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A SIMPLE METHOD TO TRACE THE MOTION IN 1/r FIELDS
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Abstract. We discuss a simple algorithm to trace the motions in 1/r fields which is based
on the peculiar properties of the vectors of two hodograph velocities in configuration space.
Since the hodograph velocities are uniquely determined by energy and angular momentum
of the particle it follows that in this particular case, contrary to common belief, full analysis
of motion is possible without the use of dynamics. '

Two recent treatments of the ancient problem of planetary motion (Krpié and
Anicin 1993; Chernikov 1998) suggest an interesting and at the same time perhaps
the simplest of algorithms to trace the motion of bodies in 1/ fields. It makes use
of the vectors of hodograph velocities which were shown in Krpi¢ and Aniéin 1993 to
be uniquely defined by energy and angular momentum of the particle. It thus turns
out that, contrary to the common belief, it is possible in this particular case to trace
the motion completely without invoking the full dynamical analysis. In what follows
we restrict ourselves to the case of the gravitational field. Throughout we follow the
definitions and notation introduced in Krpié and Anicin 1993 and we refer the reader

to this work for details.

For the particle of mass m moving with energy E and angular momentum L in the
field of mass M the two hodograph velocities u and w (whose intensities are constants
of motion) are introduced by means of expressions:

,_2E

u° = -——+w2=con3t
m
and |
mM
w= 7T = const.

In our previous work (Krpi¢ and Ani¢in 1993) we took advantage of the properties of
these quantities in the velocity space, in the first place of the fact that they satisfy

the equation of a circle:
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o+ (g = 0)? =,

where the radial and angular components of velocity and are

Up = USINQ, Vg = UCOSP + W.

Now, in what follows, we make use of the advantageous properties of these quanti-
ties in the configuration space. The most useful in this respect is the vectorial relation
stating that everywhere on the trajectory velocity is equal to the sum of the two hodo-

graph velocities:

U= U+ w.
Moreover, the angle between the vectors of hodograph velocities 4 and w is seen to
equal the polar angle ¢. As seen from relations (4), and demonstrated by Chernikov

(1998), as the particle moves along the trajectory vector w remains of constant in-
tensity and 1s normal to the radius vector 7 while vector # is not only of constant

intensity but also keeps constant orientation in the configuration space, always normal
to the direction of polar radius at the point of shortest distance from the center of
force (perihelion, for planetary motions). All this is 1llustrated in Fig.1.
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Fig. 1. Taking the point of the shortest distance rg from the center of force M as the
initial position (¢ = 0) the vector of the initial velocity v is normal to the corresponding
polar radius and its intensity equals the algebraic sum of the two hodograph velocities u
and w, which are derived from the total energy and angular momentum of particle m. At
any other point specified by angle ¢ the polar vector is again found from « and w by means
of Eq.(6) while v is found as the vectorial sum of %, which is of unchanged intensity and
direction, and w, which is of the same intensity but rotated by angle ¢ with respect to u.
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The equation of the trajectory in polar coordinates in terms of u and w is easily
shown to read.: |

w+u  l4e
w+%i 14 ecos¢

p:

where p is the polar radius expressed in units of the shortest distance from the center
of force and e is the eccentricity of the orbit. Depending on the type of the conic
section e can be anything from zero to infinity.

Finally, we sum up the relevant facts: '

1. The distance of the arbitrary point from the center of force and the velocity
at this point determine the total energy of the particle and its angular momentum
and therefore the intensities of the two hodograph velocities. The polar angle of the
particle, measured counterclockwise from the direction of the polar radius at the
perihelion, is also found from here.

2. Vector of the first hodograph velocity @ is of constant intensity and of constant
orientation in the configuration space.

3. Vector of the second hodograph velocity W has constant intensity and 1s always
normal to the polar radius. ' ' _

4. Velocity at any point is equal to the vectorial sum of the two hodograph velocities.

5. The intensity of the polar radius is also found from the intensities of the two
hodograph velocities. '

The initial conditions given, all this now provides the algorithm for tracing the
motion of the particle. It may run as follows: |

From the arbitrary initial conditions (position and the vector of initial velocity)
the intensities of the two hodograph velocities, the initial polar angle 1n respect to
the direction of the perihelion and the polar radius at the perihelion are found. At
every other point, defined by a given polar angle and the corresponding polar radius,
velocity is found as the vector sum of the first hodograph velocity 4, which 1s always
parallel to its initial orientation at the perihelion, when it was normal to the polar
radius, and the second hodograph velocity @, which is always normal to the polar
radius (or which is rotated by angle with respect to the initial orientation at the
perihelion, when it was collinear with the vector of the first hodograph velocity).

The short computer program written according to this algorithm in the C language

for the PC is available at: dkrpicCrudjer.ff.bg.ac.yu.
As an example, the result of a simulated elliptical trajectory is presented in Fig.2.
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Fig. 2. An elliptical trajectory with e — u/w = 0.5 which exemplifies the use of the

suggested algorithm. At each of the selected points separated by 30° the three vectors U, w
and W are presented to illustrate their mutual relationships.
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