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Abstract. Population transfer between quantum levels in atomic and molecular systems 
with slowly (adiabatically) changing parameters (internuclear distances, intensities of 
external control fields, etc.) is traditionally described within the formalism of adiabatic or 
so-called dressed states. In this formalism, the quantum dynamics of a system is determined 
by the nonadiabatic coupling operator and critically depends on the structural features of 
the adiabatic energy diagram. In contrast to the case of an avoided crossing where 
population transfer is localized in Landau-Zener points, the dynamics of mixing 
permanently degenerate adiabatic states requires studying the entire time interval of the 
process, thus significantly complicating the theoretical methods used. 

Focusing on a tripod excitation scheme, we demonstrate that adiabatic evolution of an 
N-pod system for a given sequence of laser excitation pulses Ωj(t) can be interpreted as 
Riemannian parallel transport [1] of the state-vector along the surface of a (N-1)-
dimensional Bloch sphere. This approach presents a convenient tool for analysis of 
adiabatic quantum processes. 

                                       

Figure 1: (a) Energy level diagram of a N-pod system and (b) the relevant set of (N-1) 
degenerate adiabatic D-states.  
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