
Publ. Astron. Obs. Belgrade No. 102 (2022), 243 - 246             Contributed Paper 

MODELING OF STARK SPECTRAL LINE BROADENING BY MACHINE 
LEARNING ALGORITHMS 

 
IRINEL TAPALAGA1, IVAN TRAPARIĆ2, NORA TRKLJA BOCA1,  

JAGOŠ PURIĆ1  and IVAN P. DOJČINOVIĆ1 
1University of Belgrade, Faculty of Physics, P. O. Box 44, 11000 Belgrade, Serbia 

2University of Belgrade, Institute of Physics, Pregrevica 118, 11080 Belgrade, 
Serbia 

E-mail  nora@ff.bg.ac.rs 
 
 
Abstract. Stark broadening caused by free electrons in plasma and its dependence on 
atomic parameters available in NIST and Stark-b atomic databases has been investigated 
using a new method based on the machine learning (ML) approach. The correlation 
parameter obtained by artificial intelligence (AI) is slightly better than the one obtained by 
classical methods, but the scope of application is much wider. ML algorithms successfully 
identified quantum nature by analyzing atomic parameters. The biggest issue of classical 
analysis, which is infinite spectral line broadening for high ionization stages, was resolved 
by AI with a saturation tendency. 
 
 

1. INTRODUCTION AND THEORETICAL BACKGROUND 
 

Stark broadening of spectral lines of neutral atoms and ions is used in science for a 
number of problems in various physical conditions (see Tapalaga et al. 2022). 
Recent research indicates the importance and usefulness of searching for possible 
types of regularities in the framework of a Stark broadening investigation. Still, 
existing tables with calculated and measured Stark widths have a big lack of data. 
There is a need for Stark widths data in the wide range of chemical elements, 
plasma temperature and electron densities. In this paper a correlation between Stark 
broadening and environment parameters, such as the ionization potential of the 
upper level of the corresponding transition, electron density and temperature, will 
be investigated using modern ML algorithms. If this method proves to be accurate 
enough, the process of calculating the value of Stark widths will be significantly 
accelerated and facilitated. 

 

The general formula for Stark width calculation in the impact approximation 
(see Griem 1974) is very complicated, it cannot be resolved exactly, so it is useful 
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to use different approaches in the calculation. The regularity approach which 
correlates Stark width of spectral line (ω) expressed in [rad/s], electron density 
(Ne), electron temperature (Te) and positive value of electron binding energy on the 
upper level of the transition ( ), expressed in [eV], is given by Puric and 
Scepanovic 1999. (Eq. 1) 

 
                                                                                        (1) 
 

where Ze = 1, 2, 3... for neutrals, singly charged ions, ... respectively and it 
represents the rest core charge of the ionized emitter and a, b and k are coefficients 
independent of electron concentration and ionization potential for a particular 
transition and the rest core charge of the emitter.  
 

It is expected that spectral series within an isoelectronic sequence show 
regularity behavior because a wide range of atomic/ionic parameters depend on the 
electron number. In the last decade we have investigated Stark broadening 
regularities within spectral series of individual elements, individual isoelectronic 
sequences and within two spectral series of isoelectronic sequences simultaneously. 
The present investigation goes one step further and analyses all elements for which 
there are available data needed for Stark broadening investigation, simultaneously, 
using machine learning approach. The aim is to find the best possible model which 
correlates Stark width of spectral line with all available parameters for transition of 
interest (atomic parameters and environmental parameters). 

 
2. DATASET CREATION AND DATA CLEANING 

 
In order to create dataset, two public repositories connected with atomic 
spectroscopy are used. First one is Stark B database, see Sahal-Brechot et al. 2020, 
where the parameters of Stark broadening for different emitters are given. The 
features taken from this database are: chemical element, ionization stage, upper and 
lower level of spectral transitions, Stark broadening, the environment temperature 
and electron density in environment. For analysis purpose, Stark widths expressed 
in angstroms are converted in radian per second. 
To ensure better results we enriched features taken from Stark B database with 
ones taken from NIST Atomic Spectra database (see Kramida et al. 2019): binding 
energy of both upper and lower transition levels, ground level energy, total angular 
momentum quantum number (J) of both upper and lower transition level, as well as 
principal (n) and orbital (l) quantum numbers and ionization energy. The algorithm 
for connecting those two databases to form our own works is described below. For 
every transition connected with certain chemical element, we take the electronic 
configuration of both upper and lower levels from Stark B database. Then we look 
for that particular element in NIST database and compare the electronic 
configurations. If they match, then we take the binding energy of those levels, their 
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principal quantum number, orbital quantum number and total angular momentum 
quantum number and finally the ionization energy of that atom. 
After data cleaning, dataset contains 53 emitters and 34973 spectral lines and 
follows a normal distribution. 

 
3. MODEL CREATION AND TRAINING 

 
For model creation and training, public Python package Sci-kit learn is 

used. Four models have been created, every being Pipeline with two steps. In each 
object of Pipeline class, the first step was data scaling using StandardScaler, and in 
second step we made our predictions with defined model. Considered models were: 
Linear Regression, Decision Tree Regressor, Random Forest Regressor and 
Gradient Boosting Regressor. The dataset was split into training and test dataset 
using train test split method, leaving 25% of the data for testing. To rank the 
performance of models, we used best Coefficient of Determination, R2, value 
obtained after GridSearchCV algorithm finished. As a result, we got that the best 
R2 value was for Random Forest Regressor having R2 = 0.95 for n estimators = 
100. Random Forest is a learning method that operates by constructing a large 
number of decision trees during the training process, see Tapalaga et al. 2022. It is 
simple to use and shows high performance for a wide variety of tasks, making it 
one of the most popular ML algorithms in different sciences. Random forests are 
an effective tool in predicting new data, in our case new atomic parameters. 

 
 

4. RESULTS 
 

The Random Forest model is used to calculate Stark broadening data for 
spectral series within neutral lithium Li I, see Tapalaga et al. 2022. Fig 1. shows 
the dependence of the Stark width (ω) on the reciprocal value of the electron 
binding energy at the upper level of the transition (χ−1) for 2s-np and 3s-np 
transitions within lithium atom. Calculated Stark widths (red lines) for transitions 
within analyzed series are represented with existing known values of Stark widths 
data at the same graphs (see Fig. 1). The functional dependence obtained using the 
ML algorithm describes the quantum structure of the energy levels of lithium 
atoms. From the model lines (red lines) it can be concluded that the model 
successfully (within the error) indicates the quantum nature of atomic transitions 
and that other results do not make physical sense, but only jumps. 
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Figure 1: Stark widths regularities within 2s-np and 3s-np spectral series of Li I  

(T = 30000 K, Ne = 1020 m−3) 
 

 
5. CONCLUSION 

 
Analysis of spectral data on Stark broadening for 53 different emitters and 34973 
lines by ML algorithms was done with more success than it was previously done by 
classical methods of data analysis. Random forest has scored an average of R2 = 
0.95 which makes it an excellent choice for Stark broadening calculations. With 
standard known methods for Stark width calculation, it is not possible to calculate 
Stark widths for levels for which energy values of the closest perturbing levels are 
missing, but ML algorithms enable calculation in these situations, too. 
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