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Abstract. The Hamiltonian of an asteroid perturbed by major planets is analysed from
the point of view of the fulfilment of conditions for applying Nekhoroshev’s theorem, such
as the quasi-convexity or the 3-jet one, in the selected phase-space regions already known to
harbour chaotic motion.

1. INTRODUCTION

Several papers have been published so far that deal with the application of Nekhoro-
shev theorem (Nekhoroshev, 1977) to various, often simplified dynamical systems. So,
for example, Celleti and Giorgilli (Celletti and Giorgilli, 1991) directly apply the the-
orem in the framework of the restricted, circular three body problem in Lagrangian
equilibrium points, Celleti and Ferrara (Celletti and Ferrara, 1996) apply it to the
real Sun-Jupiter-Ceres system, considering again only the simplified dynamics, while
Guzzo et al. (Guzzo et al., 2002) employ it to study real N-body system, but using its
special formulation. In all these cases authors assume the fulfillment of conditions for
the application of the theorem. Only in the paper by Benettin et al. (1998) authors
give a detailed analysis of Hamiltonian of the restricted, circular problem of three
bodies in the Lagrangian points L4, L5, from the point of view of the fulfillment of
the condition of convexity, or alternatively of less strict quasi-convexity, “directional
quasi-convexity” or of rather loose 3-jet condition.

In the present paper we present an analysis of fulfillment of the quasi-convexity
condition for the Hamiltonian of a system consisting of an asteroid perturbed by
Jupiter and Saturn.

2. THEORETICAL FRAMEWORK

We start from Hamiltonian in heliocentric coordinates:

H = H0(L) + εH1(L,G,H, l, g, h, a
′, e′, i′, l′, ω′,Ω′) (1)
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where

L =
√
a

G =
√
a
√

1 − e2

H =
√
a
√

1 − e2 cos i

,

,

,

l = M

g = ω

h = Ω,

(2)

are the usual Delaunay’s variables.
Primed quantities refer to the perturbing planet with ε = m′ denoting its mass.

H1 is given as sum over all perturbing planets.
The short periodic terms are eliminated by means of the Lie algorithm, that is

averaging over the mean anomalies (see Milani and Knežević, 1999), so that the
resulting secular Hamiltonian (1) depends only on mean elements:

H̄ = H̄0(L̄) + εH̄1(L̄, Ḡ, H̄,−, ḡ, h̄, a′, e′, i′,−, ω′,Ω′) +

+ε2H̄2(L̄, Ḡ, H̄,−, ḡ, h̄, a′, e′, i′,−, ω′,Ω′) +O(ε3)
(3)

H̄0 is two body Hamiltonian, while action L̄ is a constant, and thus a first quasi-
invariant of motion, that is a proper element. Let us denote K a truncated Hamil-
tonian, i.e. K = εH1 + ε2H2. Hamiltonian K can be written as a sum of unper-
turbed part K0 and of perturbation KP . This particular form has been introduced
by Williams (1969), who expanded K in Taylor series in small eccentricities and in-
clination of the planets (see Lamaitre and Morbidelli, 1994):

K = K0 + K1 + K2 + · · · (4)

Kozai (1962) demonstrated that zero-order term K0 (commonly known as Kozai’s
Hamiltonian) depends only on one angle (argument of perihelion g), and that it is
thus integrable.

Introducing suitable action-angle variables, Kozai’s Hamiltonian can be expressed
as a function of actions only :

K = K0(J, Z) + K1(ψ, z, J, Z). (5)

J, Z are actions, ψ, z are conjugated angles and the perturbation contains only terms
linear in e′, i′. Canonical transformation from Delaunay’s variables (2) to the action-
angle ones cannot be explicitly expressed, but can be performed numerically. The
dynamics described by Kozai’s Hamiltonian is characterized by a couple of frequencies:

ωψ =
∂K
∂J

, ωz =
∂K
∂Z

. (6)

Computation of the perturbation K1 is performed with respect to a reference orbit of
the K0 dynamics.
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Applying Henrard’s seminumerical method (Henrard, 1990) on Hamiltonian (5)
one eliminates the long periodic angles ψ and z (see Lemmaitre and Morbidelli, 1994
for details of the procedure) and gets:

K̄ = K̄0(J̄ , Z̄) + K̄1(J̄ , Z̄) + R(J̄ , Z̄, ψ̄, z̄) (7)

where barred quantities are new action-angle variables, called “proper elements” of
the asteroid. Function R is a remainder and contains higher degree terms.
Using described transfrmations, Hamiltonian (3) can be written as a function of as-
teroid proper elements, and only now Hamiltonian can be tested against fulfillment
of conditions for application of the theorem of Nekhoroshev. Setting:

H̄s = H0(L) + ε(K0(L, J, Z) + K1(L, J, Z)), (8)

and introducing for simplicity (L, J, Z) = (I1, I2, I3), the condition of quasi-convexity
of the integrable Hamiltonian Hs after Nekhoroshev (1977) is that the system of
equations:

3
∑

i=1

∂Hs

∂Ii
ηi = 0, (9)

3
∑

i,j=1

∂2Hs

∂Ii∂Ij
ηiηj = 0 (10)

does not have real solutions except trivial one η = 0. More formally: Hamiltonian Hs

is quasi-convex in I when restriction of Hessian on hypersurface which is orthogonal
on the frequency vector ω is positively or negatively definite.

In practice, one first computes Hessian matrix Ai,j = ∂2
Hs

∂Ii∂Ij
and vector ω =

(

∂Hs

∂I1
, ∂Hs

∂I2
, ∂Hs

∂I3

)

defining an ortoghonal hypersurface Π(ω). Then, coordinates I

are rotated until vector ω does not coincide with first coordinate axis of matrix A.
Remaining 2× 2 block defines matrix B. When both eigen values of B have the same
sign, Hamiltonian Hs is quasi-convex.

3-jet condition is more complex, because it requires derivatives of the Hamilton
function up to third order. Consequently, in addition to (9) and (10) we have:

3
∑

i,j,k=1

∂3Hs

∂Ii∂Ij∂Ik
ηiηjηk = 0 (11)

Practical verification of these condition requires first to find critical points (u−,u+)
of system (10), and then to check condition (11). Results of these check are given in
the last two columns of Table 1.
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Figure 1: Continuous Fourier spectrum (Guzzo et al., 2002) for asteroid 490 Veritas.

3. RESULTS

As aforementioned, the present paper concentrates on the analysis of the fulfillment of
quasi-convexity and 3–jet conditions of the Hamiltonian for several selected members
of Veritas asteroid family, located in the outer part of the main belt with an average
proper semimajor axis of about 3.174 AU. This family has already been studied by
applying the spectral formulation of the theorem of Nekhoroshev (1977). The spectral
formulation is based on the Fourier analysis of a suitably chosen function of time
series of orbital elements obtained by means of the numerical integration covering
up to 100 Myr (Guzzo et al., 2002). An example of such a spectrum is shown in
Fig. 1 and exhibits a clear continuous structure indicating that the object is not in
the Nekhoroshev regime.

The results of the present analysis are given in Table 1. They indicate that Hamil-
ton function for the considered members of Veritas family is NOT quasi-convex, be-
cause the eigen values λ1 and λ2 of matrix B are of opposite sign. From two last
column s of Table 1 one can easily see that values of K1 corresponding to critical
points u− and u+ are small (of the order of ε∗ < 10−5) for all selected asteroids,
except for 2428 Kamenyar, where we get an order of magnitude larger values. Hence,
we can conclude that for all asteroids, except for Kamenyar, 3-jet condition is not
fulfilled.
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Table 1: Calculated Eigen values of B and values of K1.

Asteroid Eigen values of B K1

Number Name λ1 λ2 (u−) (u+)

490 Veritas -0.13773660D-02 0.67849412D+01 0.2248D-05 0.1518D-05

2147 Kharadze -0.49082696D-04 0.29421851D-01 0.9742D-05 0.9511D-05

2428 Kamenyar -0.22328872D-02 0.78520296D+01 0.4225D-04 0.9454D-04

3542 Tanjiazhen -0.39531112D+00 0.87524627D+01 0.8889D-06 0.5221D-05

52244 1981EE4 -0.24523605D-02 0.69479869D+01 0.4551D-05 0.4948D-05

2123 PL -0.41195847D-02 0.70618299D+01 0.4354D-05 0.3382D-05

4573 PL -0.41194558D-01 0.68848025D+01 0.8221D-05 0.9377D-05

Thus we can say that we have, for a sample of selected Veritas family members,
confirmed results by Guzzo et al. (2002) in a completely independent way.
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