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Abstract. According to modern views, a majority of stars in galactic disk were formed
within the small stellar groups containing a few components. As a rule, such groups have a
non-hierarchical structure and decay. As a result, single, binary and stable multiple systems
are formed. Binaries and stable triples - products of small group dynamical decay - have
rather wide intervals of orbital parameters and mass ratios. This is in agreement with
observations of double and multiple stars. We study the effects of star merging, dynamical
friction on interstellar medium, and mass-loss to dynamical evolution of small stellar groups.

1. INTRODUCTION

According to modern views (see, e.g., Larson 2001), majority of single and binary
stars may be formed via decay of non-hierarchical multiple stars. Such objects are
formed due to fragmentation of molecular cloud cores (see, e.g., Klessen et al. 1998).

Although there is a huge number of papers devoted to star formation theory and
observations of star formation regions, so far there is no ”standard” star formation
model (Larson 2001). It seems that forming small stellar groups have a wide range of
parameters (sizes, velocity dispersions, mass spectra etc.).

During initial phase of such system evolution, the hydrodynamic processes play a
leading role. These processes may be described within the SPH-scheme. (see, e.g.,
Bodenheimer et al. 2000, and Monaghan 1992). One more effective approach is
numerical solution of hydrodynamic equations using multiple grids or adaptive mesh
refining (AMR) (see also the references in the cited review by Bodenheimer et al.
2000). In AMR-scheme, positions and sizes of the grids are changed dynamically.
New grids may be created and unnecessary ones are deleted.

Numerical simulations of star formation process indicate that rather wide (∼ 1÷100
AU) stellar groups of different multiplicity may be formed. It seems that scenario of
closer system formation is more complicated. However, the processes of dynamical
decay of small stellar groups can help us in this case. Such processes were carefully
studied in stellar dynamics, especially for triple systems. Soon the book of Valtonen
and Karttunen (2003) will be published about this topic.

Numerical simulations (Sterzik and Durisen 1998, Rubinov, Petrova and Orlov
2002) show that small non-hierarchical groups decay into unbound singles, doubles,
stable triples, and possibly multiples.
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Table 1: State distribution at t = 300Tcr

N Binary Two Stable Unstable Sistems
singles triple triple with n ≥ 4

3 0.78 – 0.01 0.21 –

6 0.56 0.01 0.14 0.16 0.13

9 0.55 0.03 0.16 0.14 0.12

12 0.47 0.04 0.17 0.16 0.16

15 0.49 0.06 0.13 0.15 0.17

18 0.51 0.06 0.11 0.14 0.18

2. DYNAMICAL DECAY OF SMALL STELLAR GROUPS

Let us briefly present our results. Table 1 contains the distribution of final states for
the time of 300 initial crossing times. The results are given for different N and the
Salpeter initial mass spectrum. The star coalescence at close encounters were taken
into account, when separation between two stars was less then 3/4 of the sum of their
radii. Initial system size was 100 AU.

One can see from Table 1 that the final binary is formed in approximately one half
of the runs. The stable triple system is formed in about 15% of cases. About 30% of
the groups did not complete their evolution up to this moment.

It is of interest to compare the data of this table with stellar multiplicity function.
Tokovinin (2001) has constructed this function using the catalog of 807 physical mul-
tiple systems. He found the ratios of the amounts of different multiplicity n systems:

fn =
Nn

Nn−1

Let us note that the ratio fn is approximately constant within the uncertainties.
Beginning from n = 4, it equals 0.26± 0.05. When one comes from triples to binaries
this ratio decreases by half.

Orlov and Titov (1994) have estimated the ratio of stars which are members of the
systems with multiplicities n = 1, 2, 3,≥ 4 — 0.64 : 0.28 : 0.06 : 0.02 for nearby stars
within 25 parsecs from the Sun. Corresponding ratios f3 ≈ 0.14, f≥4 ≈ 0.25 are in
agreement with Tokovinin’s (2001) data within their uncertainties.

If we consider the distribution of final states of small groups (Table 1) and assume
that unstable triple systems at least decay to single and binary ones, then the fraction
of final binaries reaches 70%. The ratio f3 ≈ 0.2 that is not strongly different from
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Table 2: Multiplicity function

n 3 4 5 6

fn 0.11 0.22 0.20 0.36
3 2 4 14

observed estimates. Now it is not clear how many stable systems with multiplicity
n ≥ 4 are formed and what their fraction will decay to binary and stable triple.
Therefore this estimation f3 is not reliable.

It is of interest to find the parameters of final stable systems and compare those
with observations of binary and triple stars.

Basic parameters of binary stars are semi-major axis, eccentricity and mass ratio.
When initial size of a group is ∼ 100 AU, the semi-major axes of final and escaped
binaries are within the range from ∼ 1 till ∼ 103 AU. This range is in agreement
with observational data for wide binary stars (see, e.g., Duquennoy and Mayor 1991,
Heacox 1998). The closer binaries may be formed via decay of more compact stellar
groups.

The eccentricity distributions for binaries formed via decay of the groups with
multiplicity N = 6 are shown in Fig. 1. The straight line corresponds to the law
f(e) = 2e. This was found by Ambartsumian (1937) for equilibrium distribution of
binaries in stellar field. The same distribution was obtained in statistical theory of
escapes from triple systems (Monaghan 1976).

One can see from the figure that the results of numerical simulations are in agree-
ment with the theory. The eccentricity distributions for wide double stars are also
in agreement with the law f(e) = 2e if one takes into account the observational se-
lection (see, e.g., Valtonen 1997, Tokovinin 1998). This agreement is an additional
argument confirming dynamical origin of wide binaries. A qualitative agreement be-
tween parameters of visual double stars and binaries formed via decay of small groups
evidences an efficiency of this mechanism for double star formation.

Now let us consider the stable triple systems. The stable triples formed via decay
of small groups have a strong hierarchy — average ratio of semi-major axes of outer
and inner binaries is about 20 : 1.

The distributions of eccentricities for inner and outer binaries are shown in Fig. 2.
One can see from the figure that the eccentricity distributions for both binaries

differ from the law f(e) = 2e. We observe a deficit of strongly elongated orbits with
e > 0.9. Especially this deficit is evident for outer binaries. The mean values of
eccentricities equal ein ≈ 0.7, eex ≈ 0.5.

We consider a sample of 38 observational hierarchical triple stars for which the
elements of inner and outer binaries were calculated. The mean eccentricities for this
sample are

ein ≈ 0.37± 0.04, eex ≈ 0.38± 0.04.
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Figure 1: Distributions of eccentricities for the binaries formed via decay of N = 6-
body systems. Hollow columns correspond to final binaries, gray columns – to escaped
binaries. The straight line corresponds to the law f(e) = 2e.
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Figure 2: Distributions of eccentricities for inner (hollow columns) and outer (grey
columns) binaries in stable triples. Straight line corresponds to the law f(e) = 2e.
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These values are less than the same values for simulated systems. This difference is
especially noticeable for inner binaries. One can explain this difference in the following
way. A partial circularization of the orbits may be connected with tidal interaction
between the components. We do not take into account this effect in simulations.
Besides, a selection may influence the result — it is difficult to reveal a strongly
elongated system.

One more important feature of triple systems is relative orientation of inner and
outer binary orbits. We consider the models with initially isotropic velocity distri-
bution. Then the stable triple systems with prograde motions prevail. Although the
difference with a random distribution

f(i) =
1

2
sin i

is not so strong (Fig. 3).

Figure 3: Distributions of mutual inner and outer binary orbit inclination (hollow
columns). Grey columns correspond to random orbit orientation.

A detailed analysis of the distribution f(i) for stable triples formed via decay of
systems with 3 ≤ N ≤ 10 was made by Sterzik and Tokovinin (2002). In numerical
simulations with realistic initial conditions, the final triples have a moderate but sig-
nificant prevalence of prograde motions. The average angle between orbital moment
vectors of inner and outer binaries is ī ≈ 70◦ ÷ 80◦. The result depends on system
geometry, mass spectrum, relation between rotation energy and energy of peculiar
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motions. For actual 22 triple stars with known orbital elements (but unknown as-
cending nodes) of inner and outer binaries, the averaged angle was found ī = 79◦±6◦.
This estimate was found for mixing of true and false angles. However we can see a
trend of the systems with prograde motions to prevail. This is in agreement with the
results of our simulations too (Rubinov et al. 2002).

Also we have made computer simulations with initial clump mass spectrum that
is less steep than the Salpeter one. We have considered different initial sizes of the
groups — from 3 till 1000 AU and different initial virial ratios from 0.001 till 0.9.

There are some invariant properties of final systems:

1. A high fraction of stable triples (10–15%).

2. Universality of eccentricity distribution for final and escaped binaries

f(e) = 2e.

3. Strong hierarchy of stable final triple — the mean ratio of semi-major axes for
outer and inner binaries is ≈ 20 : 1, and the mean ratio of their periods is
≈ 70 : 1.

4. The outer binaries have more rounded orbits than the inner ones.

5. The systems with prograde motions prevail.

Some additional factors may influence the dynamics of multiple stars, in particular:

1. Dynamical friction on interstellar medium.

2. Mass-loss from the stars.

3. Tidal interactions of stars during their close encounters.

We have considered two first effects. When we take the realistic interstellar medium
density or mass-loss rate, the results are practically the same as without these effects.

For anomalously high densities, dynamical friction may influence the parameters
of final systems. In particular, a fraction of strongly elongated binaries decreases and
hierarchy of stable triples rather grows.

The mass-loss due to stellar wind influences the dynamics of wide multiple systems
with typical sizes of ∼ 103 AU. Final binaries and triples are on the average wider.
Besides, outer binaries in stable triple systems are more elongated.

3. DYNAMICS OF HIERARCHICAL TRIPLE STARS

Tidal interaction and mass-loss may influence the dynamical evolution of hierarchical
triple systems near the stability limit.

Orlov and Petrova (1996) have shown that the stability of triple systems depends
on stellar rotation with tidal effect taken into account. If there are more rotational
velocities of the stars are more than the ones synchronized with orbital motion, then
the stability store of triple system decreases. In opposite case, triple systems increase
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the stability store. The equilibrium state of circularization and synchronization in
the inner pair is not reached because of perturbations from the distant body.

The effect of the mass-loss due to stellar wind is more complicated. Here one needs
to consider two scenarios of stability violation:

1. Exchange of components — violation of hierarchy.

2. Escape of the distant component without a previous hierarchy violation.

Orlov, Petrova and Ivanova (1996) have shown that mass-loss leads to increasing
the stability store with respect to hierarchy violation. As for escape without hierarchy
violation, the result depends on mass ratio. If the mass of distant star is less than
the mass of inner binary, then a trend to stability loss takes place. In opposite case,
we have an increase of stability store. Let us note that the typical time of stability
measure changes is comparable with evolutionary time of the components.

Petrova (1998) has studied the effect of mass exchange in semi-detached inner bina-
ries on stability measure of hierarchical triple systems. The trend of stability measure
depends on which component of close binary loses the mass. If the loser is more
massive star then the binary becomes harder and stability storage increases. In oppo-
site case, when the loser is the secondary component, the stability measure decreases
(the inner binary becomes softer). Gravitational perturbations from the third distant
body lead to some irregularities (like the steps) in dependences of stability measure
variations on time.

One more aspect of multiple star dynamics is dynamical stability of actual systems.
In the literature we can find a few stability criteria for hierarchical triple systems.

(see, e.g., Golubev 1967, Harrington 1977, Eggleton and Kiseleva 1995, Mardling and
Aarseth 1999). The Golubev criterion was derived by analytical approach. Three
other criteria were obtained from numerical experiments.

A general form for stability criterion is as follows

s > sc,

where s — stability parameter depending on orbital elements and mass ratio in triple
system, sc — critical value of stability parameter.

We have found the values of s and sc using four above criteria for 38 triple stars
with known orbital elements of inner and outer binaries. The majority of systems are
stable according to all four criteria.

However, ten systems may be unstable according to some of the criteria. More
careful analysis of results has shown that nine systems, excluding ADS 10157, seem
to be stable. The instability according to some criteria is probably connected with
one of three reasons:

1. Uncertainty of the angle between orbital planes of inner and outer binaries (we
have chosen the most favourable for instability value).

2. Inapplicability of some empiric criteria to some individual systems.

3. Uncertainty of initial data.
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The orbit of triple system ADS 10157 was found from perturbations of distant body.
In order to make a more reliable conclusion on this system, we need a confirmation
of the third body presence in this systems and direct definition of its orbit.

Let us note that, as a rule, the ages of components in the triple stars under study are
a few orders greater than the typical life-times of unstable triple systems with similar
parameters (mean size, mean crossing time, mean mass of components). Therefore
we can make a conclusion that these systems would decay should they be unstable.
Thus, one can expect that all actual multiple stars, excluding very young and very
wide systems, have to be dynamically stable.

4. CONCLUSIONS

In conclusion let us formulate the basic results:

1. Majority of binary and stable triple stars in the solar neighbourhood could be
formed within small non-hierarchical stellar groups.

2. The eccentricity distributions of binaries formed via dynamical decay of small
groups correspond to the universal law

f(e) = 2e.

3. In stable triple systems formed via decay of small groups, the eccentricities of
outer binaries are less than the ones of inner binaries.

4. The orbits of outer and inner binaries are usually non-coplanar; for isotropic
initial velocity distribution, the prograde motions prevail that is in agreement
with observations of visual triple hierarchical stars.

5. Actual hierarchical triple stars, as a rule, are dynamically stable.

6. For further progress in this field of astronomy, we need an accumulation of
reliable statistical material for multiple stars with known orbits of the inner
and outer subsystems (especially the estimates of mutual inclinations). On the
other hand, we need more realistic numerical dynamical models of small stellar
groups, as well as the algorithms for objective comparison between models and
observations.
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