the
increase of the total mass of NGC 1399 beyond ∼ 4 arcmin has a slow rise. At
∼ 10 arcmin we calculated, for an isotropic case, M/LB = 46 ± 8. In spite of
the hint of the decreasing velocity dispersion in NGC 1399 (between ∼ 3 and
∼ 7 arcmin) the observations show evidence of dark matter in the outer parts of
this galaxy. The procedure outlined in this book provides a means of comparison
between different calculations of the total mass of an early–type galaxy without
resorting to much more complex and computationally intensive superposition of
orbits required in the Schwarzschild (1979) modelling.

(4) It is difficult to draw general conclusions regarding anisotropies in the outer parts
of early–type galaxies at this point because the sample of galaxies is still too small
and there are problems regarding the small number of observed clusters per galaxy.
Judging from the sample of clusters used in this book we did not find large de-
partures from a Gaussian distribution. In the Chapter 1 of this book in the case
of IC 1459 (beyond ∼ 2Re) and NGC 3379 (beyond ∼ 1.4Re) we found a hint of
radial anisotropies. Dekel et al. (2005) using numerical simulations of disc–galaxy
mergers recently found that for early–type galaxies the stellar orbits in their outer
parts are very elongated. Teodorescu et al. (2005) found that for PNe in the flat-
tened early–type galaxy NGC 1344 the departures from a Gaussian distribution
are small but they did not quantify them (see their Figure 18).

(5) Given the fact that the full LOSVD profile of a given early–type galaxy obtained
from integrated stellar light is typically based on the integrated spectra of several
million stars and the velocity dispersion based on GCs (and PNe) is based on at
most several hundred objects, it is obvious that for more accurate kinematics of
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early–type galaxies at large radial distances an increased number of observed GCs
(and PNe) is highly desirable.

5.3. NGC 5128

5.3.1. BASIC DATA

NGC 5128 (also known as the radio source Centaurus A) is the nearest large elliptical
galaxy. The value of the distance used in this book, D = 3.84 ± 0.35 Mpc is taken
from the paper by Rejkuba (2004) and is in agreement with other estimates found in
the literature (such as Hui et al. 1993). At this distance 1′ ≈ 1 kpc. NGC 5128 is the
only early–type member of the Centaurus group. In this book the adopted center of
the galaxy is (13h25m27s.72,−43◦01′05

′′

.8,J2000). The effective radius is Re = 5.3 kpc
and the systemic velocity is vsyst = 541 km s−1. The B-band luminosity of the stellar
component NGC 5128 is LB = 3.98 × 1010L�. The complete review of this galaxy
can be found in the paper by Israel (1998) Because of its proximity and interesting
features (observational evidence of one or more major merging events) NGC 5128 is
an excellent target for a detailed study: a large number of papers with a wealth of
observational data is available which makes it possible to investigate its properties by
comparing different observations (in this book, GCs, PNe and X–rays).

5.3.2. KINEMATICS OF GCs OF NGC 5128

The sample which was used in this book was built using two different samples: (i) the
first one is taken from the paper by Peng et al. (2004a) who conducted an optical and
spectroscopic survey for GCs across ∼ 1◦ of sky around NGC 5128 and includes 215
clusters: their whole sample was taken and (ii) the second one is taken from the paper
by Woodley, Harris and Harris (2005) who measured radial velocities for 74 GCs: in
this case 31 GCs not present in the previous sample were taken. In total we use 246
clusters which extend out to 42.44 kpc (= 8Re). The kinematics of NGC 5128 based
on the GCs is given in Table 5-9 and also in Fig. (5.6) (left): from the top to the
bottom we plot as a function of radius, radial velocity, velocity dispersion, s3 and s4

parameters.13

5.3.3. KINEMATICS OF PNe OF NGC 5128

The sample of PNe used in this book comes from the paper by Peng et al. (2004b)
and contains 780 PNe. The kinematics of NGC 5128 based on the PNe is given in
Table 5-10 and also in Fig. (5.6) (right) (the meaning of symbols is the same as in
the case of GCs). Note that error bars are not plotted in the case of radial velocities:
as given in Peng et al. (2004b) they are taken to be 20 km s−1 in the calculations
below. The data for the PNe extend out to 78 arcmin (= 14.7Re).

5.3.4. X–RAY DATA FOR NGC 5128

The analysis of NGC 5128 based on the results from two Chandra/ACIS-I obser-
vations and one XMM-Newton observation of X-ray emission from the interstellar

13The parameters s3 and s4 are explained in Section 5.2.1.
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medium (ISM) is given in Kraft et al. (2003). It was found that the ISM has an
average radial surface brightness profile that is well described by a β-model profile
with index β = 0.40 ± 0.04 and a temperature of kBTISM = 0.29 keV beyond 2 kpc
from the galactic nucleus. These data will be used below when we calculate the total
mass and the total mass-to-light ratio of NGC 5128.

Figure 5.6: Left: Globular clusters kinematics of NGC 5128. From top to bottom: radial

velocities of the GCs as a function of radius, velocity dispersion as a function of radius,

asymmetric (s3) and symmetric departures (s4) from Gaussian as a function of radius.

Right: Planetary nebulae kinematics of NGC 5128. The meaning of symbols is the same as

on the left. Error bars for the radial velocities are not plotted (see text for details). Note

the different scale with respect to the plot on the left hand side of the Figure.
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Figure 5.7: Jeans modelling of the globular clusters of NGC 5128. Dotted line is used for

the modelling for which M/LB = 4, thin solid line is for M/LB = 7 and thick solid line is

for M/LB = 14. Note that the same scale as in Fig. (5.8) is used for the sake of comparison.

Vertical dotted line represents one effective radius.

5.3.5. X–RAY AND JEANS MODELLING

For the details concerning the Jeans and X–ray modelling the reader is referred to
Chapter 2 and 3 of this book, respectively. Some details for the sake of clarity will
be repetead below.

If we accept to a first order approximation that the X–ray results are realistic we
solve the Jeans equation which provides the connection between the anisotropy and
the temperature of the hot interstellar gas through which the stars move (Binney and
Tremaine 1987):

1

`∗

d(`∗σ2
r)

dr
+

2β∗σ2
r

r
= −GM(r)

r2
+

v2
rot

r
(5.8)

where σr is the radial stellar velocity dispersion, `∗ is the stellar luminosity density
which corresponds to the radial (σr) and transverse (σt) stellar velocity dispersions.
Here, vrot is the rotational speed (see Hui et al. 1995). A parameter β∗ is introduced
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to describe the nonspherical nature of the stellar velocity dispersion:

β∗ = 1 − v2
θ/σ2

r , (5.9)

where v2
θ = vθ

2 + σ2
θ . For 0 < β∗ < 1 the orbits are predominantly radial, in this

case the line of sight velocity profile is more strongly peaked than a Gaussian profile
(positive s4 parameter), and for −∞ ≤ β∗ < 0 the orbits are mostly tangential, so the
profile is more flat–topped than a Gaussian (negative s4 parameter) (Gerhard 1993).
For the stellar luminosity density we adopted the Hernquist (1990) profile:

`∗ =
L

2π

a

r

(

1

r + a

)3

(5.10)

where Re = 1.8153a. The projected line–of–sight velocity dispersion is calculated as
(e.g. Binney and Mamon 1982, Mathews and Brighenti 2003a):

σ2(R) =

∫ rt

R
σ2

r(r)
[

1 − (R/r)2β∗
]

× `∗(r)(r2 − R2)−1/2 rdr
∫ rt

R
`∗(r)(r2 − R2)−1/2 rdr

(5.11)

where the truncation radius, rt, extends to a large distance: in this work it was 50
arcmin (= 9.4Re, for GCs) and 80 arcmin (= 15Re for PNe).
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Figure 5.8: Jeans modelling of the planetary nebulae of NGC 5128. The same modelling

was used as in Fig. (5.7).

141



SRDJAN SAMUROVIĆ

The results of this kind of modelling are given in Fig. (5.7) (for the GCs) and
Fig. (5.8) (for the PNe). For the sake of comparison both Figures have the same
scales. Since both tracers have similar surface density (see below) the same modelling
is given in both Fig. (5.7) and Fig. (5.8). One can see that a low constant mass-
to-light ratio (MT /LB = 4) can provide a successful fit (interior to ∼ 15 arcmin for
GCs and interior to ∼ 30 arcmin for PNe). An intermediate constant mass-to-light
ratio (MT /LB = 7) can provide a good fit (between ∼ 15 and ∼ 25 arcmin for GCs
and between ∼ 30 and ∼ 45 arcmin for PNe). A high constant mass-to-light ratio
(MT /LB = 14) provides a good fit in the outer part of the galaxy (beyond ∼ 30
arcmin for GCs and beyond ∼ 45 arcmin for PNe). This kind of modelling is in
agreement with both X-ray estimates and the estimates based on different tracers
(see below for details regarding these tracers; see Table 5-12 for a comparison of the
mass-to-light ratios at different radii). The high value of the total mass-to-light ratio
implies the existence of dark matter in the outer regions of the galaxy.

5.3.6. MASS ESTIMATES OF NGC 5128 BASED ON GCs AND PNe

The methodology for the calculation of the mass using GCs and PNe was given in
Sec. 5.1.2 and it was applied in the case of the galaxy NGC 5128.

As it was argued in Evans et al. (2003) the mass estimator which they derived only
calculates the contribution of random motion to the mass. The galaxy NGC 5128 has
a large rotational component which is added to the mass calculated using the tracers.
Because the rotation curve flattens at ∼ 100 km s−1 (see Peng et al. 2004b, their
figure 10) this value of the rotation speed vrot was used when the calculation of the
rotational component was calculated: Mrot(r) =< vrot >2 r/G.

Peng et al. (2004c,b) calculated the value for the γ parameter for both GCs and
PNe and these values were used in this book: for GCs they found γ = 2.72 (for
all, blue and red clusters in the sample, Peng et al. 2004c) and for PNe they found
γ = 2.54. Note that we have used the same value as Peng et al. for the GCs although
our sample differs for additional 31 clusters from Woodley et al. (2005). The reason
for this is that Peng et al. calculated the value for the γ parameter between ∼ 6 and
∼ 18 arcmin because this region is less affected by incompleteness and the GCs from
Woodley et al. sample are found between ∼ 17.5 and ∼ 20.3 arcmin.

Using the methodology of Evans et al. (2003) and the estimates by Peng et al.
(2004b,c) our calculated mass estimates as function of radius are given in Table 5-
11 and our calculated mass-to-light ratio (in solar units in the B-band) are given in
Table 5-12. If one compares the results for the estimates based on GCs and PNe one
can see that both tracers predict very similar values of the mass interior to a given
radius which may mean that the orbital anisotropies of these two different populations
are very similar (noted also in Fig. (5.6), especially interior to 20 arcmin where the
most of the tracers are present and the estimate of the anisotropies given by the s3

and s4 parameters is more accurate). When compared with the results obtained using
different techniques found in the literature, the agreement is very good. For example,
Kraft et al. (2003) using X–rays found that the total mass interior to 15 arcmin is
MT = 2 × 1011M� (and MT /LB = 6.64): this result is represented with the cross
symbol in Fig. (5.9). Peng et al. (2004c) found using GCs that interior to 40 arcmin
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Figure 5.9: Mass and mass-to-light ratio of NGC 5128 using different techniques. Large
box: mass-to-light ratio in the B-band expressed in solar units as a function of radius. Small
inserted box: Total mass as a function of radius expressed in 1011M�. Open triangles are

for the estimates based on the X–ray methodology, filled circles are for the results based on

the PNe and opened circles are for the data based on the GCs. Point represented with cross

is a result based on the X–rays from Kraft et al. (2003), diamond is a result from Peng et

al. (2004c) based on the GCs and open rectangle is from Peng et al (2004b) based on the

PNe.

MT = (3.4 ± 0.8) × 1011M� (MT /LB = 9.7 ± 2.3) which is again in agreement with
the results found in this book. Note again, that our two samples differ because we
included 31 clusters from Woodley et al. (2005). Finally, Peng et al. (2004b) found
for PNe interior to 80 arcmin MT = 5 − 6 × 1011M� (MT /LB = 13 − 15) (open
rectangle in Fig. (5.9)). Note that there is a slight difference between Peng et al. and
our estimates of the mass interior to 80 arcmin. Although we used the same Evans et
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al. (2003) technique we did not have error bars for the radial velocity (∆v = 20 km s−1

was taken in all the cases) and this fact produced this minor difference.
We can see in Fig. (5.9) that dark matter does not dominate interior to ∼ 25

arcmin (∼ 5Re) because the total mass-to-light ratio is less that 10. Beyond ∼ 25
arcmin the amount of dark matter starts to increase, so at 80 arcmin the mass-to-light
ratio of NGC 5128 becomes ∼ 14. This is much lower than expected: Bahcall, Lubin
and Dorman (1995) found a relation based on the compilation of the data from the
literature that for elliptical galaxies MT /LB = (200 ± 50)h0 × (R/100kpc), which
becomes for the adopted h0 = 0.70 at R = 80 kpc, MT /LB = 112 ± 28.

If we now compare the results for the estimates of the total mass interior to a given
radius using both X–rays and the “tracer mass estimator” we can see that interior
to ∼ 30 arcmin both techniques agree very well. Beyond ∼ 30 arcmin the X–rays
tend to predict higher inferred mass, so that at 80 kpc the discrepancy between the
two becomes significant: X–rays predict MX = (11.6 ± 1.00) × 1011M� whereas the
estimate based on the PNe gives MT (PNe) = (5.48 ± 0.98) × 1011M�. A similar
discrepancy was noted earlier in this Chapter in the case of the early–type galaxy
NGC 1399: it was argued that this may be the effect of a contribution of the X–ray
gas pressure by the intercluster medium (ICM) (Bertin 2000). However, NGC 5128
does not belong to a cluster and the solution to this problem may be different: the
lack of the assumed hydrostatic equilibrium. Very recently, two papers by Humphrey
et al. (2006) and Fukazawa et al. (2006) analyzed two samples made using Chandra
observations assuming hypothesis that hydrostatic equilibrium holds. However, Diehl
and Statler (2006) using a sample of 54 normal ellipticals from the Chandra archive
found that there is no correlation between optical and X–ray ellipticity as would be
expected had the gas settled into hydrostatic equilibrium with a given gravitational
potential. They found that the hot gas appears to be very disturbed and that the
concept of normal ellipticals which host calm, hydrostatic gas needs a revision and
argue that X–ray derived radial mass profiles may be in error by a factor of a few.
Pellegrini and Ciotti (2006) very recently attempted to reconcile the optical and X–
ray mass using the case of the early–type galaxy NGC 3379 (see also this Chapter,
Sec. 5.2.3) and found that a discrepancy of ∼ 2 can be explained by deviations from
hydrostatic equilibrium of the hot gas (see also Ciotti and Pellegrini 2004). This may
well be the case in the example of NGC 5128 but further detailed analysis is necessary;
the attempt in this book presents only a first step which quantifies the discrepancy
between the X–ray and optical mass.
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TABLE 5-9

Projected velocity dispersion measurements of GCs in NGC 5128.

r σ err σ s3 err s3 s4 err s4 N
(arcmin) (km s−1) (km s−1) (km s−1)

(1) (2) (3) (4) (5) (6) (7) (8)

2 147 18 0.15 0.42 -0.68 0.84 34
6 127 10 0.36 0.28 -0.01 0.56 77

10 132 12 0.32 0.31 0.91 0.62 62
14 112 14 -0.48 0.45 -0.52 0.89 30
18 139 28 0.27 0.71 -1.18 1.41 12
22 156 33 -0.11 0.74 -1.59 1.48 11
37 140 23 -0.21 0.56 -0.47 1.12 19

NOTES – Col. (1): radial bin. Col. (2): velocity dispersion. Col. (3): formal errors for the

velocity dispersion. Col. (4): s3 parameter. Col. (5): formal errors for the s3 parameter.

Col. (6): s4 parameter. Col. (7): formal errors for the s4 parameter. Col. (8): number of

GCs in a given bin.

TABLE 5-10

Projected velocity dispersion measurements of PNe in NGC 5128.

r σ err σ s3 err s3 s4 err s4 N
(arcmin) (km s−1) (km s−1) (km s−1)

(1) (2) (3) (4) (5) (6) (7) (8)

2 143 11 -0.07 0.19 -0.44 0.39 158
6 134 07 0.29 0.17 -0.02 0.34 204

10 120 07 -0.06 0.20 0.14 0.40 147
14 128 11 0.44 0.29 0.16 0.58 72
18 158 14 -0.26 0.33 -0.41 0.65 56
22 99 11 -0.56 0.43 0.85 0.85 33
27 106 13 0.33 0.41 -0.16 0.82 36
35 89 10 -0.31 0.38 0.83 0.76 42
45 105 18 -0.48 0.58 -0.50 1.15 18
65 123 33 -1.25 0.93 1.85 1.85 7

NOTES – Col. (1): radial bin. Col. (2): velocity dispersion. Col. (3): formal errors for the

velocity dispersion. Col. (4): s3 parameter. Col. (5): formal errors for the s3 parameter.

Col. (6): s4 parameter. Col. (7): formal errors for the s4 parameter. Col. (8): number of

PNe in a given bin.
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TABLE 5-11

Mass estimates of NGC 5128 using GCs, PNe and X–rays.

NOTES – Col. (1): radius interior to which a given mass is calculated. Col. (2): estimate

of the total mass based on the GCs expressed in units of 1011M�. Col. (3): error for the

quantity in Col. (2) expressed in the same units. Col. (4): estimate of the total mass based

on the PNe expressed in units of 1011M�. Col. (5): error for the quantity in Col. (4)

expressed in the same units. Col. (6): estimate of the total mass based on the rotation of

NGC 5128 expressed in units of 1011M�. Col. (7): estimate of the total mass based on the

X–ray methodology expressed in units of 1011M� for β = 0.40 and T = 0.29 keV. Col. (8):

error for the quantity in Col. (7) expressed in the same units. The total mass is obtained

by summing: MT (GCs,PNe) = MGCs,PNe + Mrot (see text for details).

TABLE 5-12

mass-to-light ratio in the B-band estimates of NGC 5128 using GCs,
PNe and X–rays expressed in solar units.

NOTES – Col. (1): radius interior to which a given mass-to-light ratio is calculated. Col.

(2): estimate of the mass-to-light ratio in the B-band based on the GCs expressed in solar

units. Col. (3): error for the quantity in Col. (2) expressed in the same units. Col. (4):

estimate of the mass-to-light ratio in the B-band based on the PNe expressed in solar units.

Col. (5): error for the quantity in Col. (4) expressed in the same units. Col. (6): estimate

of the mass-to-light ratio in the B-band based on the X–rays expressed in solar units. Col.

(7): error for the quantity in Col. (6) expressed in the same units.

146



MASS ESTIMATES BASED ON PLANETARY NEBULAE AND GLOBULAR CLUSTERS

5.3.7. SUMMARY OF THE RESULTS RELATED TO NGC 5128

In this Section we investigated the kinematics calculated from the observations of GCs
(Peng et al. (2004a) and Woodley et al. (2005)) and PNe (by Peng et al. 2004b) in the
early–type galaxy NGC 5128. From the observational data we calculated velocity dis-
persions and skewness and kurtosis parameters using standard statistical procedures.
We performed an X–ray modelling assuming the hypothesis of hydrostatic equilib-
rium. Using mass obtained in such a way, we performed the Jeans modelling and
compared the modelling results with the observational ones. We also calculated the
total mass (and the total mass-to-light ratio) of NGC 5128 using X–ray methodology
and a new “tracer mass estimator” in order to compare these estimates.

Our conclusions are as follows.

(1) We show that the departures from the Gaussian (given with the skewness and kur-
tosis parameters, s3 and s4, estimated from the radial velocities) are not large. The
similar values of the calculated mass of NGC 5128 at different radii using different
tracers suggest that the orbital anisotropies of these two different populations are
very similar and small.

(2) We have performed an X–ray modelling of NGC 5128 and solved the Jeans equation.
It was found that interior to ∼ 25 arcmin (∼ 5Re) the mass is not dominated by
dark matter. This is not inconsistent with the previous results (see Chapter 2) for 2
early–type galaxies (IC 1459, IC 3370) for which dark matter interior to ∼ 3Re did
not appear to dominate. The mass-to-light ratio which we inferred (in the B-band
and in solar units) ranges from 4 in the inner regions to 14 in the outer parts of
NGC 5128.

(3) Using a new “tracer mass estimator” of Evans et al. (2003) we find that the increase
of the total mass of NGC 5128 beyond ∼ 25 arcmin (∼ 5Re) implies the existence
of dark matter: the total mass rises from ∼ 3 × 1011M� (corresponds the mass-
to-light ratio in the B-band of ∼ 9) at ∼ 5Re to ∼ 5.5 × 1011M� (corresponds
the mass-to-light ratio in the B-band of ∼ 14). This amount of dark matter (in
agreement with Peng et al. 2004c) is lower than expected (see, for example, Bahcall
et al. 1995).

(4) We found that, assuming hydrostatic equilibrium, the total mass of NGC 5128
measured at the last observed point, obtained using the X–rays is equal to 11.6 ×
1011M� which is ∼ 2 times higher than that found using a “tracer mass estimator”.
A possible solution to this problem may be the lack of hydrostatic equilibrium in
the outer parts of the galaxy, as suggested by Pellegini and Ciotti (2006) and Diehl
and Statler (2006).

(5) It remains difficult to draw general conclusions regarding anisotropies in the outer
parts of early–type galaxies in general at this point because the sample of galaxies
is still too small. Also, in the case of NGC 5128 there are problems regarding small
number of observed clusters per galaxy. Judging from the sample of clusters which
we used in this book we did not find large departures from the Gaussian. The
similarities of the mass estimates mentioned in the item (1) seem to imply that for
NGC 5128 anisotropies are small. As it was shown in Chapter 2, for the ellipticals
IC 1459 (beyond ∼ 2Re) and NGC 3379 (beyond ∼ 1.4Re) there is a hint for
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radial anisotropies. Dekel et al. (2005) recently found, using numerical simulations
of disc–galaxy mergers, that for the early–type galaxies the stellar orbits in their
outer parts are very elongated. Also, very recently, Teodorescu et al. (2005) found
that for PNe in the flattened early–type galaxy NGC 1344 the departures from the
Gaussian are small (see their figure 18).

At the time of this writing (September 2006) a preprint of the accepted paper by
Woodley (2006) appeared in which a much higher mass was claimed based on the
new (but still unpublished) sample of GCs of NGC 5128. For example, Woodley
finds within ∼ 15 kpc the total mass of 4 × 1011M�. In this book, as well as in
the aforementioned Peng et al. papers, the total mass within ∼ 15 kpc is ∼ 2 ×
1011M�. The reason for this discrepancy lies in the parameter γ (Woodley, private
communication): in this book γGC = 2.72 was used and Woodley used γGC = 3.65.
Woodley (private communication) claims that Peng et al. (2004b,c) erroneously used
surface density slope instead of the volume density slope. Note however, that using
completely different technique, such as the X–ray methodology (Kraft et al. 2003) half
of this higher mass is obtained: ∼ 2×1011M� within ∼ 15 kpc. At ∼ 50 kpc Woodley
(2006) finds the total mass equal to 1.3± 0.5× 1012M� which is again not consistent
with the estimate based on X–rays which is equal to 7.0 ± 0.8 × 1011M�. As one
can see from Fig. (5.9) the X-ray mass is in very good agreement with that obtained
TME interior to ∼ 50 kpc. This shows that the variations in the γ parameter may
cause significant discrepancies. It is worth noting that both Peng et al. (2004b,c)
and Woodley (2006) calculated the γ parameter outside of 5 kpc because of the
incompleteness; this may have influenced the true value of the γ parameter. That
is why we decided to calculate the total mass of this galaxy using another estimator
which uses point tracers (such as GCs and PNe) but does not depend on the density
slope. Bahcall and Tremaine (1979) give the following formula (which uses the same
notation as previously in this book) for the isotropic case:

M =
16

GN

∑

i

v2
losiRi. (5.12)

Using this formula we found, for example, that interior to ∼ 16 kpc the total mass
obtained in this way using GCs is equal to ∼ 1.8 × 1011M� which is very close to
the value obtained using the Evans et al. TME (MGCs = 1.84 × 1011M�, see Table
5-11). Within ∼ 50 kpc using the formula from Bahcall and Tremaine (1979) and
the sample of GCs the mass becomes equal to ∼ 3.3 × 1011M� again very close to
the estimate based on the Evans et al. TME (MGCs = 3.97 × 1011M�, see Table 5-
11). These two estimates at two different radii are based only on the random motions
and the rotational part was not taken into account. Therefore, for the estimate of
the total mass the appropriate values from the column (6) found in the Table 5-11
must be added. It is also important to inspect Fig. (5.7) and Fig. (5.8) in which
the Jeans modelling was presented: it is obvious that much higher masses can not
provide a satisfactory fit to the observed velocity dispersion (the Jeans modelling is
not present in Woodley 2006). The mass-to-light ratio in the B-band between ∼ 4
and ∼ 14 provides a good fit to the mass-to-light ratio for both GCs and PNe. The
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mass-to-light ratio in the B-band inferred by Woodley (2006) which is equal to 52
(interior to 50 kpc) seems to be too high.

As a final attempt to calculate the total mass of NGC 5128 we decided to use
the formula which comes from the paper by Bertin et al. (2002) and is valid for a
stationary stellar system for which the scalar virial theorem can be written as:

GΥL∗
Re

= KV σ2
0 ,

where Υ is the stellar mass-to-light ratio in the given band, Re is the effective radius
and σ0 is the central velocity dispersion referred to an aperture radius of Re/8. KV

is the so-called “virial coefficient” which takes into account the projection effects. It
was shown recently by Cappellari et al. (2006) that KV = 5 ± 0.1 for a sample of
early-type galaxies at redshift z ∼ 0. From this equation the total dynamical mass is:

Mdyn = KV
σ2

0Re

G
.

Inserting the aforementioned value for KV = 5, σ0 = 150km s−1, and Re = 5.3 kpc
one obtains the total mass dynamical mass of NGC 5128: Mdyn = 1.34 × 1011M�.
This value takes into account only random motions and it does not take into account
the rotational support so it is necessarily lower than the true value. Taking into
account Mrot from Table 5-11 one gets the total mass of ∼ 3 × 1011M� which is
lower (but not much) than the value obtained using GCs and PNe, but is much lower
than the value inferred by Woodley (2006).

To summarize, one can conclude that the results for the total mass (and the mass-
to-light ratio) of NGC 5128 obtained in this book are robust, because the results
obtained using different techniques are consistent (except for the last measured point,
but this may be due to some real physical effect as said in the item 4 above). Also,
the results of the Jeans modelling provide an important additional evidence to the
robustness of the results presented in this book.

It is certain that the galaxy NGC 5128 will be studied in more detail in the years
to come and the question of its total mass will be addressed using more sophisticated
observations and models therefore removing the discrepancies found in the literature
present at this stage.
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Chapter 6

CONCLUSIONS

In this book the problem of dark matter in elliptical galaxies was carefully analyzed
using different observational and modelling techniques. The conclusions are as follows.

The first conclusion is that the former point of view (cf. Binney and Merrifield
1998) is still valid: it remains very difficult to establish unambiguously the existence
of dark haloes in elliptical galaxies (at least out to a given distance from the center;
most probably out to ∼ 3Re). Small values of the |h4| parameter at large radial
distances from the center of a given galaxy can mean that there is no significant
orbital anisotropy and that a slow decline (or even increase) of the velocity dispersion
is due to the existence of a dark halo. However, as we have shown in the case of
the two galaxies, for which the spectra extend to ∼ 3Re (IC 1459, IC 3370), and
at least for two other cases which are well studied in literature (NGC 5128 out to
∼ 15Re and NGC 3379 out to ∼ 3.5Re) the velocity dispersion does not show such
a slow decline (even if the h4 parameter does show a non-zero value at ∼ 3Re in
the case of IC 1459). In principle, it is incorrect to draw conclusions about dark
matter in a given galaxy judging only from the behaviour of the velocity dispersion,
if the h4 parameter is not known. Therefore, all statements in literature when there
is claim about the existence of dark matter in a given galaxy, but without providing
the information about h4 should be taken with caution, and the data should be, if
possible, reanalyzed. A question that one naturally poses is: “how can one establish
whether the decline is ’slow’?”, or, more precisely, “what is the criterion for the
behaviour of the velocity dispersion in the absence of a dark halo?”.

These coupled questions lead to the second conclusion, also recognized earlier (cf.
Binney and Merrifield 1998): for a confirmation of the existence of dark matter in
elliptical galaxies detailed modelling is needed. As shown in the previous Chapters,
one can use two- and three-integral modelling techniques. Each one has its own
merits and shortcomings. Two-integral modelling (which we called detailed Jeans
modelling, see Binney, Davies, and Illingworth 1990; this was done for the galaxies
for which we had at least major and minor axis spectroscopic data) gives a prediction
of the velocity dispersion behaviour and sometimes it might be enough to perform
only this analysis: this would be an ideal case of an axisymmetric galaxy in which
there are only two integrals of motion. It is not an easy task to find a priori a
galaxy which simultaneously possesses these two features: of the four galaxies studied
in this book using a two-integral approach and applying detailed Jeans modelling
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(IC 1459, IC 3370, NGC 3379, NGC 4105), none of them fulfilled both of these two
requirements. It is however interesting to see how they differ with respect to these
given requirements: the best fit to the whole observed velocity profile was found in
the case of NGC 3379; beyond ∼ 20′′ (the region where this galaxy is axisymmetric)
the whole velocity profile can be fitted for both major and minor axis, thus leading
to the conclusion that the dark halo is not necessary at least out to ∼ 2 − 3Re. This
result is in agreement with the recent studies of Romanowsky et al. (2003) and Sluis
and Williams (2006) who studied this galaxy using planetary nebulae (PNe). The
problem with PNe (and GCs) is the lack of knowledge of anisotropies at this stage.
For IC 1459 and NGC 4105 the velocity dispersion declines again in an agreement
with the no dark matter hypothesis, but since the two-integral modelling cannot
provide a simultaneous fit to velocity and velocity dispersion one can conclude that
the motion in these two galaxies depends on three integrals of motion. Note also
that since IC 1459 possesses a stellar counter-rotating core, two-integral modelling
based on photometry, fails in the inner regions of this galaxy. The case of IC 3370
was particularly difficult to model because this galaxy shows a large isophotal twist,
indicating triaxiality. Still, using the two-integral approach, the fit to the velocity
dispersion was obtained without the introduction of a dark halo. Regardless of the
fact that the two-integral modelling is not suitable when there are strong departures
from axisymmetry and when the motion depends on the third integral, this method
is very convenient for establishing the possible range of the mass-to-light ratio of
a given galaxy. Its application gave results that are in agreement with the results
obtained using other methods: for example, for IC 1459 the estimated mass-to-light
ratio (6 <

∼ M/LB
<
∼ 10) is in a rough agreement with the value found using X-ray

data, while for NGC 3379 the obtained mass-to-light ratio (5 <
∼ M/LB

<
∼ 9) is in a

better agreement with the values found using X-ray data, PNe, and globular clusters,
GCs (out to ∼ 2Re; beyond this region the discrepancies with GCs start to occur). It
is important to note that a constant mass-to-light ratio does not exclude the presence
of a dark halo: if the dark matter has the same profile as the stars, the derived mass-
to-light ratio will be constant with radius, but of course, it will be higher than that
produced by the stars alone (cf. Ashman 1992). But if the mass-to-light ratio of a
given galaxy is not significantly different from the result obtained by van der Marel
(1991): M/LB = 8.33 ± 0.35 (for h = 0.70 used in this book), one can claim that no
significant amount of the dark matter is present. An additional clue related to the
two-integral modelling is that there is a tendency for a slight increase of the mass-to-
light ratio in the outer parts of the elliptical galaxies which we studied. Applying the
simple Jeans modelling (when we model only the velocity dispersion) we could get
insights about the matter content in the galaxies for which we had only major axis
spectroscopic data. The conclusions do not differ much from what we obtained in the
case of the detailed Jeans modelling: only in the case of two galaxies did we have a
hint of the existence of dark matter beyond ∼ 1Re which came from the increase of
the velocity dispersion (NGC 1339 and NGC 1373). Note, however, that the quality
of the data related to these two galaxies is lower than that related to the galaxies
analyzed using the detailed Jeans modelling.
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The existence of the triaxiality and the existence of the third integral of motion in
the elliptical galaxies initiated the development of the three-integral techniques based
on the Schwarzschild’s (1979) orbit superposition method. The third conclusion is
related to the three-integral modelling in general: using the three-integral modelling
technique one can obtain better fits to the observed galaxy kinematics but the price
that one has to pay is rather high. This method is very CPU intensive and requires
large disk storage and therefore its application is rather difficult which is the reason
why so far only a fairly small number of galaxies has been analyzed in such a way:
according to one of the latest reviews which dealt with this issue (Gebhardt 2004) only
17 galaxies were analyzed using three different codes14 for the orbit superpositions
(none of them is freely available), and the analyses mainly dealt with the inner parts,
i.e. central massive black holes. Gebhard (2004) however warns: “With so few groups
using orbit-based codes, we must be certain that the immense freedom allowed by
these codes does not bias the results due to some feature of an individual code.”
Therefore, one may conclude that the interpretation of the results obtained using
the orbit superposition method must be taken with the greatest caution and used
(wherever possible) in combination with the results obtained using other methods.
The “immense freedom” inherent in these models (choice of orbits, choice of potential,
features of the potential, number of orbits, etc) still permits some conclusions related
to the “features of an individual code” and the properties of galaxies to be drawn.
In our implementation (which makes the second code to be added to the Gebhard’s
list) orbit superposition method provided hints about the applicability of a given
potential. It also gave a possibility to test different features of a given potential
(flattening, different mass-to-light ratios, for example). Since this method (Rix et
al. 1997 implementation) forces the fit of the velocity and the velocity dispersion, one
has to study carefully the modelling of the Gauss-Hermite parameters. We found that
in the very difficult case of IC 3370 the constant mass-to-light ratio potential provides
a better fit to h3 and h4 interior to 2Re (see Fig. (23) in Chapter 2) and that inside
this region dark matter is not required. Another example, IC 1459 (see Fig. (24) from
Chapter 2), shows how difficult it is to discriminate between different potentials using
orbit superposition techniques. Beyond ∼ 1Re both mass-to-light ratio potentials
(for M/LB ∼ 7 and ∼ 10) seem to provide similar fits. None of the potentials
used managed to fit satisfactorily the h4 parameter in the outer parts, therefore
making it difficult to draw conclusions about the dark matter content in IC 1459.
The overall conclusion is that the three-integral modelling, in our implementation,
can only provide a useful hint about applicability of a given potential for a given set
of orbits. Given the “immense freedom” of this kind of modelling, this method should
(or better, must) be used in combination with other approaches to infer the existence
of dark haloes.

14Here, we add the code of Romanowsky and Kochanek (2001) that was applied in the Romanowsky
et al. (2003) paper.
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TABLE 6-1

Results of dark matter research in elliptical galaxies
using different methodologies

Method Radius M/LB Reference

Hot gas/X–rays 13 − 15Re ∼ 28 − 60 This book
Warm gas 1 Re ∼ 5 Pizzella et al. (1997)
Cold gas 6 Re ∼ 18 Oosterloo et al. (2002)
PNe 15 Re ∼ 14 This book
GCs 8 − 13Re ∼ 13 − 24 This book
Integrated stellar spectra 1 − 3Re 5-10 This book
Lensing 5Re ∼ 8 Treu & Koopmans (2002)

The problems that arose in the three-integral method which show that different
approaches have to be applied to a given galaxy in order to determine the existence
of the dark halo lead to a fourth conclusion: discrepancies between the results of
different methodologies have to be studied very carefully because they may indicate
that some of the fundamental physical assumptions are not valid and need to be
revised and/or some new assumptions should be taken into account. To illustrate the
present doubts we compiled the Table 5-1 which shows state-of-the-art results in
dark matter research. In the first column we put the method of research. The second
column is the radius out to which a given method is being applied (it is given in
units of effective radius), the third column presents the mass-to-light ratio obtained
with a given method at the radius given in the third column (note that it is given in
the B-band; we converted the data originally given in other bands to the B-band for
the sake of comparison). Finally, in the fourth column are the references.15 One can
see that methods based on gas (hot gas from X-ray observations) and cold gas (from
neutral hydrogen observations) give large mass-to-light ratios. It is of interest to note
that especially X-ray analyses strongly suggest very large mass-to-light ratios in the
outer parts of elliptical galaxies, which has not been confirmed recently using other
methods (such as PNe or globular clusters (GCs)). Of course, one should be cautious
about these two new techniques when drawing conclusions, because the number of
analyzed galaxies is still very small. However, some of the two basic postulates of
this method: (i) the fact that the gas obeys the perfect gas low and (ii) the fact that
the condition of hydrostatic equilibrium holds, may not be valid (see the discussion
in Chapter 3). In the case of the mass-to-light ratio estimate based on the cold gas
the basic assumptions are (cf. Oosterloo et al. 2002): (i) spherical mass distribution
and (ii) circular orbits of the gas, which may not be true. Also, since the cold gas is
not frequent in the early-type galaxies this method is unsuitable for larger surveys in
the future. One may notice that in this book strong evidence for dark haloes in the

15If a given methodology is discussed in this book, the reference is “This book” is given and the
reader is invited to check the related Chapters.
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elliptical galaxies was not found inside ∼ 3Re. The reasons for this could be (i): our
results are biased because our sample included only galaxies that do not have much
dark matter, (ii) the modelling that we used was not suitable for the detection of the
dark matter. The first of this statements could be true, but one should bear in mind
that we analyzed galaxies that are isolated (field), that belong to some group and
that belong to the Fornax cluster. The samples of galaxies included both bright and
intermediate luminosity galaxies. A bigger sample would, of course, be useful, but
even the present one should be large enough to provide some conclusions that might
be indicative of the existence of dark matter in the elliptical galaxies. The second
statement could also be true, but again, one should take into account that given the
“immense liberty” (at least in the three-integral modelling case) such an outcome was
one of the possible ones. Therefore, in order to see the convergence of results for a
given galaxy (observations plus modelling for every given method), a combination of
different methodologies is necessary. The lensing technique, another promising new
method, can provide useful insights about the dark matter in distant elliptical galaxies
(z ∼ 1), especially about the evolution of the stellar mass-to-light ratio with redshift.
Results obtained so far strongly suggest the existence of large amounts of dark matter
(> 50% of the mass inside the Einstein radius) in the elliptical galaxies. Probably,
the best way to study the dark haloes in the near future would be by using PNe and
GCs in combination with the integrated spectra data: stellar spectra should provide
reliable estimates of the velocity profiles out to ∼ 3Re and PNe and/or GCs in the
outer parts. For example, Bridges et al. (2003) obtained (but has not published)
results for GCs of, among other galaxies, IC 1459 — it will be of interest to compare
their findings with the results obtained in this book.

A fifth conclusion is related to the relationship between the X-ray haloes and dark
haloes. The X–rays predict an increase of the total mass (and the mass-to-light ratio)
with the radius. In general (inside ∼ 3Re, region inside which we had long-slit spectra
data) there is good agreement between integrated stellar spectra and X–ray estimates.
Beyond ∼ 3Re the X-rays predict the existence of larger amounts of dark matter.
However, there are discrepancies beyond ∼ 8Re between X–rays and GCs/PNe (see
the next conclusion). The reason for this as mentioned earlier (the fourth conclusion)
could be due to the lack of hydrostatic equilibrium in these regions. This however
remains an open question at this stage.

The sixth conclusion is related to the estimates of the total mass (and the mass-to-
light ratio) inferred from the studies of the planetary nebulae and globular clusters:
in this book we have studied two ellipticals, NGC 1399 and NGC 5128, for which a
database of both PNe and GCs exists. The departures from the Gaussian (given with
the skewness and kurtosis parameter) are not large although more detailed studies
are needed in order to establish them accurately. Since both of these galaxies posses
an X–ray halo it was possible to compare the results of different mass tracers: (i)
For NGC 1399 the estimates of the total mass based on the GCs and X–rays are
in good agreement out to ∼ 10Re and beyond this region they diverge, i.e., X–rays
predict a higher mass. Inside ∼ 3Re there is no need for dark matter. At ∼ 10Re the
total mass-to-light ratio rises to ∼ 45 (in the B-band) implying significant amount
of dark matter there. (ii) For NGC 5128 the estimates of the total mass based on
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both GCs and PNe agree well with the estimates based on the X–rays out to ∼ 8Re.
Beyond this radius again the X–ray estimate is the largest one. The estimate for the
total mass-to-light ratio in the B-band is ∼ 10 which is rather low and is consistent
with a low amount of the dark matter there. At ∼ 15Re the estimate based on the
PNe is ∼ 14 which implies that the amount of dark matter increases between 10 and
15 Re (the estimate based on the X–rays is even higher, M/LB ∼ 28). The overall
impression is that dark matter starts to increase its contribution beyond ∼ 3Re and
at higher radii it starts to completely dominate.

Given the problems in establishing the very existence of the dark matter haloes at
different radii in the elliptical galaxies the seventh conclusion comes as no surprise:
one cannot say much about the nature of the dark matter content of these galaxies,
for example, whether it is baryonic or non-baryonic.

The final, eighth conclusion is related to the modelling of the line strength indices:
it was shown that in several cases (most notably of IC 1459 and IC 3370) a better fit
to the observed values is obtained without dark matter out to ∼ 3Re (the radii out
to which we had the observational data).

PROSPECTS FOR THE FUTURE

If we want to establish unambiguously the existence of dark haloes in elliptical galaxies
we need to perform more accurate studies involving different interconnected branches
of astrophysics. To date, different important aspects (for example, stellar dynamics,
X-ray haloes and other mass tracers, chemical evolution) have been studied in detail,
but much is left to be done, especially observationally, always bearing in mind the
theoretical assumptions which have to be constantly questioned. First of all, it is
absolutely necessary to enlarge the sample of integrated stellar spectra of elliptical
galaxies observed out to at least three effective radii. For all the existing observations
a critical reanalysis that takes into account the full line-of-sight velocity distribution
is needed (when such data exist). On the basis of the results from this book, a
good way to proceed would be to choose several elliptical galaxies which should be
isolated, which should exhibit axisymmetry and are devoid of peculiarities (such as
counterrotating core), which should possess an X-ray halo, and preferably have other
possible mass tracers (for example, PNe and/or GCs) in order to perform a detailed
stellar kinematic modelling (inside ∼ 3Re) and an X-ray study (beyond 1Re). This
is, of course, an ambitious undertaking – a search for such candidates is already a
demanding task. Other mass tracers will have to be studied and the results should
be confronted with the previous two analyses. Detailed chemical evolution modelling
should also be performed. Only in this way can we expect that the dark matter
problem in elliptical galaxies will be fully understood.
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Appendix 1

ILL-POSED PROBLEMS

AND REGULARIZATION

A1.1. BASIC CONCEPTS

The solution of the system of equations given in eq. (14) of Rix et al. (1997) gives
the orbital weights γk. Non-negative least square (NNLS) fit always gives a formally
unique solution (more about NNLS in a separate appendix). However, this solution
will in principle be very irregular in phase space which is physically implausible.
Non-negativity is the only physical constraint on the distribution function (DF).

The study of the extremely simple worked example (from Hansen (2001)) provides
a description of the problems that one faces when encountered with an ill-posed
problem such as the one mentioned above. One can consider the following least-
squares problem:

min
x

‖ Ax − b ‖2 . (A1.1)

Here, coefficient matrix A and right-hand side (RHS) vector b are given by:

A =





0.16 0.10
0.17 0.11
2.02 1.29



 (A1.2)

and

b =





0.27
0.25
3.33



 . (A1.3)

In this case the RHS vector b is generated by simply adding a small perturbation to
an exact RHS that corresponds to the exact solution

x =

(

1.00
1.00

)

:

b =





0.16 0.10
0.17 0.11
2.02 1.29



×
(

1.00
1.00

)

+





0.01
−0.03

0.02



 . (A1.4)
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The problem with this least-squares problem is that the matrix A is ill-conditioned.
Namely, since its condition number16 is equal to 1.0975× 103 (using MATLAB cond

routine), this means that the computed solution will be very sensitive to perturba-
tions of the data. If now one calculates the ordinary least-squares (LSQ) solution by
means of QR factorization (using, for example, NAG routine F08AEF) one obtains the
solution:

xLSQ =

(

7.01
−8.40

)

. (A1.5)

It is quite obvious that this solution is worthless. One therefore must try to apply some
procedure in order to get a better approximation to the exact solution: x̄T = (1 1).

The very large condition number implies that the columns of the matrix A are
nearly linearly dependent. Therefore one could try to replace the ill-conditioned
matrix A = (a1 a2) with either (a1 0) or (0 a2), both of each are well conditioned.
Thus one gets two so-called basic solutions:

x1
B =

(

1.65
0.00

)

, x2
B =

(

0.00
2.58

)

. (A1.6)

The corresponding residual norms are both small:

‖ Ax
(1)
B − b ‖2= 0.031, ‖ Ax

(2)
B − b ‖2= 0.036, (A1.7)

and these solutions are much less sensitive to perturbations of the data. However,
as can be seen these solutions are again not good and they have nothing in common
with the exact solution: x̄T = (1 1).

When one tries to find the ordinary least-squares solution, xLSQ one can encounter
a major difficulty that its norm is much greater than the norm of the exact solution.
Therefore, one can try to add some side constraint that the solution norm must not
exceed a certain value α:

min
x

‖ Ax − b ‖2 subject to ‖ x ‖≤ α. (A1.8)

For a set of different α’s (α =0.1, 1.0, 1.385, 10) one obtains:

x0.1 =

(

0.08
0.05

)

, x1.0 =

(

0.84
0.54

)

, x1.385 =

(

1.17
0.74

)

, x1.385 =

(

6.51
−7.60

)

.

(A1.9)
It is obvious that if one sets the value of α properly (for example, in this case, α =

1.385), one can obtain the solution that is rather close to the exact one: x̄T = (1 1).
However, one must take care when choosing α, and the proper choice is not obvious.

16The condition number of a matrix A is a measure of the sensitivity of the solution of a system of
linear equations to errors in the data. It also gives an indication of the accuracy of the results from
matrix inversion and the linear equation solution. If the condition number of A is large, A is said to
be ill-conditioned. A value near 1 indicates a well-conditioned matrix. The condition number is the
ratio of the largest singular value of A to the smallest.
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The example given above is a very small one but it provides an idea of problems
that one encounters when dealing with large matrices and vectors: in this book when
we solve the NNLS problems we use 729 orbits and 500 constraints that leads to
matrices whose dimensions are 729 × 500. The problems are the following:
• The condition number of the matrix A is large.
• Replacement of A by a well-conditioned matrix derived from A does not necessarily

lead to a useful solution.
• One must take care when imposing additional constraints.

To overcome these problems numerical regularization theory is used in order to pro-
vide efficient and numerically stable methods for inclusion of proper side constraints
that lead to useful stabilized solutions. These methods also provide robust ways for
choosing the optimal weight given to the side constraints such that the regularized
solution is a good approximation to the desired unknown solution.

A good introduction to the regularization can be found in the book Numerical
Recipes in Fortran (Press et al. 1994). In our implementation of the regularization we
have relied on the functions written in MATLAB by P.C. Hansen (descriptions are
given in a manual Regularization Tools. A Matlab Package for Analysis and Solution of
Discrete Ill-Posed Problems (Hansen 2001)).

A1.2. DISCRETE ILL-POSED PROBLEMS

The definition of the ill-posed problem due to J. Hadamard states that the problem
is ill-posed if the solution is not unique or if it is not a continuos function of the data
–i.e., if an arbitrarily small perturbation of the data can cause an arbitrarily large
perturbation of the solution. As a side note, Hadamard believed (beginning of the
20th century) that ill-posed problems were ”artificial” in that they would not describe
physical systems (for applications in astronomy see Craig and Brown 1986).

Certain finite-dimensional discrete problems have properties that are very similar
to those of ill-posed problems 17 (for example, being highly sensitive to high-frequency
perturbations), so it is common to associate the term discrete ill-posed problems with
these problems. For linear systems of equations:

Ax = b, A ∈ <m×n (A1.10)

and linear least-squares problems

min
x

‖ Ax − b ‖2, A ∈ <m×n, m > n, (A1.11)

one can say that these are discrete ill-posed problems if both of these two criteria are
met: (i) the singular values of A decay gradually to zero and (ii) the ratio between the
largest and the smallest nonzero singular values is large. The first criterion implies
that there is no “nearby” problem with a well-conditioned coefficient matrix and
with well-determined numerical rank (see below). The routines used in MATLAB
environment require singular value decomposition (SVD) so this will be discussed in
more detail later. The second criterion implies that the matrix A is ill-conditioned.

17Ill-posed problems must be infinite dimensional (see Hansen 2001).
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A1.3. TIKHONOV REGULARIZATION

The most common and most widely used form of regularization is the so-called Tik-
honov regularization. The basic idea is to define a regularized solution xλ as the
minimizer of the following weighted combination of the residual norm and the side
constraint:

xλ = argmin
{

‖ Ax − b ‖2
2 +λ2 ‖ L(x − x∗) ‖2

2

}

, (A1.12)

where the regularization parameter λ controls the weight given to minimization of the
side constraint relative to minimization of the residual norm. Here, x∗ is an initial
estimate of the solution, and L is typically either the identity matrix In or a p × n
discrete approximation of the (n−p)-th derivative operator. It is obvious that a large
value of λ (large amount of regularization) favors a small solution seminorm at the
cost of a large residual norm, while a small value of λ (small amount of regularization)
has the opposite effect. The regularization parameter λ thus controls the properties
of the regularized solution and should be chosen with care.

One should stress that there are many other regularization methods apart from
Tikhonov regularization: (i) direct regularization methods are: least-squares with a
quadratic constraint, damped SVD/GSVD (generalized SVD), truncated SVD (TSVD),
truncated GSVD (TGSVD), maximum entropy regularization, and (ii) iterative reg-
ularization methods are: conjugate gradients and LSQR, bidiagonalization with reg-
ularization, ν method.

A1.4. SVD AND GENERALIZED SVD

Some useful tools in analyses of ill-posed problems are the singular value decompo-
sition (SVD) and its generalization to two matrices, the generalized singular value
decomposition (GSVD) of the matrix pair (A, L). Let A ∈ <m×n be a rectangular
matrix with m ≥ n. Then the SVD of the matrix A is a decomposition of the form:

A = UΣV T =

n
∑

i=1

uiσiv
T
i , (A1.13)

where U = (u1, ...,un) and V = (v1, ...,vn) are the matrices with orthonormal
columns, UT U = V T V = In, and Σ = diag(σ1, ..., σn) has non-negative diagonal
elements appearing in non-increasing order such that:

σ1 ≥ σ2 ≥ ... ≥ σn ≥ 0. (A1.14)

The numbers σi are the singular values of the matrix A (see the definition of the
condition number above). The vectors ui and vi are the left and right singular
vectors of A. respectively. According to the definition, the condition number of A is
equal to:

cond(A) =
σ1

σn
. (A1.15)

The GSVD of the matrix pair (A, L) is a generalization of the SVD of A in the sense
that the generalized singular values of (A, L) are the square roots of the generalized
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eigenvalues of the matrix pair (AT A, LT L). The dimension of A ∈ <m×n and L ∈
<p×n satisfy m ≥ n ≥ p (this is always fulfilled in the case of the ill-posed problems).
The GSVD is the decomposition of A and L in the form:

a =

(

Σ 0
0 In−p

)

X−1, L = V (M, 0)X−1, (A1.16)

where the columns of U ∈ <m×n and V ∈ <p×p are orthonormal, X ∈ <n×n is nonsin-
gular, and Σ and M are p × p matrices: Σ = diag(σ1, . . . , σp), M = diag(µ1, . . . , µp).
The diagonal values of Σ and M are non-negative and ordered in the following manner:

0 ≤ σ1 ≤ . . . σp ≤ 1, 1 ≥ µ1 ≥ . . . µp > 0, (A1.17)

and are normalized such that:

σ2
i + µ2

i = 1, i = 1, . . . , p. (A1.18)

Now one can define the generalized singular values γi of (A, L) as the ratios:

γi =
σi

µi
, i = 1, . . . , p. (A1.19)

A1.5. THE L-CURVE

The so-called L-curve is a very convenient graphical tool for analysis of discrete ill-
posed problems. It is a plot for all valid regularization parameters of the (semi)norm
‖ Lxreg ‖2 of the regularized solution versus the corresponding residual norm ‖ Axreg−
b ‖2 (see Fig. (A1.1)). Thus, the L-curve displays the compromise between the
minimization of these quantities (see also Fig. 18.4.1. from Press et al. (1994)).
Its name came from the fact that for discrete ill-posed problems the L-curve (when
plotted in log-log scale), almost always has a characteristic L-shaped form (more or
less deformed). There is a distinct corner that separates vertical and horizontal parts
of the curve.

For a general-form regularization (L 6= In) the following equation holds that gives
the expression for error in xreg:

xreg − x̄ =





p
∑

i=1

fi
uT e

σi
xi +

n
∑

i=p+1

(uT e)xi



+

n
∑

i=p+1

(fi − 1)
uT b̄

σi
xi. (A1.20)

Here, xreg is a regularized solution, the term in parenthesis denotes the perturbation
error due to the perturbation e, and the second term is the regularization error that
is caused by regularization of the unperturbed component x̄. Filter factors for the
Tikhonov regularization are given as:

fi =
σ2

i

(σ2
i + λ2)

for L = In (A1.21)
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and

fi =
γ2

i

(γ2
i + λ2)

for L 6= In (A1.22)

When one introduces only little regularization, most of the filter factors fi are ap-
proximately one and the error xreg − x̄ is dominated by the perturbation error. On
the contrary, if one introduces plenty of regularization, most filter factors are small
(fi � 1, and xreg − x̄ is dominated by the regularization errors.

In the case of the Tikhonov regularization the L-curve divides the first quadrant into
two regions: any regularized solution must lie on or above this curve (see Fig. (A1.1)).
Thus the solution obtained using the Tikhonov regularization is optimal in the sense
that for a given residual norm there does not exist a solution with smaller seminorm
than the Tikhonov solution (the same also holds when one interchanges the roles
of the norms). When one locates the corner of the L-curve one can compute an
approximation to the optimal regularization parameter that leads to a computation
of regularized solution with a good balance between two error types. The definition
of the L-curve’s corner is the point with the maximum curvature in log-log scale.
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Figure A1.1: L-curve in case of orbits in triaxial logarithmic potential for which p = q =
0.9. Inclination is 40◦ and box orbits are used.
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A1.6. TIKHONOV REGULARIZATION

Tikhonov regularization is a direct method because the regularized solution xλ (de-
fined in eq. Eq. (A1.12)) is the solution to the following least-squares problem:

b = min
w

w

w

(

A
λL

)

x−
(

b
λLx∗

)

w

w

w

2
. (A1.23)

This problem is then solved taking into account the non-negativity of the orbital
weights (see Appendix 2 for more details about NNLS).

A1.7. CHOICE OF THE REGULARIZATION PARAMETER

The appropriate choice of the regularization parameter means a good balance between
the perturbation error and the regularization error in the regularized solution. There
are two approaches: (1) methods based on knowledge, or a good estimate of ‖ e ‖2

(the norm of the perturbation of the RHS) and (2) methods that do not require
the knowledge of ‖ e ‖2, but extract the necessary information from the given RHS.
We have used the L-curve criterion that belongs to the second class using Hansen
(2001) routines written in MATLAB. For a continuous regularization parameter λ,
we compute the curvature of the curve (log ‖ Axλ − b ‖2, log ‖ Lxλ ‖2), where
λ is curve’s parameter and then search for a point with maximum curvature: this
point then can be defined as the L-curve corner. In a similar manner, when the
regularization parameter is discrete one can approximate the discrete L-curve in log-
log scale by a two-dimensional spline curve, compute the point on the spline curve
with maximum curvature and define the corner of the discrete L-curve as the point
which is closest to the corner of the spline curve.
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Appendix 2

NNLS (NON-NEGATIVE LEAST SQUARES)

As it is shown in Chapter 2 and in Appendix 1, in solving the least-squares prob-
lem (Rix et al. 1997, eq. (14)) there is a constraint that for the occupation vector
(γ1, . . . , γN0

), the following relation holds: γk ≥ 0, for k = 1, . . . , N0 (N0 is the num-
ber of orbits). This is the non-negative least squares (NNLS) problem to be solved
after the regularization procedure has been performed:

Minimize ‖ Ex − f ‖ subject to x ≥ 0.

The standard algorithm for this is given by Lawson and Hanson (1974) and the
following discussion relies on this book.

Initially one takes the matrix E (matrix on the left hand side of eq. (14) from Rix et
al). Its dimension is m2 × n (in our case, m2 = 500 and n = 729)18 so the dimension
is 500 × 729, because we used 500 observational constraints and 729 orbits). The
vector that consists of observational points on the right hand side of this equation has
the dimension m2 = 500. Finally, the unknown vector x has the dimension n = 729.
Auxiliary n-vectors w and z provide a working space. Index sets P and Z are defined
and modified in the course of execution of the algorithm. Variables indexed in the set
Z are held at the value zero. Variables indexed in the set P will be free to take values
different from zero. If such a variable takes a non-positive value, the algorithm will
either move the variable to a positive value or else set the variable to zero and move
its index from from set P to set Z . The solution vector x is given as an output.

The following steps are contained in the NNLS algorithm:

Step 1 Set P := NULL, Z := {1, 2, . . . , n}, and x := 0.
Step 2 Compute the n-vector w := ET (f − Ex)
Step 3 If the set Z is empty or if wj ≤ 0 for all j ∈ Z , go to Step 12.
Step 4 Find an index t ∈ Z such that wt = max{wj : j ∈ Z}.
Step 5 Move the index t from set Z to set P .
Step 6 Let EP denote the m2 × n matrix defined by:

Column j of EP :=

{

column j of E if j ∈ P
0 if j ∈ Z

18In the batch procedure that we have written these two numbers are free parameters and can
have whatever positive value, but for the sake of comparison between different potentials and orbits
we use one fixed combination: 500 × 729.
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Compute the n-vector z as a solution of the least-squares problem
EPz ∼= f . Only the components zj , j ∈ P are determined
by this problem. Define: zj := 0 for j ∈ Z .

Step 7 If zj > 0 for all j ∈ P , set x := z and go to Step 2.
Step 8 Find an index q ∈ P such that

xq/(xq − zq) = min{xj/(xj − zj) : zj ≤ 0, j ∈ P}.
Step 9 Set α := xq/(xq − zq).
Step 10 Set x := x + α(z − x).
Step 11 Move from set P to set Z all indices

j ∈ P for which xj = 0. Go to Step 6.
Step 12 The end of computation.

The solution vector x as a final result of this algorithm satisfies:

xj > 0, j ∈ P

and
xj = 0, j ∈ Z .
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Appendix 3

ORBITS

In this Appendix we will present some necessary details connected with the orbits of
individual stars in a given potential. The fundamental approximation is valid: forces
from individual stars are neglected and only large-scale forces from the overall mass
distribution (made up of billions of stars) is considered (cf. Binney and Tremaine
1997, hereafter BT87). Small-scale irregularities due to individual stars or objects
like globular clusters and molecular clouds are ignored.

A3.1. GRAVITATIONAL POTENTIALS

A3.1.1. ORBITS IN SPHERICAL POTENTIALS

The gravitational potential, Φ(x) for an arbitrary mass density ρ(x) is given as (see,
for example, Barnes (2006)):

Φ(x) = −G

∫

d3x′ ρ(x′)

|x − x′| (A3.1)

where G is the gravitational constant and the integral is taken over all space.
The potential energy of a test mass m is given as:

U = mΦ(x). (A3.2)

Using Poisson’s equation one can establish the relationship between density and
potential:

∇2Φ = 4πGρ, (A3.3)

from which it is obvious that linearity holds: if ρ1 generates potential Φ1 and ρ2

generates Φ2 then the sum ρ1 + ρ2 generates the sum Φ1 + Φ2.

If one considers a spherical shell of mass m, Newton’s first and second theorems
state:

1. the gravitational force inside a spherical shell of matter vanishes and
2. the gravitational force on a body that lies outside a closed spherical shell of matter

is the same as it would be if all the shell’s matter were concentrated into a point
at its center.
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The potential of an arbitrary spherical mass distribution is:

Φ(r) = −
∫ r

r0

dx a(x) = G

∫ r

r0

dx
M(x)

x2
, (A3.4)

the mass that is enclosed is given as:

M(r) = 4π

∫ r

0

dx x2ρ(x). (A3.5)

A3.1.2. EXAMPLES

For a point of mass M a Keplerian potential is given as:

Φ(r) = −G
M

r
. (A3.6)

Orbits in this potential obey the three Kepler’s laws. A circular orbit at radius r has
velocity: vc(r) =

√

GM/r. A circular velocity that declines with increasing radius

like r
1
2 is therefore called Keplerian. Kepler was the first to understand that in the

Solar system vc ∝ r
1
2 .

For a uniform sphere of mass M and radius a the potential is:

Φ(r) =

{

−2πGρ(a2 − r2/3), r < a
−Gm/r, r > a

(A3.7)

where ρ is the mass density.
For a singular isothermal sphere that has a density profile: ρ(r) = ρ0(r/r0)−2 the

potential is:
Φ(r) = 4πGρ0r

2
0 ln(r/r0). (A3.8)

The circular velocity is constant with radius: vc =
√

4πGρ0r2
0 . In case of galaxies

with flat rotation curves this potential can be used as a valid approximation, but
some outer cut-off must be imposed to obtain a finite total mass.

A3.1.3. POTENTIAL-DENSITY PAIRS

Using Poisson’s equation one can obtain pairs of functions (potentials and density)
characterized by a total mass M and a length scale a. A very short list is given in
Table A3-1 (for a detailed list, see Ciotti 2001):

TABLE A3-1

Potential density pairs for spherical potentials

Name Φ(r) ρ(r)

Plummer −G M√
r2+a2

3M
4πa3

(

1 + (r2/a2)
)−5/2

Hernquist −G M
r+a

M
2π

a
r(r+a)3

Jaffe −GM
a ln

(

a
r+a

)

M
4π

a
r2(r+a)2
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Figure A3.1: Example of an orbit in the Hernquist potential. Clockwise from the top left

corner: dependence of y coordinate on x coordinate, dependence of vx component of the

velocity v on x coordinate, dependence of vz component of the velocity v on x coordinate

and dependence of z coordinate on x coordinate. See text for details.

A3.1.4. AN EXAMPLE

An example of an orbit generated in the Hernquist spherical potential (initial condi-
tions were: x0 = 0.3, y0 = 0.0, z0 = 0.4, vx = 0.0, vy = 0.4, and vz = 0.0 is given in
Fig. (A3.1). Radial length scale was 0.1. The number of time steps in this case, as
well as in all other cases that follow, was 16384. Here, Lz = 0.12. From the z-x plot
it is obvious that the motion is confined to two dimensions.
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A3.1.5. CONSTANTS AND INTEGRALS OF MOTION

The constants of motion are functions of phase-space coordinates and time which are
constant along orbits:

C(r(t),v(t), t) = const. (A3.9)

Here, r(t) and v(t) = dr/dt are a solution to the equations of motion. The function
C(r,v, t) must be constant along every orbit (its value depends on the orbit). If the
phase-space has 2n dimensions, there are always 2n independent constants of motion.

Integrals of motion are functions of phase-space coordinates alone which are con-
stant along orbits:

I(r(t),v(t)) = const. (A3.10)

It can be seen that an integral of motion cannot depend on time, so all integrals
are constants of motion but the opposite is not valid, not all constants are integrals
of motion. There are two kinds of integrals (cf. classic paper of Henon and Heiles
1964): non-isolating and isolating. For a non-isolating integral the corresponding
hypersurface consists of an infinity of sheets that fill the phase space densely, so that
the equation

Ij = Cj (j = 1, . . . , 5) (A3.11)

does not give any information and is equivalent to no condition at all. Therefore,
physically, nonisolating integrals do not have significance (integrals I4 and I5 are
generally nonisolating). Isolating integrals (usually called simply “integrals”) are
important and they constrain the shapes of orbits. In a phase-space of 2n dimensions,
an isolating integral defines a hypersurface of 2n − 1 dimensions. Regular orbits are
those that have N = n isolating integrals. In such cases each orbit is confined to a
hypersurface of 2n − N dimensions.

A3.1.6. AXISYMMETRIC POTENTIALS

In the case of the axisymmetric potentials one works in a cylindrical coordinate sys-
tem (R, φ, z) that is centered on the galactic nucleus. The galaxy’s symmetry axis
is aligned with the z-axis. In this case the mass distribution is a function of two
variables: cylindrical radius, R, and height z. We will not include potentials related
to axisymmetric disks (see Ciotti 2001) because they are important in the context of
spiral galaxies. For a flattened system we list two potential-density pairs:

TABLE A3-2

Potential density pairs for flattened potentials

Name Φ(r) ρ(R, z)

Miyamoto-Nagai (MN) − GM√
R2+(a+

√
b2+z2)2

(

b2M
4π

)

aR2+(a+3
√

z2+b2)(a+
√

z2+b2)2

[R2+(a+
√

z2+b2)]5/2(z2+b2)3/2

Logarithmic 1
2v2

0 ln(R2
c + R2 + z2/q)

(

v2
0

4πGq2

)

(2q2+1)R2
c+R2+(2−q−2)z2

(R2
c+R2+z2q−2)2
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The logarithmic potential is used in this book in several of its variants. Its im-
portance comes from the fact that it can describe galaxies with approximately flat
rotation curves: for the z = 0 plane the circular velocity vc = v0R/

√

R2
c + R2 rises

linearly for R � Rc and is approximately constant for large R. As one can see from
the potential-density pairs from Table A3-2 (density is obtained using Poisson’s
equation), the density in the case of the logarithmic potential is “dimpled” at the
poles (see Fig. 2.8 of BT87). Namely, for q2 < 1

2 the density along the z-axis is
negative, which is obviously unphysical.

The stars which have motion in the equatorial plane in the axisymmetric poten-
tial can be reduced to a two-dimensional problem using the conservation of the z-
component of angular momentum of any star. If the symmetric potential (symmetric
about the plane z = 0) is Φ(R, z) the general equation of motion of the star is:

d2r

dt2
= −∇Φ(R, z). (A3.12)

In the cylindrical coordinates the following relations hold:

r = ReR + zez (A3.13)

(where eR and ez are unit vectors, as well as eφ). Now one can write the acceleration
in the cylindrical coordinates (cf. BT87, p. 114, and their equation 1B-24):

R̈ − Rφ̇2 = −∂Φ

∂R
(A3.14)

d

dt

(

R2φ̇
)

= 0 (A3.15)

z̈ = −∂Φ

∂z
(A3.16)

The second of these equations (Eq. (A3.15)) describes the conservation of the com-
ponent of angular momentum about the z-axis, Lz = R2φ̇, and the remaining two de-
scribe the coupled oscillations of the star in the R and z-directions. From Eq. (A3.14)
one can eliminate φ̇ to obtain equations for the evolution of R and z:

R̈ = −∂Φeff

∂R
; z̈ = −∂Φeff

∂R
; (A3.17)

where the effective potential has been introduced:

Φeff ≡ Φ(R, z) +
L2

z

2R2
. (A3.18)

Therefore the three-dimensional motion of a star in an axisymmetric potential Φ(R, z)
can be reduced to the motion of the star in the plane (see Fig. (A3.2)). This non-
uniformly rotating plane with coordinates (R, z) is often called the meridional plane.
Effective potential governs the star’s motion in the meridional plane, which rotates
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Figure A3.2: Example of an orbit in the logarithmic axisymmetric potential. Clockwise

from the top left corner: dependence of y coordinate on x coordinate, dependence of vx

component of the velocity v on x coordinate, dependence of vz component of the velocity

v on x coordinate and dependence of z coordinate on x coordinate. See text for details.

about the z-axis with angular velocity Lz/R2. On the meridional plane the effective
potential has a minimum at R > 0 and z = 0 and a steep angular momentum barrier
as R → 0 (BT87, Figure 3-2). If the motion of a star in this plane is constrained
only by the energy E (see the formula below) a star should travel everywhere inside
within a closed contour of constant Φeff . This is, however, not always observed:
it can happen that stars launched from rest at different points along a contour of
constant Φeff follow distinct trajectories. This is a consequence of the existence of a
third integral, for which, however, general expression does not exist (as in the case

170



Appendix 3 ORBITS

of two classic integrals given in equations for energy E, and a z-component of the
angular momentum (Lz = Rvφ)). The existence of the third integral implies that a
star’s orbit is a combination of three period motions: radial, azimuthal, and vertical.
The orbit can thus be represented as a path on an invariant 3-torus. In the case of
some axisymmetric potentials orbits can go everywhere energetically permitted on
the meridional plane. These orbits do not permit the description in terms of motion
on an invariant 3-torus. These are irregular, or stochastic orbits in an axisymmetric
potential that respect only two classical integrals: E and Jz.

The energy E of a star that is moving in an arbitrary axisymmetric potential Φ is
given as:

E =
1

2

[

Ṙ2 + (Rφ̇)2 + ż2
]

+ Φ =
1

2
(Ṙ2 + ż2) +

(

Φ +
L2

z

2R2

)

(A3.19)

that is

E =
1

2
(Ṙ2 + ż2) + Φeff . (A3.20)

One can see that the effective potential Φeff is the sum of the gravitational potential
energy of the orbiting star and the kinetic energy associated with its motion in the
φ-direction. The difference between Φeff and E is the kinetic energy of the motion in
the (R, z) plane. Kinetic energy is non-negative, and therefore the orbit is restricted
to the area of the meridional plane that satisfies the relation: E ≥ Φeff . The curve
that bounds this area is called the zero-velocity curve, because the orbit can only
reach this curve if its velocity is instantaneously zero.

As noted in BT87 (p. 117) eq. (14) cannot be solved analytically, unless the gravi-
tational potential Φ is of some special form. However, one can follow the evolution of
R(t) and z(t) by integrating the equations of motion numerically, starting with some
initial conditions.

The motion of the representative point is in the four-dimensional phase space
(R, z, Ṙ, ż). This is complicated to visualize, so one can study orbits in (R, z) plane
using a simple techique of the surface of section (see Richstone 1982). Because the
energy E(R, z, Ṙ, ż) is conserved, one can plot the motion of the representative point
in a three-dimensional space (for example, (R, z, Ṙ) and then determine ż to within
a sign by the known value of E). Further on, one can decide to plot the points by
choosing the moment when the representative point of the star crosses some plane
(say z = 0 plane) in the phase space. Therefore, one can plot (R, Ṙ) only when ż > 0
to remove the ambiguity due to the sign of ż: one can plot the values of R and Ṙ
every time that the star crosses the equator going upward. These plots are called
surfaces of section and were first used by Poincaré (see Fig. (A3.3)).

If one now supposes that the star’s motion in (R, z) plane respects an additional iso-
lating integral, I , the trajectory of its phase point in the three-dimensional space with
coordinates (R, z, Ṙ) is restricted by the condition I = const. to a two-dimensional
region, which must cut the plane z = 0 through (R, z, Ṙ) space in a curve, called the
orbit’s invariant curve. Therefore, if I exists for any orbit, the points that are gener-
ated by that orbit in the surface of section must lie on a curve. If, however, the only
isolating integral admitted by motion in the (R, Ṙ) plane is E, the points generated
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by each orbit will fill one or more areas in the surface of section (see Fig. (A3.3)). In
Fig. (A3.5) one can see the example that the points lie on the smooth curve in the
(R, Ṙ) surface of section, so it seems that some isolating integral, I is respected by
this orbit. This is the example of the third integral.
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Figure A3.3: Example of an orbit in the logarithmic axisymmetric potential (same orbit

as in Fig. (A3.2) but using cylindrical coordinates). Clockwise from the top left corner:

dependence of y coordinate on x coordinate (same plot as in Fig. (A3.2)), dependence of vR

component of the velocity v on R coordinate, dependence of vz component of the velocity

v on R coordinate and dependence of z coordinate on R coordinate.
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A3.1.7. AN EXAMPLE

An example of an orbit generated in the axisymmetric logarithmic potential (initial
conditions were: x0 = 0.3, y0 = 0.0, z0 = 0.4, vx = 0.0, vy = 0.4, and vz = 0.0 is
given in Fig. (A3.2) and Fig. (A3.3). Here, Lz = 0.12. Potential velocity scale was
1.0, the value of the core radius was Rc = 0.2, and the flattening of the potential was
q = 0.8. From the z-x plot it is again obvious that the motion is confined to two
dimensions.

A3.1.8. TRIAXIAL POTENTIALS

In the construction of the triaxial potentials, the first step is to generalize an infinitely
thin spherical shell into an infinitely thin homeoid (a shell bounded by two similar
ellipsoids having a constant ratio of axes) which has constant density between surfaces
m2 and m2 + dm2, where:

m2 = x2 +
y2

b2
+

z2

c2
. (A3.21)

The acceleration inside the shell vanishes (in a similar way like in the spherical case).
Therefore one can write Φ = const. inside the shell and on its surface. Outside the
shell, the potential is stratified on ellipsoidal surfaces that are defined by:

m2 =
x2

1 + τ
+

y2

1 + τ
+

z2

1 + τ
, (A3.22)

where parameter τ > 0 labels the surface. In two extreme cases: (i) τ = 0 the
isopotential surface coincides with the homeoid, and (ii) when τ → ∞ the isopotential
surfaces become spherical.

Making a superposition of a series of thin homeoids one can obtain a triaxial mass
distribution with ρ = ρ(m2). The acceleration at a given point (x0, y0, z0) is generated
by the mass within m2 < m2

0 = x2
0 + y2

0/b2 + z2
0/c2. This is again similar to the

situation that one encounters in the case of a spherical system where the acceleration
at distance r is only due to the mass within that radius, r.

Finally, one can write the expression for the logarithmic potential in the triaxial
case:

Φ(x, y, z) =
1

2
v2
0 ln

(

R2
c + x2 +

y2

b2
+

z2

c2

)

. (A3.23)

Again, as is in the aforementioned two-dimensional case it is not guaranteed that the
corresponding density will be positive if the potential is too strongly flattened.

A3.1.9. ORBITS IN NON-AXISYMMETRIC POTENTIALS

Non-axisymmetric potentials with Φ = Φ(x, y) or Φ = Φ(x, y, z) admit a richer variety
of orbits. In this case, the only classical integral of motion in such a potential is the
energy given as:

E =
1

2
|v|2 + Φ(r). (A3.24)

Some potentials permit other integrals of motion; in such potentials regular orbits
may be mapped onto invariant tori. However, not all regular orbits can be continu-
ously deformed into one another. Therefore, orbits can be grouped into topologically
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distinct orbit families. Each orbit family requires in principle a different invariant
torus.

A3.1.10. SEPARABLE POTENTIALS

In case of separable potentials all orbits are regular and the mapping to the invariant
tori can be constructed analytically and all integrals of motion are known. This is a
special case, and real galaxies do not have such a potential, but it has been shown
in numerical experiments that non-axisymmetric galaxy models with finite cores or
shallow cusps usually generate potentials that resemble separable potentials.

The orbits in a separable potential can be classified into different families. In
two-dimensions there are two types of closed, stable orbits: (1) loop orbits that loop
around the center, and (2) box orbits that oscillate back and forth along the major
axis (cf. BT87, Chapter 3.3.1). In three dimensions, a separable potential permits
four orbit families: (1) box orbits, (2) short-axis tube orbits (loop around the short
(minor) axis), (3) inner long-axis tube orbits and (4) outer long-axis tube orbits . Two
families of long axis-tube orbits that orbit around the long (major) axis come from
different closed stable orbits and explore different regions of space (BT87, Figure 3-
20, also Statler (1987)). Schwarzschild (1979) in his seminal paper defined box orbits
as orbits for which one may choose a starting point in space but a definite velocity,
namely zero. X-tube orbits are defined as orbits for which one may choose as starting
conditions arbitrary x and z coordinates and and arbitrary y velocity component;
other three phase-space coordinates are set to zero. There is no intermediate-axis
tube because closed orbits that loop around the intermediate axis are unstable.

A3.1.11. AN EXAMPLE

An example of an orbit generated in the triaxial logarithmic potential (initial condi-
tions were: x0 = 0.5, y0 = 0.3, z0 = 0.7, vx = 0.0, vy = 0.0, and vz = 0.0) is given
in Fig. (A3.4) and Fig. (A3.5). Here Lz = 0, flattening of the potential p = q = 0.9
and the core radius Rc = 0.3. Note the difference in the z-x plot with respect to
Fig. (A3.1) and Fig. (A3.2). Also, note the difference in R − vR plot with respect to
Fig. (A3.3). Because the initial velocity v = 0, the motion is again in two dimensions.

A3.2. LEAPFROG INTEGRATOR

In this book we generated orbits using a leapfrog integrator. This scheme is useful
when one deals with the second-order problems and Newtonian equations of motion
are second-order in time (see for example, Barnes 2006). Both positions and velocities
are needed to specify the dynamical state of the system.

From classical mechanics it is known that one can obtain the equations of motion in
an arbitrary coordinate system using a function called Lagrangian that depends on the
generalized coordinates, generalized velocities and possibly the time. The equations
of motion can be obtained using the principle of least action. The Lagrangian is:

L(x, ẋ, t) = T − U =
1

2
mẋ2 − U(x, t) (A3.25)
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Figure A3.4: Example of an orbit in the logarithmic triaxial potential (p = q = 0.9).

Clockwise from the top left corner: dependence of y coordinate on x coordinate, dependence

of vx component of the velocity v on x coordinate, dependence of vz component of the

velocity v on x coordinate and dependence of z coordinate on x coordinate. See text for

details.

where x is the generalized coordinate, and ẋ is the generalized velocity. Using the
Euler-Lagrange equation one can find the trajectory x(t):

d

dt

∂L

∂ẋ
− ∂L

∂x
= 0. (A3.26)
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Figure A3.5: Example of an orbit in the logarithmic triaxial potential (same orbit as in

Fig. (A3.4) but using cylindrical coordinates). Clockwise from the top left corner: depen-

dence of y coordinate on x coordinate (same plot as in Fig. (A3.2)), dependence of vR

component of the velocity v on R coordinate, dependence of vz component of the velocity

v on R coordinate and dependence of z coordinate on R coordinate.

From these two equations it follows:

d

dt
(mẋ) +

dU

dx
= 0 (A3.27)

which is in fact the Newton’s law of motion usually expressed as:

m
d2x

dt2
= f(x). (A3.28)
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Figure A3.6: Scheme of leapfrog integration

In a similar manner, one can use the generalized momentum

p =
dL

dẋ
= mẋ (A3.29)

define the Hamiltonian function as:

H(x, p) = pẋ − L(x, ẋ, t) =
1

2
mẋ2 + U(x, t) =

1

2m
p2 + U(x, t), (A3.30)

which is numerically equal to the total energy.
Now one can write the equations of motion:

dp

dt
= −∂H

∂x
,

dx

dt
=

∂H

∂p
(A3.31)

which after using the definition of the Hamiltonian becomes:

dp

dt
= −dU

dx
,

dx

dt
=

p

m
(A3.32)

that are identical to the familiar form:

dx

dt
= v, m

dv

dt
= f(x). (A3.33)

There are different numerical integrators for solving a system of coupled ordinary
differential equations but not all respect the symmetric structure in Eq. (A3.25). The
time-centered leapfrog integrator does respect this structure. In second-order systems
it is useful to define the velocities at the mid-points of the intervals – it is said that
the velocities are staggered with respect to the positions x. If x[k] = x(kh) is the
position at time t = kh, where k is the step number and h is the time-step. Velocity
v[k + 1/2] = v([k + 1/2]h) is the velocity a half-step later (see Fig. (A3.6)). The
leapfrog step is:

x[k + 1] = x[k] + hv[k + 1/2] (A3.34)
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v[k + 3/2] = v[k + 1/2] + ha(x[k + 1]), (A3.35)

where a(x) = −(1/m)∂U/dx is the acceleration. In this scheme both x and v are
treated symmetrically: they are both reversible. The leapfrog scheme is time re-
versible and that is important because it guarantees conservation of energy, angular
momentum and any other conserved quantity. The problem of the leapfrog integrator
is the need to offset the position and velocity variables by half a timestep. One can
do the split of the velocity step:

v[k + 1/2] = v[k] + (h/2)a(x[k]), (A3.36)

x[k + 1] = x[k] + hv[k + 1/2], (A3.37)

v[k + 1] = v[k + 1/2] + (h/2)a(x[k + 1]). (A3.38)

This is equivalent to Eqs. (A3.34) and (A3.35). When used as a mapping from time
kh to time (k + 1)h Eqs. (A3.37) and (A3.38) are equivalent to starting Eqs. (A3.36)
through (A3.38) with the linear approximation:

v[1/2] = v[0] + (h/2)a(x[0]) + O(h2). (A3.39)

The solution jump-starts from a phase-space point offset in velocity by O(h2) from
specified v[0] and similar errors are made in extracting v[k] at later times. The leapfrog
method is only second-order accurate, but it is very stable.
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SELF-ORGANIZING MAPS (SOMs)

A4.1. BASIC CONCEPTS

The self-organizing map (SOM) method invented by T. Kohonen (Kohonen 1997) is a
neural network method. The Kohonen (1997) definition states: “SOM [is a] result of
a nonparametric regression process that is mainly used to represent high-dimensional,
nonlinearly related data items in an illustrative, often two-dimensional display, and
to perform unsupervised classification and clustering”. Thus it is closely related to
cluster analysis (partitioning) and other methods of data analysis (cf. Murtagh and
Hernandez-Pajeres 1995).

The SOM method includes a set of iterative procedures for associating a finite
number of object vectors (inputs) with a finite number of representational points (that
should be viewed as bins or clusters). These representational points should respect
the proximity relations between the inputs, and can be arranged, for example, in a
planar grid. It is important to note that the SOM approach is representative of an
unsupervised learning approach: cluster properties are estimated or learned without
usage of prior information.

The SOM method can be condensed in the following three points (Murtagh 1995):

1. Each item in a multidimensional input data set is assigned to a cluster center.
2. The cluster centers are themselves ordered by their proximities.
3. The cluster centers are arranged in some specific output representational structure,

for example a regularly spaced grid.

The output representational grid of cluster centers wi (that are initially randomly
valued) is structured through the imposing of neighborhood relations (Murtagh 1995,
Murtagh and Hernandez-Pajeres 1995):

Step 1 Set t = 0. Consider an input vector x from the set of inputs.

Step 2 Determine the cluster center c = i such that ‖ x−w
(t)
i ‖ is minimum

over all i.
Step 3 For all clusters centers i:

w
(t+1)
i =

{

w
(t)
i + α(t)(x −w

(t)
i ) if i ∈ Nc(t)

w
(t)
i if i 6∈ Nc(t)
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Step 4 Increment t. Go to Step 1, unless a stopping condition is reached.

An iteration in this algorithm is the assignment (or re-assignment) of an input
vector to a cluster center. An epoch is the assignment (or re-assignment) of all
inputs. Murtagh (1995) found that 5 or 6 epochs are enough to attain convergence.
After some testing, in the code that we have applied we decided to use 10 epochs as
a reasonable number that provides a balance between the time needed for one orbit
SOM extraction and the quality of the extraction. Here, α(t) is a small fraction that
is used for controlling convergence, Nc(t) is the neighborhood of the lattice element

c. The weight vector w
(t)
i is calculated for a lattice element i at iteration number

t. The neighborhood is made to decrease with iterations, towards the best “winner”
(defined in Step 2) cluster center. Note that the initial cluster centers are randomly
valued and are of the same dimensionality as the input data vectors.

A4.2. APPLICATION

We have applied the aforementioned algorithm and wrote a FORTRAN program
based on Murtagh and Hernandez-Pajeres (1995) that extracts positions and velocities
from the orbit libraries that we had previously generated (for calculation of orbits see
Appendix 3). As an input to the SOM routine for every calculated orbit we have a
file that includes projected radius (r, through x and y coordinate) and line-of-sight
velocity and as an output the following is calculated: for a selected number of points
on the grid, projected radius (r, through x and y coordinate), line-of-sight velocity
and the occupation weight (using notation of Rix et al. (1997): wxyv , for which the
following normalization is valid (

∑

xyv wxyv = 1)).
In the following several plots we provide examples of calculated orbits and the SOM

reconstruction. These examples were done using a tube orbit but similar results are
obtained for a box orbit. Fig. (A4.2) gives the tube orbit (presented in Fig. (A4.1))
projected using inclination angle of 50◦. To show the SOM extraction of occupation
weights from this plot, we presented in Fig. (A4.3) numbers representing occupation
weight at each given point. Note that the total number of points is 15,000. It is
obvious that the SOM method manages to extract orbital weights successfully in 10
epochs. Using SOMs the storage of the necessary data is drastically reduced making
them easily accessible for further calculations. Needless to say, one orbit library, with
appropriate scaling, can be used in multiple cases after a projection procedure for a
desired inclination angle.
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Figure A4.1: Tube orbit calculated in the axisymmetric logarithmic potential. Initial

conditions were: x = 0.9, y = 0.0, z = 0.8, vx = 0.0, vy = 0.3, and vz = 0.0. Potential

velocity scale was 1.0, the value of the core radius was Rc = 0.2, and the flattening of

the potential was q = 0.9. Note that the orbit extends out to larger radius with respect

to the orbit plotted in Figure 3 (from Appendix 3), because of different initial conditions.

Clockwise from the top left corner: dependence of y coordinate on x coordinate, dependence

of vR component of the velocity v on R coordinate, dependence of vz component of the

velocity v on R coordinate and dependence of z coordinate on R coordinate. Discontinuities

in vR − R plot are due to the fact that values in the plot are taken only in the case when

ż > 0. Without this condition the whole region of surface of section will be filled (see

Chapter A3.1.6).
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Figure A4.2: Tube orbit calculated in the axisymmetric logarithmic potential. x-axis in

now R coordinate and y-axis is the velocity along the line-of-sight (vlos). Inclination is 50◦.
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given in plot as numbers.
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Appendix 5

FRACTION OF THE TOTAL FLUX

AS A FUNCTION OF RADIUS

One effective radius, as said in Introduction encompasses half the total luminosity
of the given galaxy. But what is the fraction of the total light contained at, say, 5
effective radii (Re)? Which radius contain the totality of the galactic light? The first
question is asked when we want to calculate the mass–to–light ratio in a given galaxy
at a given radius (not for the whole galaxy). However the answers to these questions
are unfortunately not readily available as one might expect. This is the reason for
inclusion of Table A5-1 and Fig. (A5.1) given below in this Appendix.

To calculate the fraction of the total light at a given radius we start by writing
the expression for the modified de Vaucouleurs (Sersic) law (see Introduction of this
book):

I(R) = Iee{−bn[(R/Re)1/n−1]}. (A5.1)

We remind the reader that for the case for which n = 4 we have the de Vaucouleurs
law according to which

I(R) = Ie exp{−7.67[(R/Re)
0.25 − 1]}. (A5.2)

Now we integrate over the surface brightness profile to get the flux interior to the
radius R:

f(R) =

∫ R

0

2πR′dR′Iee{−bn[(R/Re)1/n−1]}. (A5.3)

After the calculations one obtains the following expression:

f(R) =
2πnebnIer

2
e

b2n
n

Γ

[

2n, bn

(

r

re

)1/n
]

, (A5.4)

where Γ(x, y) is the incomplete gamma function.
The fraction of the flux emitted within a given radius (we take 2Re in an example

below):

β =
f(2Re)

f(∞)
=

Γ
[

2n, bn21/n
]

Γ [2n,∞]
.
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For the widely used de Vaucouleurs law one has n = 4 and b4 = 7.67, and therefore
the parameter β from the example above becomes:

β =
Γ(8, 9.121)

Γ(8)
,

where Γ(x) is the Euler gamma function.

The Table given below is calculated for n = 4 and b4 = 7.67 (de Vaucouleurs
law). It can be seen that within 1Re (by definition) one half of the total light is
emitted. To answer the question from the beginning of this Appendix: at 5Re 89
per cent of the total light is encompassed. Starting with ∼ 16Re one can see that
∼ 99 per cent of the total light is emitted and the increase beyond this radius is
asymptotic never reaching full 100 per cent (as an extreme case we calculated that
at 50Re β = 0.999402). It is worth noting that modern mathematical packages (for
example Wolfram’s Mathematica) have a possibility to quickly calculate incomplete
gamma function (command Gamma[α, z] in Mathematica) so if it is necessary one
can calculate β at, say, 1.4Re by using Eq. (A5.4). One can also experiment with
different values of n (and bn) in order to obtain the parameter β for such cases.

TABLE A5-1

FRACTION OF THE TOTAL FLUX AS FUNCTION OF RADIUS

R [Re] β
1 0.50
2 0.69
3 0.79
4 0.85
5 0.89
6 0.91
7 0.93
8 0.94
9 0.95
10 0.96
11 0.97
12 0.97
13 0.98
14 0.98
15 0.98
16 0.99
17 0.99
18 0.99
19 0.99
20 0.99
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Figure A5.1: The fraction of the total light emitted in a galaxy, β as function of radius R.

In Table A5-1 and in this Figure the radius R is expressed in the units of effective radius

(Re), and for the de Vaucouleurs law.
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TABLES

A6.1. STELLAR KINEMATICS

TABLE A6-1

IC 1459: major axis

r velocity err σ err h3 err h4 err

-89.608 95.698 25.135 169.480 24.391 -0.068 0.133 0.133 0.133
-75.794 102.597 19.720 163.257 16.297 -0.079 0.106 0.241 0.107
-65.327 121.165 17.883 183.567 22.703 -0.199 0.094 0.239 0.094
-58.974 76.006 16.481 234.049 15.407 -0.019 0.058 0.069 0.063
-53.963 61.948 14.635 241.966 13.329 0.007 0.049 0.075 0.054
-49.787 81.218 13.897 231.859 12.874 -0.032 0.050 0.075 0.054
-46.163 110.24 15.757 262.035 13.837 0.018 0.046 0.080 0.054
-42.810 124.364 13.676 242.944 12.458 -0.057 0.046 0.071 0.051
-39.725 66.984 13.232 255.728 14.135 0.024 0.041 -0.015 0.048
-37.223 67.771 14.594 278.077 12.821 0.028 0.039 0.076 0.048
-34.981 48.423 13.359 270.989 12.674 0.065 0.038 0.030 0.044
-32.739 56.906 10.967 258.893 10.091 0.005 0.033 0.058 0.038
-30.785 38.417 12.847 267.527 11.879 0.002 0.036 0.051 0.043
-29.112 69.605 12.108 268.088 10.983 0.024 0.034 0.060 0.040
-27.428 61.859 13.102 275.242 12.066 -0.010 0.035 0.050 0.042
-25.748 52.271 12.670 274.420 12.825 0.014 0.034 -0.001 0.041
-24.355 70.152 14.619 287.086 13.682 -0.003 0.037 0.040 0.045
-23.234 35.261 12.820 279.566 11.885 0.038 0.034 0.044 0.041
-22.114 20.275 11.958 266.581 11.656 0.003 0.034 0.024 0.040
-20.994 19.439 12.491 280.641 11.685 -0.004 0.033 0.041 0.039
-19.873 21.448 10.453 291.712 9.357 0.024 0.026 0.066 0.032
-18.753 30.122 12.012 286.600 11.272 0.031 0.031 0.037 0.037
-17.634 36.696 10.995 283.593 10.608 0.017 0.028 0.022 0.034
-16.513 20.862 11.180 301.964 10.874 0.059 0.027 0.011 0.032
-15.680 12.527 12.161 308.807 12.062 0.020 0.027 0.008 0.033
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IC 1459: major axis (continued)

r velocity err σ err h3 err h4 err

-15.120 18.488 13.908 302.048 13.638 0.063 0.033 0.005 0.040
-14.560 0.628 16.895 305.528 17.641 0.054 0.040 -0.037 0.048
-14.000 20.766 12.372 293.623 12.266 0.020 0.030 0.005 0.036
-13.440 22.538 11.843 289.379 11.235 0.027 0.030 0.031 0.036
-12.880 18.442 14.275 312.678 13.395 0.040 0.032 0.045 0.041
-12.320 13.073 13.877 309.492 14.580 0.026 0.031 -0.034 0.038
-11.760 20.24 12.140 318.476 11.560 0.042 0.026 0.039 0.034
-11.200 7.132 13.393 310.274 12.989 0.058 0.031 0.016 0.037
-10.640 11.204 12.971 308.312 11.974 0.075 0.031 0.044 0.038
-10.080 1.964 11.344 316.647 10.728 0.050 0.025 0.040 0.032
-9.520 14.763 11.508 308.410 10.749 0.042 0.026 0.045 0.033
-8.960 -11.319 10.450 307.970 9.865 0.065 0.024 0.032 0.030
-8.400 2.195 11.973 315.360 11.706 0.052 0.027 0.015 0.033
-7.840 -0.192 11.165 326.330 11.215 0.081 0.024 -0.011 0.029
-7.280 -11.324 10.741 315.678 9.805 0.053 0.024 0.063 0.031
-6.720 -14.223 11.613 322.202 11.122 0.093 0.026 0.018 0.031
-6.160 -18.614 11.714 341.184 11.177 0.067 0.024 0.052 0.031
-5.600 -19.66 12.040 338.357 11.596 0.091 0.026 0.029 0.031
-5.040 -32.463 11.824 341.004 11.608 0.077 0.024 0.025 0.030
-4.480 -44.091 11.259 338.169 10.803 0.104 0.025 0.023 0.029
-3.920 -50.476 11.266 334.689 10.751 0.097 0.025 0.029 0.030
-3.360 -51.924 11.881 338.544 11.498 0.089 0.025 0.027 0.031
-2.800 -59.817 10.187 330.681 9.706 0.104 0.023 0.022 0.027
-2.240 -56.934 10.723 341.247 10.165 0.117 0.024 0.027 0.028
-1.680 -56.246 11.498 346.636 10.854 0.101 0.024 0.048 0.030
-1.120 -34.563 12.155 343.103 11.845 0.076 0.025 0.034 0.031
-0.560 -11.207 13.910 341.779 13.939 0.077 0.029 0.009 0.034
0.000 0.000 13.584 335.607 13.451 0.059 0.028 0.021 0.035
0.560 64.773 13.550 330.543 13.831 -0.019 0.027 0.003 0.034
1.120 41.025 12.329 327.415 12.543 -0.029 0.025 0.001 0.031
1.680 72.978 12.977 324.131 13.110 -0.010 0.027 0.006 0.033
2.240 93.515 13.384 317.287 13.243 -0.022 0.029 0.014 0.036
2.800 88.161 12.975 315.420 12.818 -0.051 0.029 0.008 0.035
3.360 94.115 13.326 319.895 13.020 -0.059 0.029 0.017 0.036
3.920 83.247 13.626 311.288 13.196 -0.052 0.031 0.020 0.038
4.480 77.888 12.533 311.528 12.755 -0.016 0.028 -0.008 0.034
5.040 50.191 13.194 319.595 13.135 -0.006 0.028 0.013 0.035
5.600 57.395 13.182 321.551 13.124 -0.007 0.028 0.015 0.035
6.160 30.099 12.318 311.903 12.207 -0.018 0.027 0.010 0.034
6.720 45.402 11.682 315.057 11.229 0.031 0.026 0.032 0.032

188



Appendix 6 TABLES

IC 1459: major axis (continued)

r velocity err σ err h3 err h4 err

7.280 49.54 11.678 320.937 11.378 0.020 0.025 0.028 0.031
7.840 38.143 11.796 309.733 11.779 0.016 0.026 0.004 0.032
8.400 50.055 13.290 316.146 12.994 0.053 0.029 0.015 0.036
8.960 48.897 13.160 327.410 13.156 0.037 0.027 0.013 0.034
9.520 27.645 12.004 306.298 12.232 0.022 0.027 -0.012 0.033

10.080 14.984 11.952 311.881 11.556 0.043 0.027 0.023 0.033
10.640 17.1 11.947 303.106 11.402 0.063 0.028 0.023 0.034
11.200 18.861 11.859 316.752 12.039 0.033 0.026 -0.006 0.031
11.760 2.951 11.570 316.747 11.553 0.046 0.025 0.003 0.031
12.320 10.752 12.174 311.036 12.311 0.028 0.027 -0.005 0.033
12.880 -4.117 10.728 301.099 10.872 0.046 0.025 -0.013 0.031
13.440 -7.849 10.265 302.861 9.980 0.040 0.024 0.016 0.029
14.000 -1.452 12.259 316.277 12.168 0.020 0.026 0.012 0.033
14.560 -0.432 11.647 305.249 11.583 0.016 0.026 0.005 0.032
15.120 -3.782 13.528 314.441 12.288 0.052 0.031 0.066 0.040
15.680 15.954 10.125 304.898 10.658 0.050 0.024 -0.042 0.029
16.240 2.923 12.771 296.385 12.075 0.045 0.031 0.031 0.038
17.073 -3.435 10.380 301.319 9.704 0.043 0.025 0.040 0.030
18.194 -16.026 10.976 299.967 10.196 0.046 0.026 0.043 0.032
19.314 -26.115 10.609 302.258 9.316 0.055 0.026 0.080 0.033
20.436 -27.453 12.201 308.059 11.141 0.068 0.029 0.054 0.036
21.551 -28.393 12.007 303.493 10.798 0.055 0.029 0.064 0.036
22.674 -33.819 10.082 292.630 8.810 0.084 0.026 0.072 0.032
23.795 -41.113 11.382 294.164 10.656 0.090 0.029 0.025 0.034
24.915 -33.013 12.538 298.468 11.986 0.039 0.030 0.026 0.037
27.988 -36.619 12.789 287.368 11.879 0.040 0.033 0.042 0.039
29.669 -42.04 10.953 297.999 10.392 0.076 0.027 0.022 0.032
31.350 -33.386 11.511 300.428 10.263 0.096 0.029 0.058 0.035
33.303 -46.175 10.867 277.943 10.008 0.045 0.029 0.047 0.035
35.541 -48.5 12.146 275.367 11.475 0.106 0.036 0.019 0.040
37.782 -61.208 11.763 273.917 10.507 0.049 0.033 0.065 0.039
40.294 -57.907 12.915 260.229 11.573 0.106 0.041 0.058 0.045
43.106 -76.088 9.915 234.690 9.735 0.032 0.035 0.045 0.038
46.136 -54.036 11.510 234.418 12.348 0.085 0.043 -0.004 0.047
49.795 -51.694 13.862 255.001 11.893 0.097 0.045 0.091 0.051
53.928 -89.869 14.058 200.652 26.597 0.238 0.071 0.177 0.069
58.963 -97.594 15.891 199.162 27.492 0.158 0.075 0.173 0.075
65.327 -120.835 17.883 183.567 22.703 0.199 0.094 0.239 0.094
73.939 -82.389 23.726 135.026 32.675 0.007 0.142 0.522 0.148
86.244 -108.638 37.625 118.830 69.486 -0.020 0.247 0.398 0.234
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TABLE A6-2

IC 3370: major axis

r velocity err σ err h3 err h4 err

-118.709 -97.283 33.982 108.359 47.825 -0.102 0.306 -0.009 0.346
-76.994 -98.17 13.729 149.995 15.174 -0.020 0.082 0.054 0.088
-58.261 -108.416 13.138 172.560 12.817 0.040 0.065 0.070 0.068
-46.710 -131.07 10.158 157.412 11.417 0.093 0.060 0.023 0.064
-38.513 -118.186 9.072 161.628 10.925 0.077 0.052 -0.015 0.058
-31.791 -111.942 9.111 152.370 10.386 0.086 0.056 0.027 0.059
-26.880 -148.232 10.553 138.989 16.823 0.072 0.080 -0.138 0.112
-23.520 -97.746 9.498 157.489 10.566 0.043 0.054 0.035 0.058
-20.160 -94.81 10.537 186.111 11.442 0.047 0.048 0.000 0.051
-16.800 -77.852 10.333 183.333 9.788 0.047 0.048 0.066 0.049
-13.440 -82.048 10.792 193.314 11.130 0.033 0.046 0.015 0.048
-10.080 -70.944 9.994 189.044 9.632 0.036 0.044 0.050 0.045
-6.720 -69.167 11.289 205.146 10.671 0.007 0.044 0.041 0.045
-3.360 -60.06 11.441 208.147 10.757 0.011 0.044 0.040 0.045
0.000 0.000 11.151 208.537 10.793 0.050 0.043 0.025 0.044
3.360 67.06 10.770 199.582 10.236 0.026 0.044 0.044 0.045
6.720 96.202 11.002 199.779 11.602 -0.028 0.045 -0.001 0.048

10.080 113.86 10.915 204.124 10.313 -0.041 0.043 0.041 0.044
13.440 114.294 9.822 185.917 10.724 -0.024 0.045 0.000 0.048
16.800 125.151 9.606 185.910 11.544 -0.038 0.045 -0.045 0.051
20.160 127.636 9.426 181.309 11.575 -0.013 0.045 -0.047 0.052
23.520 127.365 8.849 170.744 10.957 -0.059 0.047 -0.041 0.054
26.880 129.717 9.302 168.540 11.390 -0.023 0.049 -0.028 0.056
30.240 139.625 9.165 156.671 12.257 -0.092 0.058 -0.066 0.068
35.141 133.451 8.889 148.509 10.985 -0.010 0.055 0.005 0.062
41.864 121.188 8.819 146.365 12.311 0.008 0.057 -0.051 0.071
50.100 146.844 8.659 154.099 12.364 -0.034 0.054 -0.083 0.069
61.694 135.349 9.836 145.376 14.707 0.033 0.067 -0.091 0.088
79.294 122.278 12.685 124.982 15.916 0.073 0.097 0.033 0.104

116.432 124.591 18.182 99.847 30.532 0.093 0.184 -0.102 0.247
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TABLE A6-3

IC 3370: minor axis

r velocity err σ err h3 err h4 err

-80.156 41.732 15.472 185.858 20.348 -0.170 0.103 -0.305 0.149
-61.574 30.78 17.496 233.660 11.910 -0.133 0.065 0.170 0.068
-50.043 54.865 15.371 183.722 13.351 -0.067 0.071 0.107 0.073
-41.662 1.02 21.828 201.291 20.062 -0.058 0.089 0.057 0.091
-35.373 29.818 19.630 232.101 18.222 -0.243 0.093 -0.038 0.080
-30.240 34.231 14.851 186.155 13.909 -0.105 0.070 0.062 0.070
-26.880 21.567 14.278 182.174 11.897 0.016 0.065 0.133 0.068
-23.520 40.021 14.302 183.965 12.714 0.056 0.066 0.096 0.067
-20.160 48.205 15.211 230.440 16.886 0.035 0.052 -0.050 0.057
-16.800 37.463 15.702 216.157 17.973 -0.020 0.058 -0.051 0.065
-13.440 35.915 13.037 205.530 15.336 -0.081 0.056 -0.064 0.061
-10.080 36.775 15.706 220.740 18.126 -0.078 0.061 -0.070 0.067
-6.720 34.023 12.548 216.791 13.353 0.033 0.046 -0.020 0.049
-3.360 35.387 12.093 206.551 12.634 0.025 0.047 -0.002 0.050
0.000 0.000 11.312 223.119 10.956 0.072 0.041 0.011 0.041
3.360 -15.449 11.714 216.859 10.655 0.043 0.043 0.047 0.044
6.720 -32.512 11.494 208.624 11.032 0.038 0.044 0.032 0.045

10.080 -52.446 10.533 193.031 10.462 0.051 0.046 0.033 0.047
13.440 -45.915 11.340 202.402 12.168 -0.040 0.046 -0.011 0.049
16.800 -54.17 11.744 188.615 12.172 -0.051 0.053 0.019 0.055
20.160 -38.137 14.072 213.722 15.152 -0.073 0.055 -0.028 0.057
23.520 -40.025 15.812 210.258 15.055 -0.002 0.060 0.035 0.062
26.880 -78.507 13.215 178.116 13.214 0.035 0.063 0.051 0.066
30.240 -44.075 21.753 245.018 17.623 0.011 0.067 0.079 0.070
35.131 -52.099 13.435 181.799 13.803 0.070 0.064 0.030 0.066
41.859 -32.566 14.869 201.688 14.593 0.076 0.062 0.025 0.063
50.024 -42.578 14.372 174.449 13.211 0.020 0.070 0.098 0.072
62.955 6.104 17.907 212.082 19.989 0.084 0.073 -0.046 0.077
87.898 -14.423 17.562 156.723 22.006 -0.072 0.106 -0.024 0.120
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TABLE A6-4

IC 3370: intermediate axis

r velocity err σ err h3 err h4 err

-59.788 -97.318 11.334 180.295 16.307 0.052 0.059 -0.142 0.082
-46.693 -103.027 9.992 133.376 11.399 0.006 0.068 0.069 0.072
-38.494 -103.169 10.171 147.593 14.390 -0.018 0.066 -0.062 0.083
-31.754 -100.368 9.884 157.162 12.581 0.079 0.060 -0.037 0.068
-26.880 -99.208 10.273 166.574 14.369 0.027 0.057 -0.095 0.074
-23.520 -102.625 10.907 156.696 13.198 0.038 0.063 -0.004 0.071
-20.160 -87.717 10.239 162.518 14.397 0.064 0.061 -0.100 0.077
-16.800 -84.928 10.636 174.007 14.551 0.078 0.059 -0.107 0.073
-13.440 -87.972 10.301 170.535 12.116 0.051 0.054 -0.016 0.059
-10.080 -81.43 9.921 169.085 11.912 0.061 0.053 -0.025 0.059
-6.720 -74.647 10.695 173.391 12.346 0.053 0.055 -0.012 0.060
-3.360 -47.07 11.336 190.177 12.093 0.047 0.050 0.002 0.053
0.000 0.000 11.413 198.156 12.091 0.077 0.049 -0.008 0.051
3.360 48.517 10.996 196.522 13.149 0.021 0.047 -0.053 0.054
6.720 94.703 10.941 188.287 12.965 -0.019 0.049 -0.040 0.056

10.080 107.835 10.712 183.460 13.909 -0.019 0.051 -0.078 0.063
13.440 115.963 10.342 185.005 13.115 -0.036 0.049 -0.069 0.058
16.800 132.163 9.937 176.510 13.251 -0.002 0.050 -0.082 0.063
20.160 133.392 9.804 175.128 13.410 -0.053 0.052 -0.100 0.066
23.520 129.282 9.888 169.665 14.142 -0.083 0.058 -0.134 0.076
26.880 128.456 9.650 169.223 14.866 -0.017 0.056 -0.177 0.084
31.771 139.59 9.432 159.740 14.169 -0.005 0.057 -0.129 0.080
38.494 139.441 9.034 142.028 11.807 -0.149 0.067 -0.047 0.074
46.683 140.017 10.226 150.049 14.515 -0.091 0.069 -0.089 0.086
59.581 134.721 12.377 163.816 15.429 -0.152 0.079 -0.067 0.085
84.130 115.096 12.181 144.219 17.536 -0.150 0.094 -0.128 0.116
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TABLE A6-5

NGC 1336: major axis

r velocity err σ err h3 err h4 err

-16.735 -18.592 37.439 78.257 55.978 -0.109 0.440 -0.152 0.602
-6.386 -21.773 13.465 89.392 15.367 0.046 0.125 0.026 0.131
-2.617 -13.72 9.048 91.756 10.478 0.009 0.081 0.022 0.086
-0.910 -1.815 9.183 91.497 8.703 -0.002 0.081 0.113 0.082
0.000 0.000 10.134 100.126 10.012 0.021 0.084 0.086 0.083
0.910 -1.478 8.907 96.390 9.001 -0.026 0.076 0.078 0.076
2.249 -6.818 7.028 93.551 6.235 -0.002 0.061 0.144 0.062
4.440 3.631 7.727 76.800 7.871 -0.179 0.088 0.073 0.089
8.180 13.251 12.526 75.136 13.568 -0.177 0.146 0.041 0.154

19.703 51.156 63.643 40.820 141.717 -0.938 2.092 -0.175 2.480
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TABLE A6-6

NGC 1339: major axis

r velocity err σ err h3 err h4 err

-25.742 -94.743 22.695 134.458 16.413 0.520 0.287 -0.476 0.303
-17.480 -111.953 12.207 75.172 11.303 -0.222 0.146 0.114 0.153
-13.053 -117.659 7.751 101.705 7.262 0.117 0.065 0.068 0.063
-9.929 -129.029 6.559 99.831 5.974 0.073 0.054 0.094 0.054
-7.699 -111.261 8.081 119.588 8.357 0.086 0.058 0.031 0.056
-5.868 -99.337 6.740 128.511 6.474 0.095 0.046 0.059 0.043
-4.550 -71.191 6.395 136.939 6.492 0.084 0.041 0.039 0.039
-3.640 -61.163 6.098 149.073 7.438 0.079 0.037 -0.037 0.039
-2.730 -48.896 7.170 157.476 9.638 -0.004 0.040 -0.072 0.048
-1.820 -38.789 6.579 165.892 8.376 0.043 0.035 -0.058 0.040
-0.910 -21.133 6.201 172.602 7.512 0.029 0.031 -0.038 0.034
0.000 0.000 5.861 174.987 7.127 0.008 0.028 -0.040 0.032
0.910 21.724 5.864 173.035 6.838 0.002 0.028 -0.021 0.031
1.820 39.686 5.531 166.422 6.791 -0.026 0.029 -0.039 0.032
2.730 57.038 6.473 156.475 7.520 -0.046 0.036 -0.012 0.037
3.640 72.192 5.589 145.910 6.245 -0.004 0.032 0.011 0.033
4.550 81.129 5.815 143.540 6.723 -0.041 0.035 -0.004 0.036
5.460 97.88 6.954 139.692 7.243 -0.108 0.045 0.022 0.043
6.776 106.814 5.935 121.410 6.198 -0.063 0.041 0.032 0.040
9.034 124.889 5.154 115.339 4.817 -0.115 0.039 0.066 0.037

12.161 122.955 7.434 120.445 6.607 -0.104 0.053 0.091 0.051
16.197 118.14 8.421 94.826 6.760 -0.059 0.072 0.172 0.077
22.679 131.216 13.618 127.333 10.591 -0.059 0.091 0.160 0.091
35.049 133.738 24.404 117.745 19.926 -0.120 0.180 0.129 0.175
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TABLE A6-7

NGC 1373: major axis

r velocity err σ err h3 err h4 err

-32.824 7.214 52.102 106.468 37.297 -0.534 0.777 -0.433 0.784
-10.954 7.102 8.473 75.902 8.484 -0.059 0.090 0.102 0.101
-7.159 9.676 6.315 85.218 7.601 -0.021 0.060 -0.020 0.069
-4.945 17.341 5.729 91.327 6.227 0.017 0.050 0.025 0.053
-3.640 19.185 6.782 110.464 5.431 -0.020 0.050 0.156 0.052
-2.730 10.607 5.044 96.357 4.877 0.013 0.042 0.075 0.043
-1.820 9.967 5.050 97.436 5.202 -0.010 0.041 0.046 0.042
-0.910 7.414 4.732 94.230 5.345 0.021 0.040 0.006 0.043
0.000 0.000 3.485 90.562 3.795 0.004 0.031 0.025 0.033
0.910 -4.025 2.927 89.411 3.131 0.010 0.026 0.033 0.028
1.820 -5.595 2.680 88.067 2.942 0.015 0.024 0.022 0.026
2.730 -6.238 3.511 81.374 3.529 0.046 0.034 0.077 0.038
3.640 -10.881 4.108 80.626 4.403 -0.032 0.041 0.045 0.046
4.550 -7.639 6.087 85.431 6.176 -0.054 0.057 0.061 0.061
5.851 -12.728 6.517 88.276 7.788 -0.049 0.060 -0.022 0.067
8.064 -9.953 8.120 81.012 12.069 0.037 0.086 -0.144 0.125

11.834 -13.691 14.856 83.622 13.563 0.258 0.171 0.048 0.166
16.543 -27.347 48.526 145.338 32.566 -0.131 0.304 0.234 0.315
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TABLE A6-8

NGC 1374: major axis

r velocity err σ err h3 err h4 err

-26.939 -57.611 30.424 114.178 37.117 0.169 0.268 -0.066 0.274
-17.962 -47.56 16.999 134.089 22.601 0.127 0.126 -0.082 0.142
-13.065 -43.008 11.989 143.066 13.917 0.056 0.074 0.008 0.077
-9.930 -55.522 10.645 157.363 11.902 0.057 0.059 0.014 0.061
-7.694 -56.133 9.601 163.833 9.097 0.118 0.053 0.070 0.051
-5.862 -46.672 8.958 159.571 8.335 0.067 0.048 0.090 0.048
-4.550 -63.018 9.524 162.250 9.163 0.125 0.053 0.062 0.052
-3.640 -64.943 10.422 188.411 9.097 0.060 0.046 0.098 0.047
-2.730 -52.424 11.462 202.537 9.629 0.044 0.046 0.106 0.048
-1.820 -40.744 10.421 187.258 9.232 0.055 0.047 0.092 0.047
-0.910 -20.41 11.040 201.617 10.030 0.056 0.045 0.070 0.046
0.000 0.000 10.103 184.430 10.135 0.008 0.046 0.043 0.047
0.910 27.026 9.453 174.201 10.318 -0.032 0.046 0.015 0.048
1.820 43.939 9.187 156.135 9.719 -0.051 0.051 0.039 0.052
2.730 48.49 8.751 151.891 9.321 -0.090 0.052 0.032 0.051
3.640 30.511 9.484 163.355 9.705 -0.044 0.050 0.049 0.050
4.550 40.101 9.607 160.424 9.248 -0.123 0.054 0.063 0.053
5.868 53.032 9.151 138.085 8.992 -0.030 0.057 0.081 0.056
7.699 43.762 9.707 135.940 8.344 0.037 0.061 0.140 0.060
9.937 54.533 10.305 149.730 10.522 -0.180 0.068 0.022 0.064

13.480 54.652 11.499 119.739 10.684 -0.131 0.086 0.092 0.081
19.154 44.85 19.196 109.795 17.579 -0.140 0.155 0.096 0.147
30.536 58.845 61.594 146.638 73.102 -0.102 0.500 -0.368 0.756
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TABLE A6-9

NGC 1379: major axis

r velocity err σ err h3 err h4 err

-27.414 -37.638 26.266 84.144 29.456 0.193 0.294 -0.019 0.295
-17.864 -30.576 12.878 90.752 14.091 0.204 0.137 -0.021 0.133
-13.084 -35.328 9.933 77.046 11.534 -0.058 0.107 0.041 0.118
-9.935 -26.562 9.367 96.713 9.119 -0.103 0.083 0.088 0.081
-7.696 -36.17 9.835 118.130 9.880 0.045 0.071 0.078 0.071
-5.860 -25.16 8.067 103.744 7.898 0.009 0.065 0.095 0.065
-4.550 -23.787 8.249 109.633 8.732 -0.009 0.064 0.060 0.064
-3.640 -24.055 7.737 114.886 7.704 0.061 0.058 0.080 0.057
-2.730 -15.61 8.461 125.739 8.579 0.035 0.058 0.073 0.058
-1.820 -9.037 7.374 113.555 8.749 -0.002 0.056 0.014 0.059
-0.910 -5.116 7.489 111.421 7.633 0.011 0.057 0.075 0.057
0.000 0 8.205 99.870 8.156 -0.029 0.069 0.089 0.068
0.910 3.801 9.410 108.872 11.584 0.005 0.075 0.001 0.080
1.820 16.739 10.116 109.554 12.447 -0.004 0.080 0.001 0.086
3.138 19.829 10.067 111.362 9.526 0.067 0.077 0.103 0.076
4.970 28.732 9.627 99.779 11.808 -0.056 0.084 -0.004 0.089
7.210 8.949 9.837 95.435 9.048 0.010 0.085 0.129 0.085

10.355 10.738 10.791 84.713 10.734 -0.015 0.104 0.106 0.106
15.076 26.726 15.407 80.422 18.253 0.059 0.160 0.022 0.176
24.776 31.714 23.826 81.533 39.904 -0.050 0.275 -0.223 0.449
49.381 2.922 60.072 88.758 50.863 -0.091 0.562 0.179 0.568
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TABLE A6-10

NGC 1399: major axis

r velocity err σ err h3 err h4 err

-57.866 -56.932 28.389 186.720 33.541 0.101 0.141 -0.037 0.150
-34.004 -44.194 21.697 263.389 20.368 -0.013 0.060 0.039 0.067
-23.828 -48.451 26.690 265.557 27.482 0.063 0.077 -0.014 0.082
-18.032 -31.729 18.278 210.741 17.697 0.018 0.070 0.048 0.075
-13.979 -33.779 17.142 243.371 19.832 0.081 0.059 -0.078 0.068
-10.848 -32.732 17.815 253.375 20.222 0.113 0.062 -0.094 0.069
-8.615 -23.84 18.614 240.227 19.851 0.079 0.063 -0.025 0.068
-6.793 -36.237 21.843 264.060 23.903 0.038 0.062 -0.041 0.069
-5.460 3.885 25.089 288.781 22.179 0.084 0.066 0.057 0.071
-4.550 -15.904 21.980 285.350 26.589 0.063 0.062 -0.156 0.085
-3.640 -43.939 24.524 278.302 24.373 -0.024 0.063 0.009 0.069
-2.730 -26.106 26.837 314.417 25.249 0.091 0.065 0.021 0.066
-1.820 -18.244 24.138 297.469 23.973 0.103 0.064 -0.012 0.063
-0.910 1.204 25.296 307.789 26.199 0.046 0.059 -0.015 0.061
0.000 0.000 26.829 318.740 29.269 0.017 0.059 -0.036 0.062
0.910 -14.935 27.587 314.022 29.412 0.047 0.063 -0.030 0.065
1.820 25.378 26.884 307.782 29.042 0.002 0.061 -0.032 0.065
2.730 20.336 27.599 291.960 29.897 0.042 0.069 -0.039 0.074
3.640 -2.417 25.858 299.042 27.112 -0.015 0.061 -0.018 0.065
4.550 7.407 22.832 278.705 24.721 0.044 0.060 -0.039 0.066
5.460 32.475 26.527 297.061 28.291 0.039 0.064 -0.030 0.068
6.370 -9.957 26.312 282.230 30.246 0.090 0.076 -0.104 0.087
7.702 18.435 20.548 242.598 22.727 0.051 0.067 -0.039 0.075
9.524 26.225 23.907 256.182 25.238 -0.056 0.072 -0.022 0.078

11.757 33.544 17.898 238.130 20.274 0.050 0.060 -0.049 0.068
14.500 33.286 19.607 252.804 21.725 0.029 0.059 -0.042 0.067
18.033 41.765 15.772 199.916 17.242 -0.029 0.066 0.003 0.071
23.805 21.854 17.721 237.931 22.407 0.069 0.065 -0.154 0.092
33.462 7.361 17.882 214.600 18.993 0.059 0.069 0.000 0.074
66.315 27.565 36.641 212.475 47.827 0.055 0.176 -0.280 0.310
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TABLE A6-11

NGC 1404: major axis

r velocity err σ err h3 err h4 err

-79.230 -67.908 35.671 170.194 35.648 -0.292 0.257 -0.101 0.234
-67.148 -66.976 27.246 145.061 39.868 0.034 0.180 -0.181 0.275
-56.551 -85.784 22.325 179.746 26.729 -0.028 0.104 -0.040 0.115
-44.822 -78.145 17.516 166.335 20.560 0.157 0.106 -0.076 0.109
-34.710 -65.477 19.448 192.650 23.450 0.113 0.094 -0.082 0.103
-28.977 -63.873 19.392 194.510 20.242 0.047 0.081 0.006 0.084
-24.934 -76.662 19.792 204.481 23.400 0.025 0.079 -0.051 0.088
-21.787 -73.017 19.593 192.370 21.551 0.149 0.098 -0.050 0.097
-19.543 -88.97 21.312 193.010 22.469 0.084 0.094 -0.004 0.095
-17.723 -60.481 19.772 195.616 23.287 0.109 0.092 -0.069 0.099
-15.900 -62.848 22.611 219.149 23.825 0.070 0.084 -0.016 0.087
-14.077 -57.908 20.830 203.490 21.607 0.068 0.084 0.000 0.086
-12.740 -66.113 21.690 225.700 24.900 0.086 0.082 -0.066 0.089
-11.830 -60.627 20.810 219.085 23.730 0.112 0.085 -0.071 0.090
-10.920 -81.796 21.739 212.467 25.163 0.082 0.087 -0.059 0.095
-10.010 -74.736 22.695 231.514 25.583 0.119 0.088 -0.078 0.093
-9.100 -65.053 22.672 228.310 24.830 0.076 0.081 -0.040 0.086
-8.190 -70.622 24.176 242.353 27.892 0.078 0.082 -0.077 0.092
-7.280 -53.125 24.332 238.015 26.102 0.059 0.081 -0.031 0.085
-6.370 -41.985 24.883 241.758 27.432 0.070 0.083 -0.048 0.089
-5.460 -32.67 24.751 245.101 26.705 0.051 0.078 -0.035 0.084
-4.550 -26.696 25.522 247.036 26.909 0.070 0.082 -0.029 0.085
-3.640 -22.327 24.603 249.490 25.131 0.057 0.076 -0.012 0.079
-2.730 -19.154 24.786 242.072 26.857 0.041 0.079 -0.033 0.085
-1.820 -7.683 24.578 242.723 26.016 0.034 0.077 -0.022 0.082
-0.910 -1.999 23.345 232.569 25.728 0.030 0.078 -0.035 0.085
0.000 0.000 22.845 226.077 25.761 0.017 0.079 -0.041 0.087
0.910 -0.464 24.044 229.634 26.563 0.046 0.083 -0.037 0.089
1.820 3.951 25.089 238.422 26.493 0.051 0.082 -0.022 0.086
2.730 11.678 25.523 240.624 27.740 0.029 0.081 -0.033 0.088
3.640 30.664 25.167 243.186 27.373 -0.006 0.078 -0.032 0.085
4.550 41.524 25.382 239.067 26.887 -0.007 0.080 -0.019 0.086
5.460 32.838 26.256 241.279 28.648 -0.005 0.082 -0.033 0.090
6.370 46.561 25.360 243.891 25.980 0.005 0.078 -0.006 0.083
7.280 61.767 24.287 231.353 26.501 -0.031 0.081 -0.030 0.088
8.190 63.565 24.536 237.202 27.020 -0.005 0.079 -0.035 0.086
9.100 76.874 22.275 222.214 25.892 -0.020 0.079 -0.053 0.089

10.010 79.801 21.837 215.010 23.682 -0.010 0.080 -0.018 0.085
10.921 89.696 22.518 215.494 23.762 -0.034 0.082 -0.008 0.087
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NGC 1404: major axis (continued)

r velocity err σ err h3 err h4 err

11.830 93.1 21.457 209.028 21.591 -0.079 0.085 0.008 0.085
12.740 90.926 20.635 204.205 21.075 -0.065 0.083 0.007 0.084
13.650 89.024 19.502 195.113 21.907 -0.070 0.084 -0.030 0.089
14.987 80.048 20.457 201.418 22.251 -0.023 0.081 -0.012 0.086
16.812 92.978 20.550 211.731 21.897 -0.038 0.077 -0.011 0.081
18.633 80.826 19.696 198.656 17.907 0.007 0.079 0.064 0.081
20.877 98.042 20.974 205.081 21.186 -0.080 0.085 0.008 0.085
23.609 86.675 20.127 196.115 18.547 0.028 0.082 0.059 0.084
26.751 77.569 18.888 189.532 19.628 -0.042 0.081 0.012 0.084
31.203 82.592 19.020 186.533 21.525 -0.056 0.086 -0.025 0.091
38.184 92.712 17.412 168.845 20.488 -0.102 0.094 -0.044 0.099
52.192 101.68 18.176 169.521 24.888 0.019 0.094 -0.100 0.121
67.123 241.99 42.197 207.255 27.489 0.080 0.178 0.234 0.197

TABLE A6-12

NGC 1419: major axis

r velocity err σ err h3 err h4 err

-6.521 0.024 17.809 113.962 25.817 -0.029 0.142 -0.069 0.173
-4.023 -15.093 13.940 110.476 10.743 0.173 0.114 0.193 0.112
-2.730 -16.604 12.411 122.926 12.931 0.028 0.087 0.064 0.087
-1.820 16.003 11.973 126.676 12.193 0.107 0.086 0.060 0.083
-0.910 -8.81 10.837 111.608 11.892 0.152 0.092 0.010 0.088
0.000 0.000 9.044 106.235 11.431 0.033 0.074 -0.011 0.080
0.910 5.598 9.235 104.526 11.035 -0.033 0.076 0.011 0.080
1.820 -9.225 9.446 114.905 12.436 0.013 0.073 -0.026 0.081
2.730 -5.819 11.340 107.952 16.569 0.026 0.095 -0.073 0.117
3.640 3.304 9.793 88.596 10.736 0.054 0.092 0.050 0.096
4.941 5.946 12.755 107.210 12.159 0.016 0.100 0.106 0.099
7.140 -3.687 21.883 107.995 27.116 -0.152 0.199 -0.054 0.205

10.857 -67.488 32.059 125.815 20.233 -0.376 0.279 0.295 0.279
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TABLE A6-13

NGC 3379: major axis

r velocity err σ err h3 err h4 err

-25.879 63.194 8.513 162.073 7.368 -0.090 0.045 0.109 0.046
-14.051 68.302 7.637 179.704 7.898 -0.073 0.036 0.028 0.037
-8.753 56.908 4.830 176.622 5.180 -0.012 0.023 0.022 0.024
-6.255 52.234 5.303 183.786 5.603 0.015 0.024 0.024 0.025
-4.809 51.106 5.572 199.728 5.931 -0.015 0.023 0.014 0.024
-3.624 42.337 5.403 207.183 5.545 0.002 0.021 0.026 0.022
-2.773 45.139 5.834 214.089 5.978 -0.011 0.022 0.023 0.023
-2.183 39.724 5.935 219.934 5.964 -0.019 0.021 0.029 0.023
-1.593 35.234 5.928 225.600 6.096 -0.010 0.021 0.016 0.022
-1.003 29.393 5.767 224.304 5.916 -0.003 0.020 0.018 0.022
-0.413 19.156 5.681 217.610 5.945 0.016 0.021 0.012 0.022
-0.177 5.516 5.703 223.417 6.094 0.013 0.020 0.001 0.022
0.767 -3.167 5.601 217.749 5.619 0.016 0.020 0.030 0.022
1.357 -9.204 5.750 208.990 5.938 0.024 0.022 0.022 0.023
1.947 -11.184 6.080 203.897 6.422 0.040 0.024 0.013 0.026
2.798 -18.15 5.505 201.697 5.764 0.028 0.022 0.019 0.023
3.983 -24.77 5.559 196.204 5.828 0.032 0.023 0.021 0.024
5.428 -29.387 5.263 184.628 5.622 0.010 0.023 0.020 0.025
7.704 -30.205 4.881 175.466 5.150 0.025 0.023 0.028 0.024

12.261 -45.279 5.224 171.950 5.111 0.027 0.025 0.060 0.026
20.582 -60.748 7.666 155.531 8.560 0.033 0.042 0.011 0.043
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TABLE A6-14

NGC 4105: major axis

r velocity err σ err h3 err h4 err

-22.585 31.695 62.504 260.281 84.348 0.134 0.246 -0.143 0.310
-14.673 4.87 33.698 234.433 42.807 0.095 0.136 -0.051 0.154
-10.619 35.136 23.159 253.402 27.209 0.072 0.081 -0.026 0.090
-8.165 12.979 19.660 259.904 21.912 0.069 0.066 -0.008 0.071
-6.519 24.065 17.210 262.390 18.105 0.016 0.055 0.020 0.058
-5.356 27.889 14.490 262.859 17.444 0.027 0.047 -0.039 0.055
-4.347 20.754 14.195 257.176 15.235 -0.010 0.047 0.017 0.050
-3.520 11.619 15.405 285.667 17.093 0.021 0.044 -0.021 0.049
-2.847 21.285 14.241 284.228 15.041 0.025 0.041 0.001 0.044
-2.173 15.245 14.320 283.497 14.142 0.027 0.041 0.031 0.043
-1.680 10.452 16.009 310.394 16.202 -0.001 0.040 0.004 0.044
-1.344 4.165 15.589 307.387 15.176 0.032 0.040 0.022 0.042
-1.008 3.815 16.464 298.603 18.045 0.055 0.045 -0.028 0.050
-0.672 7.031 16.050 298.183 16.030 -0.003 0.042 0.017 0.046
-0.336 15.546 14.806 304.751 16.300 -0.022 0.039 -0.030 0.044
0.000 0.000 14.837 298.764 18.337 -0.020 0.041 -0.079 0.051
0.336 1.583 17.086 313.825 18.558 -0.039 0.043 -0.031 0.049
0.672 -5.221 15.298 306.415 16.960 -0.044 0.040 -0.037 0.046
1.008 14.739 15.538 308.173 15.828 -0.067 0.041 -0.003 0.044
1.344 28.992 15.082 285.592 14.677 -0.013 0.042 0.036 0.045
1.680 28.555 15.058 299.200 17.439 -0.058 0.042 -0.054 0.049
2.016 4.331 16.399 301.758 18.116 -0.026 0.043 -0.030 0.049
2.352 50.178 14.001 278.795 16.299 0.001 0.042 -0.036 0.048
2.688 32.482 13.129 254.500 13.943 -0.020 0.044 0.023 0.046
3.181 38.352 13.591 277.016 14.385 0.043 0.041 0.004 0.044
3.855 21.539 14.533 295.552 16.118 -0.029 0.040 -0.028 0.045
4.528 28.619 14.184 273.435 16.533 -0.032 0.044 -0.034 0.050
5.356 41.094 15.362 280.693 16.450 -0.001 0.045 -0.001 0.049
6.516 26.132 14.800 261.816 17.802 0.032 0.049 -0.038 0.056
8.017 31.639 17.392 279.589 19.685 0.032 0.052 -0.026 0.058
9.996 31.828 18.018 262.988 21.318 0.045 0.059 -0.033 0.067

12.943 40.285 25.093 262.602 27.882 0.075 0.083 -0.010 0.089
18.002 66.794 33.495 249.708 45.852 0.014 0.120 -0.085 0.154
27.268 49.384 45.562 248.060 63.312 0.018 0.166 -0.092 0.216

202



Appendix 6 TABLES

TABLE A6-15

NGC 4105: minor axis

r velocity err σ err h3 err h4 err

-9.613 66.253 56.865 287.610 63.660 -0.164 0.240 -0.404 0.377
-6.800 -11.076 27.873 243.361 32.630 0.106 0.106 -0.024 0.114
-5.167 41.767 37.886 309.688 28.733 0.076 0.099 0.139 0.105
-4.009 22.206 24.338 283.535 34.077 0.001 0.075 -0.136 0.109
-3.180 9.865 28.872 315.807 26.594 0.044 0.071 0.041 0.075
-2.504 25.53 15.694 288.956 15.782 -0.036 0.044 0.018 0.047
-2.016 25.516 18.632 284.057 22.655 0.073 0.057 -0.070 0.068
-1.680 68.354 23.839 327.022 16.758 0.100 0.060 0.175 0.066
-1.344 2.133 16.576 303.480 16.686 -0.044 0.043 0.008 0.047
-1.008 11.083 18.115 317.555 19.687 0.075 0.046 -0.041 0.052
-0.672 14.812 14.372 288.949 13.448 -0.047 0.040 0.049 0.042
-0.336 -7.478 15.040 318.497 13.816 -0.052 0.037 0.040 0.039
0.000 0.000 14.757 303.940 15.209 0.015 0.038 0.000 0.042
0.336 -3.794 15.515 312.880 13.146 -0.034 0.039 0.082 0.041
0.672 -5.044 19.103 327.555 17.912 -0.008 0.044 0.030 0.048
1.008 -13.082 17.626 301.887 15.988 -0.019 0.046 0.057 0.048
1.344 -31.054 15.749 277.036 16.262 0.006 0.046 0.017 0.049
1.680 -30.863 17.706 305.189 19.507 0.005 0.046 -0.030 0.052
2.169 -7.328 24.048 292.992 18.893 -0.001 0.066 0.133 0.069
2.844 -55.537 53.998 238.476 26.755 0.057 0.277 0.760 0.297
3.668 -5.908 17.948 280.591 24.505 -0.008 0.055 -0.115 0.076
4.829 16.595 19.588 267.684 23.580 0.046 0.063 -0.045 0.073
6.466 58.218 30.208 278.722 34.763 -0.070 0.093 -0.039 0.104
9.289 14.762 67.459 223.187 108.529 0.019 0.327 -0.293 0.556

16.996 63.552 89.328 199.778 151.321 -0.076 0.487 -0.237 0.759
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A6.2. LINE STRENGTH INDICES

TABLE A6-16

IC 1459: major axis

r Mg2 err Fe5270 err Fe5335 err <Fe> err

-78.960 0.283 0.015 2.888 0.018 1.844 0.051 2.366 0.051
-76.160 0.286 0.014 2.994 0.018 1.960 0.050 2.477 0.050
-73.360 0.291 0.014 2.990 0.017 1.979 0.048 2.484 0.048
-70.560 0.294 0.013 3.000 0.017 2.017 0.046 2.508 0.046
-67.760 0.298 0.013 3.037 0.016 2.097 0.044 2.567 0.044
-64.960 0.300 0.012 3.065 0.016 2.146 0.043 2.605 0.043
-62.160 0.303 0.012 3.081 0.015 2.175 0.041 2.628 0.041
-59.360 0.305 0.012 3.324 0.015 2.515 0.040 2.920 0.040
-56.560 0.308 0.011 3.243 0.014 2.411 0.038 2.827 0.038
-53.760 0.310 0.011 3.175 0.014 2.314 0.037 2.745 0.037
-50.960 0.313 0.010 3.094 0.013 2.171 0.036 2.633 0.036
-48.160 0.315 0.010 3.072 0.013 2.103 0.034 2.588 0.034
-45.360 0.316 0.009 3.095 0.012 2.068 0.032 2.581 0.032
-42.560 0.316 0.009 3.139 0.011 2.089 0.031 2.614 0.031
-39.760 0.315 0.008 3.227 0.011 2.171 0.029 2.699 0.029
-36.960 0.315 0.008 3.290 0.010 2.248 0.028 2.769 0.028
-34.160 0.316 0.007 3.526 0.009 2.595 0.025 3.060 0.025
-31.360 0.317 0.007 3.584 0.009 2.699 0.024 3.141 0.024
-28.560 0.319 0.006 3.653 0.008 2.866 0.022 3.259 0.022
-25.760 0.321 0.006 3.675 0.007 2.983 0.020 3.329 0.020
-22.960 0.326 0.005 3.672 0.007 3.139 0.018 3.405 0.018
-20.160 0.331 0.005 3.658 0.006 3.209 0.016 3.434 0.016
-17.360 0.342 0.004 3.653 0.005 3.234 0.014 3.443 0.014
-14.560 0.350 0.004 3.668 0.004 3.201 0.012 3.435 0.012
-11.760 0.359 0.003 3.704 0.004 3.117 0.010 3.411 0.010
-8.960 0.364 0.003 3.883 0.003 3.343 0.009 3.613 0.009
-6.160 0.367 0.002 3.906 0.003 3.256 0.008 3.581 0.008
-3.360 0.367 0.002 3.914 0.003 3.206 0.007 3.560 0.007
-0.560 0.367 0.002 3.920 0.003 3.435 0.007 3.678 0.007
2.240 0.365 0.002 4.085 0.003 3.392 0.007 3.738 0.007
5.040 0.362 0.002 3.922 0.003 3.338 0.008 3.630 0.008
7.840 0.359 0.003 3.920 0.003 3.027 0.009 3.473 0.009

10.640 0.354 0.003 3.914 0.004 3.017 0.011 3.466 0.011
13.440 0.350 0.004 3.909 0.004 3.032 0.012 3.471 0.012
16.240 0.343 0.004 3.749 0.005 2.819 0.015 3.284 0.015
19.040 0.337 0.005 3.751 0.006 2.856 0.016 3.303 0.016
21.840 0.330 0.006 3.752 0.007 2.895 0.019 3.324 0.019
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IC 1459: major axis (continued)

r Mg2 err Fe5270 err Fe5335 err <Fe> err

24.640 0.324 0.006 3.747 0.007 2.905 0.021 3.326 0.021
27.440 0.313 0.007 3.722 0.008 2.902 0.023 3.312 0.023
30.240 0.305 0.007 3.688 0.009 2.896 0.024 3.292 0.024
33.040 0.292 0.008 3.609 0.010 2.881 0.026 3.245 0.026
35.840 0.285 0.008 3.541 0.010 2.863 0.027 3.202 0.027
38.640 0.278 0.008 3.435 0.011 2.820 0.029 3.128 0.029
41.440 0.276 0.009 3.237 0.011 2.561 0.031 2.899 0.031
44.240 0.276 0.009 3.187 0.012 2.533 0.033 2.860 0.033
47.040 0.278 0.010 3.181 0.012 2.525 0.034 2.853 0.034
49.840 0.282 0.010 3.213 0.013 2.528 0.036 2.870 0.036
52.640 0.286 0.011 3.259 0.014 2.534 0.037 2.896 0.037
55.440 0.292 0.011 3.352 0.014 2.544 0.039 2.948 0.039
58.240 0.296 0.012 3.414 0.015 2.550 0.040 2.982 0.040
61.040 0.299 0.012 3.474 0.015 2.559 0.042 3.016 0.042
63.840 0.300 0.013 3.482 0.016 2.567 0.043 3.024 0.043
66.640 0.298 0.013 3.187 0.016 2.209 0.045 2.698 0.045
69.440 0.296 0.013 3.167 0.017 2.209 0.046 2.688 0.046
72.240 0.292 0.014 3.144 0.018 2.196 0.048 2.670 0.048
75.040 0.291 0.014 3.134 0.018 2.178 0.049 2.656 0.049
77.840 0.290 0.015 3.126 0.019 2.149 0.051 2.638 0.051
80.640 0.289 0.015 3.123 0.019 2.132 0.052 2.627 0.052
83.440 0.287 0.016 3.002 0.020 1.981 0.054 2.492 0.054
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TABLE A6-17

IC 3370: major axis

r Mg2 err Fe5270 err Fe5335 err <Fe> err

-87.92 0.19 0.04 2.45 0.06 2.07 0.16 2.26 0.16
-85.12 0.18 0.04 2.47 0.06 2.14 0.15 2.30 0.15
-82.32 0.17 0.04 2.53 0.05 2.21 0.15 2.37 0.15
-79.52 0.16 0.04 2.57 0.05 2.26 0.14 2.42 0.14
-76.72 0.16 0.04 2.65 0.05 2.32 0.14 2.49 0.14
-73.92 0.16 0.04 2.70 0.05 2.36 0.13 2.53 0.13
-71.12 0.16 0.04 2.78 0.05 2.44 0.13 2.61 0.13
-68.32 0.16 0.03 2.86 0.04 2.53 0.12 2.69 0.12
-65.52 0.16 0.03 2.94 0.04 2.64 0.12 2.79 0.12
-62.72 0.17 0.03 3.01 0.04 2.69 0.11 2.85 0.11
-59.92 0.17 0.03 3.01 0.04 2.69 0.10 2.85 0.10
-57.12 0.18 0.03 2.93 0.04 2.63 0.10 2.78 0.10
-54.32 0.18 0.03 2.79 0.03 2.53 0.09 2.66 0.09
-51.52 0.19 0.03 2.67 0.03 2.45 0.09 2.56 0.09
-48.72 0.19 0.02 2.52 0.03 2.35 0.09 2.43 0.09
-45.92 0.19 0.02 2.44 0.03 2.30 0.08 2.37 0.08
-43.12 0.19 0.02 2.38 0.03 2.24 0.08 2.31 0.08
-40.32 0.19 0.02 2.39 0.03 2.22 0.07 2.30 0.07
-37.52 0.19 0.02 2.43 0.02 2.24 0.07 2.34 0.07
-34.72 0.20 0.02 2.49 0.02 2.25 0.06 2.37 0.06
-31.92 0.20 0.02 2.60 0.02 2.29 0.06 2.45 0.06
-29.12 0.21 0.01 2.73 0.02 2.35 0.05 2.54 0.05
-26.32 0.21 0.01 2.87 0.02 2.50 0.05 2.69 0.05
-23.52 0.22 0.01 2.93 0.01 2.50 0.04 2.71 0.04
-20.72 0.22 0.01 2.99 0.01 2.54 0.03 2.77 0.03
-17.92 0.22 0.01 3.02 0.01 2.59 0.03 2.80 0.03
-15.12 0.23 0.01 3.10 0.01 2.69 0.03 2.89 0.03
-12.32 0.23 0.01 3.12 0.01 2.68 0.03 2.90 0.03
-9.52 0.23 0.01 3.16 0.01 2.66 0.02 2.91 0.02
-6.72 0.24 0.01 3.20 0.01 2.75 0.02 2.98 0.02
-3.92 0.24 0.01 3.18 0.01 2.60 0.02 2.89 0.02
-1.12 0.24 0.01 3.15 0.01 2.56 0.03 2.86 0.03
1.68 0.24 0.01 3.13 0.01 2.49 0.03 2.81 0.03
4.48 0.24 0.01 3.06 0.01 2.37 0.03 2.71 0.03
7.28 0.23 0.01 3.03 0.01 2.28 0.04 2.66 0.04

10.08 0.23 0.01 3.02 0.02 2.25 0.04 2.63 0.04
12.88 0.23 0.01 3.02 0.02 2.23 0.05 2.62 0.05
15.68 0.22 0.02 3.00 0.02 2.10 0.05 2.55 0.05
18.48 0.21 0.02 2.97 0.02 2.02 0.06 2.49 0.06
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IC 3370: major axis (continued)

r Mg2 err Fe5270 err Fe5335 err <Fe> err

21.28 0.21 0.02 2.98 0.02 1.99 0.06 2.48 0.06
24.08 0.19 0.02 2.98 0.03 1.97 0.07 2.48 0.07
26.88 0.18 0.02 2.96 0.03 1.96 0.07 2.46 0.07
29.68 0.16 0.02 2.92 0.03 1.97 0.08 2.45 0.08
32.48 0.16 0.02 2.89 0.03 1.97 0.08 2.43 0.08
35.28 0.15 0.03 2.85 0.03 1.96 0.09 2.41 0.09
38.08 0.14 0.03 2.84 0.03 1.95 0.09 2.40 0.09
40.88 0.13 0.03 2.85 0.04 1.94 0.10 2.39 0.10
43.68 0.13 0.03 2.86 0.04 1.94 0.10 2.40 0.10
46.48 0.12 0.03 2.88 0.04 1.98 0.11 2.43 0.11
49.28 0.11 0.03 2.86 0.04 2.00 0.11 2.43 0.11
52.08 0.10 0.03 2.77 0.04 2.04 0.12 2.40 0.12
54.88 0.09 0.03 2.71 0.04 2.04 0.12 2.37 0.12
57.68 0.08 0.04 2.58 0.05 2.01 0.13 2.30 0.13
60.48 0.08 0.04 2.50 0.05 1.98 0.13 2.24 0.13
63.28 0.08 0.04 2.44 0.05 1.87 0.14 2.15 0.14
66.08 0.08 0.04 2.43 0.05 1.76 0.14 2.09 0.14
68.88 0.07 0.04 2.44 0.05 1.62 0.15 2.03 0.15
71.68 0.07 0.04 2.42 0.05 1.57 0.15 1.99 0.15
74.48 0.07 0.04 2.36 0.06 1.55 0.16 1.95 0.16
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TABLE A6-18

IC 3370: minor axis

r Mg2 err Fe5270 err Fe5335 err <Fe> err

-81.20 0.20 0.05 2.15 0.07 1.84 0.19 2.00 0.19
-78.40 0.20 0.05 2.28 0.07 1.88 0.19 2.08 0.19
-75.60 0.20 0.05 2.39 0.07 1.82 0.18 2.11 0.18
-72.80 0.20 0.05 2.39 0.06 1.73 0.18 2.06 0.18
-70.00 0.20 0.05 2.31 0.06 1.56 0.17 1.93 0.17
-67.20 0.19 0.05 2.25 0.06 1.48 0.17 1.87 0.17
-64.40 0.17 0.04 2.21 0.06 1.52 0.16 1.87 0.16
-61.60 0.16 0.04 2.23 0.06 1.64 0.16 1.94 0.16
-58.80 0.14 0.04 2.27 0.05 1.84 0.15 2.05 0.15
-56.00 0.14 0.04 2.31 0.05 1.92 0.14 2.11 0.14
-53.20 0.13 0.04 2.30 0.05 1.94 0.13 2.12 0.13
-50.40 0.13 0.04 2.24 0.05 1.88 0.13 2.06 0.13
-47.60 0.13 0.03 2.18 0.04 1.77 0.12 1.98 0.12
-44.80 0.13 0.03 2.14 0.04 1.70 0.11 1.92 0.11
-42.00 0.14 0.03 2.12 0.04 1.60 0.10 1.86 0.10
-39.20 0.14 0.03 2.14 0.03 1.59 0.10 1.87 0.10
-36.40 0.14 0.03 2.25 0.03 1.66 0.09 1.95 0.09
-33.60 0.15 0.02 2.35 0.03 1.75 0.09 2.05 0.09
-30.80 0.15 0.02 2.52 0.03 1.94 0.08 2.23 0.08
-28.00 0.16 0.02 2.62 0.03 2.03 0.08 2.32 0.08
-25.20 0.17 0.02 2.70 0.03 2.11 0.07 2.41 0.07
-22.40 0.17 0.02 2.78 0.02 2.15 0.06 2.47 0.06
-19.60 0.18 0.02 2.82 0.02 2.26 0.06 2.54 0.06
-16.80 0.19 0.01 2.82 0.02 2.22 0.05 2.52 0.05
-14.00 0.19 0.01 2.85 0.02 2.23 0.04 2.54 0.04
-11.20 0.20 0.01 2.90 0.01 2.26 0.04 2.58 0.04
-8.40 0.21 0.01 3.04 0.01 2.36 0.03 2.70 0.03
-5.60 0.22 0.01 3.11 0.01 2.40 0.03 2.75 0.03
-2.80 0.23 0.01 3.23 0.01 2.46 0.03 2.84 0.03
0.00 0.24 0.01 3.30 0.01 2.59 0.03 2.95 0.03
2.80 0.24 0.01 3.31 0.01 2.54 0.03 2.92 0.03
5.60 0.25 0.01 3.29 0.01 2.55 0.03 2.92 0.03
8.40 0.25 0.01 3.27 0.01 2.55 0.03 2.91 0.03

11.20 0.25 0.01 3.19 0.01 2.46 0.03 2.82 0.03
14.00 0.25 0.01 3.15 0.01 2.41 0.04 2.78 0.04
16.80 0.25 0.01 3.12 0.02 2.40 0.05 2.76 0.05
19.60 0.24 0.02 3.04 0.02 2.44 0.05 2.74 0.05
22.40 0.24 0.02 2.93 0.02 2.37 0.06 2.65 0.06
25.20 0.23 0.02 2.75 0.02 2.43 0.07 2.59 0.07
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IC 3370: minor axis (continued)

r Mg2 err Fe5270 err Fe5335 err <Fe> err

28.00 0.23 0.02 2.69 0.03 2.49 0.07 2.59 0.07
30.80 0.22 0.02 2.64 0.03 2.59 0.08 2.62 0.08
33.60 0.21 0.02 2.64 0.03 2.62 0.08 2.63 0.08
36.40 0.20 0.03 2.64 0.03 2.65 0.09 2.65 0.09
39.20 0.19 0.03 2.63 0.03 2.62 0.09 2.62 0.09
42.00 0.18 0.03 2.57 0.04 2.47 0.10 2.52 0.10
44.80 0.17 0.03 2.51 0.04 2.34 0.11 2.42 0.11
47.60 0.16 0.03 2.42 0.04 2.13 0.12 2.28 0.12
50.40 0.15 0.03 2.41 0.04 2.02 0.12 2.21 0.12
53.20 0.14 0.04 2.49 0.05 1.95 0.13 2.22 0.13
56.00 0.13 0.04 2.56 0.05 1.94 0.14 2.25 0.14
58.80 0.13 0.04 2.65 0.05 1.97 0.14 2.31 0.14
61.60 0.13 0.04 2.68 0.05 1.98 0.15 2.33 0.15
64.40 0.12 0.04 2.60 0.06 2.00 0.16 2.30 0.16
67.20 0.11 0.05 2.46 0.06 1.98 0.16 2.22 0.16
70.00 0.10 0.05 2.17 0.06 1.88 0.17 2.02 0.17
72.80 0.09 0.05 1.93 0.06 1.77 0.18 1.85 0.18
75.60 0.08 0.05 1.58 0.07 1.66 0.19 1.62 0.19
78.40 0.07 0.05 1.39 0.07 1.65 0.19 1.52 0.19
81.20 0.06 0.06 1.28 0.07 1.76 0.20 1.52 0.20
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TABLE A6-19

IC 3370: intermediate axis

r Mg2 err Fe5270 err Fe5335 err <Fe> err

-81.20 0.21 0.05 2.47 0.06 1.28 0.18 1.87 0.18
-78.40 0.21 0.05 2.48 0.06 1.28 0.17 1.88 0.17
-75.60 0.21 0.04 2.36 0.06 1.22 0.16 1.79 0.16
-72.80 0.20 0.04 2.23 0.06 1.17 0.16 1.70 0.16
-70.00 0.18 0.04 2.08 0.05 1.13 0.15 1.61 0.15
-67.20 0.16 0.04 2.04 0.05 1.18 0.14 1.61 0.14
-64.40 0.15 0.04 2.10 0.05 1.40 0.14 1.75 0.14
-61.60 0.14 0.04 2.22 0.05 1.62 0.13 1.92 0.13
-58.80 0.14 0.03 2.38 0.05 1.98 0.13 2.18 0.13
-56.00 0.14 0.03 2.50 0.04 2.16 0.12 2.33 0.12
-53.20 0.14 0.03 2.58 0.04 2.31 0.11 2.45 0.11
-50.40 0.14 0.03 2.59 0.04 2.32 0.11 2.45 0.11
-47.60 0.15 0.03 2.62 0.04 2.29 0.10 2.45 0.10
-44.80 0.15 0.03 2.65 0.03 2.27 0.10 2.46 0.10
-42.00 0.16 0.03 2.69 0.03 2.27 0.09 2.48 0.09
-39.20 0.16 0.02 2.72 0.03 2.30 0.08 2.51 0.08
-36.40 0.16 0.02 2.73 0.03 2.35 0.08 2.54 0.08
-33.60 0.16 0.02 2.72 0.03 2.37 0.07 2.55 0.07
-30.80 0.16 0.02 2.70 0.02 2.41 0.07 2.55 0.07
-28.00 0.17 0.02 2.68 0.02 2.40 0.06 2.54 0.06
-25.20 0.17 0.02 2.67 0.02 2.39 0.06 2.53 0.06
-22.40 0.18 0.01 2.73 0.02 2.40 0.05 2.56 0.05
-19.60 0.18 0.01 2.78 0.02 2.51 0.04 2.64 0.04
-16.80 0.19 0.01 2.81 0.01 2.48 0.04 2.64 0.04
-14.00 0.20 0.01 2.88 0.01 2.52 0.03 2.70 0.03
-11.20 0.21 0.01 2.94 0.01 2.57 0.03 2.75 0.03
-8.40 0.22 0.01 3.09 0.01 2.70 0.03 2.90 0.03
-5.60 0.22 0.01 3.15 0.01 2.72 0.03 2.94 0.03
-2.80 0.23 0.01 3.24 0.01 2.74 0.02 2.99 0.02
0.00 0.24 0.01 3.29 0.01 2.85 0.02 3.07 0.02
2.80 0.24 0.01 3.26 0.01 2.72 0.02 2.99 0.02
5.60 0.25 0.01 3.22 0.01 2.69 0.03 2.96 0.03
8.40 0.25 0.01 3.19 0.01 2.64 0.03 2.91 0.03

11.20 0.25 0.01 3.10 0.01 2.51 0.03 2.80 0.03
14.00 0.25 0.01 3.03 0.01 2.42 0.04 2.73 0.04
16.80 0.25 0.01 2.98 0.02 2.38 0.04 2.68 0.04
19.60 0.24 0.01 2.90 0.02 2.37 0.05 2.64 0.05
22.40 0.23 0.02 2.83 0.02 2.26 0.05 2.54 0.05
25.20 0.23 0.02 2.72 0.02 2.22 0.06 2.47 0.06
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IC 3370: intermediate axis (continued)

r Mg2 err Fe5270 err Fe5335 err <Fe> err

28.00 0.22 0.02 2.71 0.02 2.21 0.06 2.46 0.06
30.80 0.21 0.02 2.73 0.03 2.18 0.07 2.45 0.07
33.60 0.21 0.02 2.75 0.03 2.13 0.08 2.44 0.08
36.40 0.20 0.02 2.78 0.03 2.06 0.08 2.42 0.08
39.20 0.19 0.02 2.80 0.03 2.01 0.09 2.40 0.09
42.00 0.18 0.03 2.82 0.03 1.95 0.09 2.38 0.09
44.80 0.18 0.03 2.84 0.04 1.91 0.10 2.38 0.10
47.60 0.16 0.03 2.85 0.04 1.89 0.11 2.37 0.11
50.40 0.16 0.03 2.83 0.04 1.90 0.11 2.36 0.11
53.20 0.15 0.03 2.79 0.04 1.95 0.12 2.37 0.12
56.00 0.14 0.03 2.73 0.04 1.99 0.12 2.36 0.12
58.80 0.14 0.04 2.63 0.05 2.03 0.13 2.33 0.13
61.60 0.13 0.04 2.63 0.05 2.02 0.13 2.33 0.13
64.40 0.13 0.04 2.69 0.05 1.96 0.14 2.33 0.14
67.20 0.12 0.04 2.78 0.05 1.91 0.15 2.34 0.15
70.00 0.11 0.04 2.93 0.05 1.85 0.15 2.39 0.15
72.80 0.10 0.04 2.96 0.06 1.82 0.16 2.39 0.16
75.60 0.09 0.05 2.86 0.06 1.81 0.16 2.34 0.16
78.40 0.09 0.05 2.70 0.06 1.81 0.17 2.26 0.17
81.20 0.09 0.05 2.44 0.06 1.84 0.17 2.14 0.17
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TABLE A6-20

NGC 3379: major axis

r Mg2 err Fe5270 err Fe5335 err <Fe> err

-19.470 0.253 0.012 2.836 0.015 1.765 0.042 2.300 0.042
-18.290 0.255 0.011 2.848 0.014 1.827 0.038 2.338 0.038
-17.110 0.257 0.010 2.959 0.013 2.002 0.035 2.480 0.035
-15.930 0.259 0.009 2.971 0.012 2.057 0.032 2.514 0.032
-14.750 0.261 0.009 2.982 0.011 2.105 0.030 2.544 0.030
-13.570 0.262 0.008 2.992 0.010 2.147 0.027 2.570 0.027
-12.390 0.264 0.007 3.002 0.009 2.183 0.025 2.593 0.025
-11.210 0.265 0.007 3.011 0.009 2.214 0.024 2.613 0.024
-10.030 0.267 0.006 3.020 0.008 2.240 0.022 2.630 0.022
-8.850 0.268 0.006 3.028 0.008 2.262 0.021 2.645 0.021
-7.670 0.270 0.006 3.036 0.007 2.280 0.020 2.658 0.020
-6.490 0.271 0.006 3.157 0.007 2.469 0.019 2.813 0.019
-5.310 0.272 0.005 3.164 0.007 2.483 0.018 2.823 0.018
-4.130 0.273 0.005 3.170 0.006 2.496 0.018 2.833 0.018
-2.950 0.275 0.005 3.176 0.006 2.507 0.017 2.841 0.017
-1.770 0.276 0.005 3.181 0.006 2.516 0.017 2.849 0.017
-0.590 0.277 0.005 3.186 0.006 2.525 0.017 2.855 0.017
0.590 0.278 0.005 3.190 0.006 2.533 0.017 2.861 0.017
1.770 0.279 0.005 3.193 0.006 2.540 0.017 2.866 0.017
2.950 0.280 0.005 3.196 0.006 2.546 0.017 2.871 0.017
4.130 0.281 0.005 3.198 0.007 2.552 0.018 2.875 0.018
5.310 0.281 0.005 3.200 0.007 2.558 0.019 2.879 0.019
6.490 0.282 0.006 3.085 0.007 2.384 0.019 2.735 0.019
7.670 0.283 0.006 3.085 0.007 2.390 0.020 2.738 0.020
8.850 0.283 0.006 3.085 0.008 2.396 0.021 2.740 0.021

10.030 0.284 0.007 3.083 0.008 2.402 0.023 2.743 0.023
11.210 0.285 0.007 3.081 0.009 2.409 0.024 2.745 0.024
12.390 0.285 0.008 3.079 0.010 2.418 0.026 2.748 0.026
13.570 0.286 0.008 3.076 0.010 2.429 0.029 2.753 0.029
14.750 0.287 0.009 3.073 0.011 2.444 0.031 2.758 0.031
15.930 0.288 0.010 3.070 0.012 2.463 0.034 2.767 0.034
17.110 0.290 0.011 3.070 0.014 2.489 0.037 2.779 0.037
18.290 0.293 0.012 2.969 0.015 2.377 0.041 2.673 0.041
19.470 0.298 0.013 2.977 0.017 2.424 0.046 2.700 0.046
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TABLE A6-21

NGC 4105: major axis

r Mg2 err Fe5270 err Fe5335 err <Fe> err

-21.50 0.19 0.03 2.41 0.04 1.90 0.11 2.16 0.11
-19.49 0.19 0.03 2.43 0.04 1.92 0.10 2.17 0.10
-17.47 0.19 0.03 2.53 0.03 1.94 0.09 2.24 0.09
-15.46 0.20 0.03 2.62 0.03 1.93 0.09 2.28 0.09
-13.44 0.20 0.02 2.70 0.03 1.93 0.08 2.32 0.08
-11.42 0.20 0.02 2.73 0.03 1.95 0.07 2.34 0.07
-9.41 0.21 0.02 2.79 0.02 1.98 0.06 2.39 0.06
-7.39 0.22 0.01 2.83 0.02 2.00 0.05 2.42 0.05
-5.38 0.23 0.01 2.92 0.01 2.06 0.04 2.49 0.04
-3.36 0.24 0.01 3.00 0.01 2.15 0.03 2.58 0.03
-1.34 0.25 0.01 3.11 0.01 2.22 0.02 2.66 0.02
0.67 0.26 0.01 3.15 0.01 2.23 0.02 2.69 0.02
2.69 0.26 0.01 3.15 0.01 2.16 0.02 2.66 0.02
4.70 0.26 0.01 3.10 0.01 2.14 0.03 2.62 0.03
6.72 0.25 0.01 3.04 0.02 2.08 0.05 2.56 0.05
8.74 0.25 0.02 3.01 0.02 2.05 0.06 2.53 0.06

10.75 0.24 0.02 2.98 0.02 1.98 0.07 2.48 0.07
12.77 0.23 0.02 2.98 0.03 1.96 0.08 2.47 0.08
14.78 0.22 0.02 2.97 0.03 1.95 0.08 2.46 0.08
16.80 0.21 0.03 2.92 0.03 1.94 0.09 2.43 0.09
18.82 0.21 0.03 2.86 0.04 1.90 0.10 2.38 0.10
20.83 0.20 0.03 2.83 0.04 1.87 0.11 2.35 0.11

213



SRDJAN SAMUROVIĆ

TABLE A6-22

NGC 4105: minor axis

r Mg2 err Fe5270 err Fe5335 err <Fe> err

-21.50 0.14 0.04 2.11 0.06 1.45 0.15 0.00 1.78
-19.49 0.14 0.04 2.05 0.05 1.86 0.14 0.00 1.95
-17.47 0.15 0.04 1.94 0.05 2.08 0.13 0.00 2.01
-15.46 0.16 0.03 1.91 0.04 1.92 0.12 0.00 1.91
-13.44 0.16 0.03 1.86 0.04 1.52 0.10 0.00 1.69
-11.42 0.17 0.02 1.91 0.03 1.50 0.08 0.00 1.71
-9.41 0.19 0.02 2.21 0.03 1.90 0.07 2.05 0.07
-7.39 0.21 0.02 2.43 0.02 2.12 0.06 2.27 0.06
-5.38 0.24 0.01 2.82 0.02 2.28 0.04 2.55 0.04
-3.36 0.25 0.01 2.97 0.01 2.32 0.03 2.65 0.03
-1.34 0.27 0.01 3.13 0.01 2.29 0.02 2.71 0.02
0.67 0.27 0.01 3.17 0.01 2.30 0.02 2.73 0.02
2.69 0.27 0.01 3.19 0.01 2.27 0.03 2.73 0.03
4.70 0.26 0.01 3.15 0.02 2.28 0.04 2.72 0.04
6.72 0.25 0.02 3.08 0.02 2.29 0.06 2.69 0.06
8.74 0.24 0.02 3.01 0.03 2.28 0.07 2.65 0.07

10.75 0.23 0.02 2.80 0.03 2.21 0.08 2.50 0.08
12.77 0.22 0.03 2.68 0.04 2.16 0.10 2.42 0.10
14.78 0.22 0.03 2.44 0.04 1.97 0.11 2.21 0.11
16.80 0.21 0.04 2.29 0.05 1.82 0.13 2.06 0.13
18.82 0.20 0.04 2.02 0.05 1.56 0.17 1.79 0.17
20.83 0.19 0.05 1.91 0.06 1.57 0.36 1.74 0.36
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7, 68.
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Samurović, S., Ćirković, M.M. and Milošević-Zdjelar, V.: 1999, Mon. Not. R. Astron. Soc.,
309, 63.
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