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Abstract. We propose a fractional kinetic equation to model the transport in eccentricity of
objects in the mean motion resonances in the Elliptic Planar Restricted Three-Body Problem.
Making use of the renormalization group formalism, we show how the fractional exponents
and the diffusion coefficient can be estimated analytically, making use of the degeneracy of
the problem. We apply our model to selected Mean Motion Resonances in the Solar System
and explain some basic properties of transport in these resonances.

1. INTRODUCTION

Kinetic models of chaotic transport in the Asteroid Belt have been proposed or dis-
cussed by a number of authors (Varvoglis and Anastasiadis, 1996; Murray and Hol-
man, 1997; Tsiganis, Varvoglis and Hadjidemetriou, 2002). All of these models are
based on a Fokker-Planck type equation (”normal” diffusion equation) for the eccen-
tricity, which implicitly assumes the Gauss-Markovian statistics of the quasi-random
walk in the eccentricity space. In order to incorporate the more general (and more
realistic) case of Levy-type statistics (see, e.g., Zaslavsky, 2002), we have recently
proposed a semi-analytical model (Čubrović, 2005a) based on the fractional kinetic
equation – FKE (Zaslavsky, 2002). In this paper we give a fully analytical model.

We consider the transport in Mean Motion Resonances (MMR) of the Elliptic
Planar Restricted Three-Body Problem (EPRTBP), and apply it on diffusion in the
asteroid belt. The model we propose is, however, applicable to any EPRTBP Hamil-
tonian, and possibly also to a wider class of degenerate systems, which all have a
similar structure of resonances.
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2. THE MODEL OF TRANSPORT

Our model is the Hamiltonian for a q-th order two-body MMR, used, among others,
by Murray and Holman (1997):

HMMR(L, λ; P, p) = H0(L) +
∑

s

cs(L)P s cosσs (1)

with L, λ, P = L(1 −
√

1 − e2), and p = −ω̃ being the modified Delauney variables
(defined as in Morbidelli 2002). In the above relations, e is eccentricty, and ω is
the longitude of perihelion. Critical angles are denoted by σs. We assume that the
transport only takes place along P (i.e., that the timescale of transport in L is much
longer) and that a particle starts at P = 0, where we put a reflecting barrier, and
escapes immediately after reaching a planet-crossing orbit (P = Pcross), where we put
an absorbing barrier. The possible phase protection mechanisms are ignored.

Assuming a Levy-type statistics for the angles σs, one finds, after performing the
averaging, that the master equation for the probability distribution function f(P, t)
leads to a multi-channel FKE:

∂βf(P, t)

∂tβ
=

q∑

s=1

∂αs

∂|P |αs
[Ds(P )f(P, t)] (2)

with the diffusion coefficients:

Ds =
1

2
cαs
s sαsP s2αT

(α−β)s

Lib
(3)

where TLib denotes the libration period. Applying the separation ansatz and writing
the time-independent part of the solution as a superposition of the time-independent
parts of one-channel solutions (given in Čubrović, 2005b) for different values of s
(which is justified by the linearity of FKE), one finds an estimate for the removal time
and the Lyapunov time (for the latter from the FKE for the variational equations,
which shares all the basic properties with (2)):

TR ≈
(

P0Pcross

D(L, P0)D(L, Pcross)

)1/β

× Φ

(
α, β; L, P0; cos

(
log P0

| log β|

))
(4)

TLy ≈ 2
cs(L)

‖D‖ (5)

where ‖‖ denotes the standard Euclidean norm, and Φ is, in general, a compli-
cated resonance-dependent function which, however, has an important property of
log-periodicity.

A few interesting consequences follow from the above results. First, it is obvious
that, for different values of P , different components Ds of the diffusion coefficient will
prevail, leading to a stair-like behavior of the ”effective” (e.g., numerically computed)
diffusion coefficient. Furthermore, since the amplitude of log-periodic oscillations of
Φ can be shown to grow with q (order of the resonance), the log-periodic oscillations
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will be more and more significant for higher order resonances. Also, applying the
Tauberian theorem for the Fourier transform, and making use of the generalized Cen-
tral Limit Theorem (e.g., Weiss, 1994), one can show that two approximate scalings
of TR with TLy are possible: the power-law one and the stretched-exponential one
(corresponding to the ”stable chaos”).

In order to actually compute any of the relevant quantities (like TR), however, the
question of determining the exponents α and β arises. We will sketch in the next
section an analytical procedure to do that.

3. THE RENORMALIZATION GROUP EQUATION

The idea of the Renormalization Group of Kinetics (RGK) is to model the transport
explicitly as a random walk in P with the waiting time distribution Ψ(t) and the
step-size distribution W (∆P ) being chosen from the dynamical considerations (see
Kuznetsov and Zaslavsky, 1997). Although also the FKE (2) could have been deduced
from this formalism, we have decided to retain the more common averaging procedure
for obtaining the FKE.

Two basic mechanisms of transport are expected to be the ”hopping” between
subsequent layers in the resonant multiplet, and the trapping inside higher and higher
levels of hierarchy of a cantorus or a stability island chain. This process leads to the
following expressions for Ψ(t) and W (∆P ):

Ψ(t) = const. ×
N∑

j=1

pj
[
exp(−bjt/TLib) + exp(−t/jTLib)

]
(6)

W (∆P ) = const.×
N∑

j=1

pj
[
δ(∆P + a0a

j) + δ(∆P − a0a
j) + δ(∆P + ja0) + δ(∆P − ja0)

]

(7)

where δ(x) is the common Dirac delta function. The above functions obey the follow-
ing RGK in the Fourier-Laplace (q, u) space:

W (q) → pW (qa), Ψ(u) → pΨ(u/b), j → 2j, N → N/2 (8)

which leads to two coupled fixed-point equations for a and b, whereas p = δS/∆S (the
relative overlap, which can be estimated, e.g., as in Murray and Holman, 1997), and a0

is also easy to calculate as the separation between the subsequent resonant layers. Now
the fractional exponents are found as α = | log p|/ log a and β = | log p|/ log b. Notice
that the presented model breaks down in a non-degenerate system, where a0 → 0 and
we only have a trivial RGK with a whole interval of fixed points (irrelevant for our
purposes).
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Figure 1: Diffusion coefficient as a function of P in the 5 : 2 (left) and 12 : 7 (right)
resonances. Solid line is the analytical prediction, and circles are numerical results
for an ensemble of 150 bodies. The value of the diffusion coefficient varies rather
smoothly with P in the former case, whereas in the latter case the stair-like structure
and the log-periodic oscillations are much more prominent.

4. RESULTS FOR SELECTED RESONANCES
IN THE ASTEROID BELT

A systematic study of all important MMR in the Asteroid Belt is still in progress. We
present here only two typical cases, namely the 5 : 2 and 12 : 7 resonances. Figure 1
shows the diffusion coefficient as a function of P ; figure 2 gives the predicted TR–TLy

relation.

The figures illustrate the qualitative properties discussed at the end of the second
section. The 12 : 7 resonance, as expected, contains a population with very long
removal times, in which the bodies such as the now famous 511 Helga (Milani and
Nobili, 1992) reside. The power-law and the exponential-law regimes for TR coexist in
a large part of the resonance. Contrary, the 5 : 2 objects should all have comparable
lifetimes, and only one type of transport should exist – the relatively fast diffusion
towards Pcross.

5. CONCLUSIONS

We have proposed a fractional kinetic equation for the eccentricity transport in the
MMR, together with an analytical scheme for the estimation of the fractional expo-
nents α and β. The predictions for two typical low- and high-order resonances agree
well with the numerical results and with our previous, semi-analytical model (Tsi-
ganis, Anastasiadis and Varvoglis, 2000; Čubrović, 2005a). It is clear, however, that
further work is needed to obtain a complete model, capable of describing also the fine
details of dynamics inside the MMR.
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Figure 2: The analytically computed values of TLy and TR for the 5 : 2 (left) and

12 : 7 (right) resonances. The power law (straight line on the log-log plot) describes
well the general trend in the 5 : 2 case, with the scaling exponent about 0.70. In the
12 : 7 case, however, another, more stable regime, with exponentially long lifetimes is
also present (denoted by squares), in addition to the ”normal” chaos, which is again
well described with a power-law fit, the slope being about 0.35.
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