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Abstract. The framework of the dynamical system theory was used for studying the 
dynamics of the quantum positron trajectories channeling through a chiral carbon nanotube. 
Obtained insight was used to explain the pattern-forming ability of the quantum self-
interference. 

1. INTRODUCTION 

We shall analyze a dynamic of the quasi-parallel positron beam, of energy 
ܧ ൌ 2 MeV, transmitting through a chiral single-wall-carbon-nanotube (SWCNT) 
of chiral indices (11, 9). The circumference of this SWCNT consists of 602 atomic 
string pairs Saito et al. 1998. Consequently, positron-nanotube interaction potential 
is axially symmetric. If the linear momentum of the incoming positron is parallel to 
the SWCNT axis it will undergo through a series of correlated small-angle 
scatterings. As a result, longitudinally averaged SWCNT potential gently steers 
trajectories of these so-called channeled particles, Gemmell 1974. 

Let us introduce Descartes's coordinate axis whose ݖ-axis coincides with the 
SWCNT’s axis. The ݕ ൌ 0 cross-section of the SWCNT potential is given by the 
following expression, (see Artru et al. 2005) 
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here ݁ and ߝ are elementary charge and vacuum permittivity, ܴ ൌ 0.69 nm and 
݈ ൌ 0.144 nm are SWCNT’s radius and C-C bond length (see Saito et al. 1998), 
௦, and ்ܽிߚ ,௦ߙ ൌ 	0.0258 nm are Molière’s universal fitting parameters and 
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Thomas-Fermi’s screening radius of C atom (see Molière 1947), while ܫ and ܭ 
are modified Bessel’s functions of zeroth (Oliver 1972). Since potential ܸሺݔሻ does 
not depend on the ݖ coordinate, positron dynamics is effectively one-dimensional. 
Thus, classical trajectories ݔሺݖሻ are solutions to the following Newton’s equation 
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where ݉୮ is positron’s relativistic mass, ݒ௭ is its conserved longitudinal velocity. 
The maximal deflection angle of positron trajectory is given by the following 
expression ߆ ൌ ඥܸሺܴሻ ⁄ܧ ൌ8.8 mrad called the critical angle [Gemmell]. The 
quantum trajectories ݔ୯୳ሺݖሻ were obtained in a two-step procedure. In the first step 
the corresponding Schrödinger equation 
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was solved assuming Gaussian initial state 
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of very small angular divergence ߪఏ ൌ  . In the second step, the polar form߆0.01

of the wave function ߰ ൌ ඥߩሺݔ, ሻݖ exp ቂ
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and to calculate the quantum potential 
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In the end, the quantum dynamics was characterized using finite-length local 
Lyapunov’s exponent defined by the following integral, see Ott 2002 
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2. RESULTS 

Figure 1 (a) shows the evolution of classical trajectories obtained by the numerical 
integration of Eq. (2) using the Runge-Kutta method of the fourth-order elaborated in 
Press et al. 2007. The dynamics of shown trajectory family is regular since it is one-
dimensional Ott 2002. Its nontrivial aspect is the appearance of the cusped caustic 

96



BOHMIAN DYNAMICS OF POSITRONS CHANNELED THROUGH A CHIRAL CARBON NANOTUBE 

lines labeled ܿଵ,… ܿସ. Caustics separate regions of the ݕ ൌ 0 plane whose positron 
multiplicity locally differs by two see Arnol'd 2004. Thus, positron density is infinite 
along caustics which dominantly determine the shape of the spatial positron yield. 

 

Figure 1: (a) Classical trajectories initially representing parallel beam. (b) 
Evolution of the quantum positron probability density initially representing quasi-
parallel beam. Values of the probability density are color-coded according to the 
shown colormap. Dashed black lines indicate SWCNT walls. Thick black lines 
show the classical caustic lines ܿଵ, … ܿସ. The cusped dashed green line and dot-dash 
yellow lines show lines of dominant maxima and minima ܯଵ ݉ଵ associated with 
the caustic ܿଵ. 

Figure 1 (b) shows the evolution of the corresponding quantum state obtained by 
numerical integration of Eq. (3) using Chebyshev’s global propagation method, 
details are in Ćosić et al. 2014. Note accumulation of the probability density on the 
caustic’s side of higher multiplicity see Ćosić et al. 2016. Since total probability is 
conserved, it cannot have singular maxima. Instead, quantum self-interference 
creates alternating lines composed of local extrema running “parallel” to the 
caustics. For simplicity, in Fig. 1(b) only dominant lines labeled ݉ଵand ܯଵ 
associated with caustic ܿଵ are specially designated. 

 

The obtained numerical solution enables the study of quantum dynamics in all 
of its details. However, using it alone, it is very difficult to understand the wave 
packet’s pattern-forming ability. To gain additional insight scientists are often 
recoursing to the semiclassical approximation, which associates a primitive wave 
to each classical trajectory, thus reducing every physical effect to the interference 
of waves arriving at the same location (Berry 1972). Although simple, this 
approach has several drawbacks. It is difficult to understand pattern formation in 
regions with no classical trajectories or interference of real and evanescent waves 
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visible in the region between caustic lines ܿଵ and ܿଶ in Fig. 1(b). It cannot be 
applied in circumstances when positron’s de Broglie’s wavelength is not 
negligible, nor when dynamics of the underlying classical system is not regular 
(Berry 1972). 

We shall demonstrate an alternative approach designed to transcend the 
limitations of the semiclassical approximation. It is known that Bohm’s quantum 
trajectories are always defined and contain the same information as quantum state 
߰. Therefore, it is natural to analyze quantum trajectories from the standpoint of 
the dynamical systems theory and connect it to the wave packet’s local focusing 
generated by the self-interference. 

For simplicity, Fig 2(a) shows a subfamily of quantum trajectories occupying the 
region close to the SWCNT axis, obtained by the numerical integration of Eq.                            
(5) using the Runge-Kutta method of the fourth-order (Press et al. 2007). This Fig. 
shows that only a few trajectories run across the classical caustic ܿଵ which represents 
also a virtual barrier for the quantum trajectories. Note that lines ݉ଵand ܯଵ connect 
together regions repelling and attracting neighboring trajectories the most strongly. 
Inspection of the quantum potential (6) along the lines ݉ଵand ܯଵ reveled  that it has 
very large negative values in the vicinity of the minima while it has moderate 
values in the vicinity of the maxima. Therefore, the quantum potential is respon- 

 

Figure 2: (a) Evolution of the representative subset of the quantum trajectories 
corresponding to the quantum state shown in Fig. 1 (b). (b) The corresponding 
distribution of the local finite length Lapunov’s exponents. Negative values of the 
exponents are indicated by different tones of the blue color while positive values 
are indicated by different tones of the red color. Thich black line shows the 
classical caustic ܿଵ, while dashed green and dot-dash yellow lines show dominant 
lines of minima and maxima, ݉ଵ and ܯଵ respectively associated with caustic ܿଵ. 
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sible for the creation of regions of strong local repletion of trajectories called 
repeltors, which explains the exitance of the local destructive self-interference. In 
this framework, local constructive self-interference is also generated by the action 
of local repeltors because of the conservation of the total probability. 

To characterize the strength of introduced repeltors we have calculated the 
distribution of the finite-length local Lyapunov’s exponents calculated using 
trapezoidal quadrature (see Press et al. 2007). Figure 2(b) reveals that only some 
minima are sufficiently low to generate positive islands of Lyapunov’s exponents. 
Closer inspection has confirmed that only those minima have a noticeable 
influence on the neighboring trajectories. Their basins of repulsion are defined as a 
zero-level line of Lyapunov’s exponent surrounding its positive local maxima. 

Since local self-interference is a generic process it can be argued that local 
repeltors will always appear. Each quantum trajectory can be designated by a list of 
repeltors it encounters in its evolution. Since in this case evolution of the quantum 
state is aperiodic evolution of quantum trajectories cannot be periodic. This means 
that for most trajectories list of encountered repeltors is infinite and aperiodic 
which according to the information theory has a positive information gain (see Ott 
2002) which makes dynamics of Bohmian trajectories in chiral SWCNT weakly 
complex. 
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