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Abstract. The process of spontaneous excitation of quasi-perpendicular electrostatic ion-
cyclotron (QPESIC) waves by an electron drift of sufficient magnitude, parallel to the ex-
ternal magnetic field, in a weakly ionized Maxwellian plasma containing one species of light
positive ions and one species of heavy negative ones is analyzed from the standpoint of kinetic
theory combined with the linear theory of perturbation. Attention is focused on the mode
with the modal frequency close to the first ion-cyclotron harmonic of the negative (heavy)
ions. It is found that the increase in the light-ions (not resonant to the wave analyzed)
number density lowers both the maximum deviation of modal frequency from that of the
ion-cyclotron harmonic and the threshold drift for spontaneous excitation of the mode.

In the last two decades or so, one may notice a growing interest in the ion-cyclotron
waves in weakly ionized multi-ion plasmas containing, apart from neutrals and elec-
trons, also various species of ions, both positive and negative. Plasmas with negative
ions attract much attention in that context, as they are frequently encountered both
in laboratory devices (e.g. in Q-machines (An et al. 1993; Song et al. 1991)) and
in astrophysical situations (Ganguli et al. 1992; Kindel and Kennel 1971). Par-
ticular attention is generally given to electrostatic (potential) ion-cyclotron waves
B= 0) propagated almost at right angles with respect to the external, static and ho-
mogeneous, magnetic field B0. These quasi-perpendicular electrostatic ion-cyclotron
(QPESIC) waves are studied herewith using kinetic equation with BGK model col-
lision integrals. The QPESIC waves are rather slow, and have phase velocities lying
between ion and electron thermal velocities (vTi � w/k‖ � vTe).Their assumed
quasi-perpendicular character leads to the conditions ω, |ω − ωBs| � k‖vTs, νs valid
for any s (index s labelling the ionic species present). Furthermore, it has long been
known that the QPESIC instabilities set in first at long waves, with wavelenghts sig-
nificantly larger than the electron mean-free path (νe � k‖vTe), provided that the
condition ωνe � k2

‖v
2
Te, keeping the phase velocities below vTe, is met.

In the present paper a model of infinite and uniform, weakly ionized, low-tempe-
rature and isothermal plasma placed in parallel external fields E0 and B0 is adopted.
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This combination of external fields causes the charged particles to drift along magnetic
lines of force, so that only the effects due to the electronic drift velocity should be
considered, the magnitudes of ionic drifts being much smaller. Furthermore, it is
assumed that only two singly-charged ion species are present, one with positive and
the other with negative electrical charge, and that the negative ions have considerably
larger mass. Using the indices l (for light) and h (for heavy) ions, one thus has
ml < mh, i.e. M = mh/ml > 1, and the condition of macroscopic quasi-neutrality
becomes

ne + nh = nl, (1)

where nα (α = e, h, l) are the number densities of the charged constituents present.
It will be convenient to introduce the dimensionless quantities

δ =
nl

ne
, ε =

nh

nl
= 1 − 1

δ
, (2)

noticing that δ > 1.
The dispersion equation for the QPESIC modes in the plasmas of the type consid-

ered here reads

δεe + δεh + δεl = 0, (3)

where δεα (α = e, l, h) are the corresponding contributions. The ionic contributions
are (Milić and Brajušković 1983):

δεs =
ω2

ps

k2v2
Ts

{

1−
∞
∑

n=−∞

[

ωAn(µs)

ω−nωBs
−i

νsωAn(µs)

(ω−nωBs)2

]

}

, (s = l, h), (4)

with ωps = (q2
sns/ε0ms)

1/2 being the ion plasma frequencies, vTs = (κTs/ms)
1/2

denoting the ion thermal velocities, and ωBs = qsB0/ms standing for the ion gy-
rofrequencies (negative sign in the case of qs < 0 indicates the opposite direction
of cyclotron rotation for negative ions). Also, µs = k2

⊥v2
Ts/ω2

Bs, and An(z) =
In(z) exp(−z) [In(z) being the modified Bessel function of the nth order]. The elec-
tronic contribution in the longwave domain is of the form (Milić and Brajušković
1983):

δεe =
ω2

pe

k2v2
Te

(

1 + i
νe

k‖vTe

ω − k‖u

k‖vTe

)

, (5)

where u is the magnitude of the electron drift. One should point out that, according
to the strict billiard-ball model adopted herewith for the collisions of the charged
particles with the neutrals, one has νe/νs = vTe/vTs (s = l, h); collisions among the
charged particles are neglected altogether, in view of the assumed weak ionization.

Inserting (4) and (5) into (3), one arrives at the dispersion equation. To study
the lowermost ion-cyclotron mode to which the heavy ions are resonant one should,
bearing in mind that MωBh = −ωBl (consequently, µl = µh/M), retain only the term
n = 0 in the infinite sum (4) for the light ions, and the terms n = 0 and n = −1 for
the heavy ones; it will be convenient to use |ωBh| = −ωBh further on. Equating the
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Figure 1:

Figure 2:

real part of the thus formed dispersion equation to zero, one obtains the spectrum of
the mode considered. Solved explicitely for the modal frequency, the result reads:

ω= |ωBh|
1 − ε + [1 − A0 (µh/M)] + ε [1 − A0(µh)]

1−ε+[1−A0 (µh/M)]+ε [1−A0(µh)−A1(µh)]
. (6)

Figure 1 shows this result graphically for three values of M, chosen to correspond
roughly to the physical situation in ionosphere (e.g., for the ions K+ and SF−

6 one
has M = 3.5). It can be seen that the deviation of ω od |ωBh| increases both with
M and with nh. This trait agrees with the observation in Chow and Rosenberg
(1996), although the QPESIC waves were analyzed on the ground of Vlasov equations
(collisionless plasma) in that reference.

The magnitude of the critical electron drift required for the onset of the QPESIC
instability (in form of waves of growing amplitude) follows from the condition of
marginal instability, obtained by equating the imaginary part of the dispersion equa-
tion (3) to zero. The result is:

u

vTh
=

(

ml

me

)1/4

U, (7)

with
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U =
2
√

M√
1 − ε

√

ε√
M

[

A0(µh) +
A1(µh)

W 2

]

+ A0

(µh

M

)

. (8)

Here, W = (ω − |ωBh|)/ω is the relative deviation of ω from |ωBh|. The threshold
drift u∗ corresponds to the minimum of the function on the right-hand side of (8),
which had to be evaluated numerically. Figure 2 shows the results for the quantity
U∗ which is related to u∗ by (7). It can be seen that increases in either ε or M lead to
increases in u∗. Numerical values for u∗ obtained herewith agree satisfactorily with
the results of Kindel and Kennel (1971) and Portnyagin et al. (1992) which pertain
to the astrophysical situations mentioned.
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