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Abstract. Monte Carlo simulations and multi term method for solving the Boltzmann
equation are used to calculate the third-order transport coefficients for electrons in C3F8.
The influence of elastic, inelastic and non-conservative collisions of electrons with molecules
of the background gas on the individual components of the third-order transport tensor
is investigated. The differences between flux and bulk values of the third-order transport
coefficients are analyzed. The concurrence of the third-order transport tensor with diffusion
is observed and studied.

1. INTRODUCTION

The investigation of electron transport in gases under the influence of an electric field
is important for many technological applications. These applications are often mod-
elled assuming hydrodynamic conditions in which the flux of electrons is represented
in terms of drift velocity and the diffusion tensor, as higher-order transport coef-
ficients have been systematically ignored in the traditional interpretation of swarm
experiments. However, the longitudinal third-order transport coefficient has been re-
cently measured from the arrival-time spectra of an electron swarm by Kawaguchi et
al. (see Kawaguchi et al. 2021). It has been shown by Kawaguchi and coworkers that
third-order and higher-order transport coefficients should be considered to obtain the
longitudinal diffusion coefficient properly in the arrival-time spectra experiment at
moderate and high reduced electric fields. Third-order transport coefficients are also
necessary for the conversion of the hydrodynamic transport coefficients into trans-
port data that is measured in the steady-state Townsend experiment (see Dujko et al.
2008.). If third-order transport coefficients were both calculated and measured with a
sufficient precision, they would be very useful in the swarm procedure for determining
the complete sets of cross sections, due to the high sensitivity of these transport coef-
ficients to the energy dependence of cross sections for individual scattering processes
(Vrhovac et al. 1999). In this work we investigate the third-order transport coeffi-
cients for electrons in C3F8 by employing Monte Carlo simulations and the multi term
method for solving the Boltzmann equation. In section 2 we give a brief description
of the methodology that is used in this work. Results and discussion are presented in
section 3.
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2. THEORETICAL METHODS

In our Monte Carlo simulations, we follow a swarm of electrons moving in a homo-
geneous background gas. The interactions between electrons are neglected due to
their small number density, and the dynamics of an individual electron is determined
by the electric field and by collisions with the molecules of the background gas. In
these simulations random numbers are extensively employed in order to determine
the time and the type of the next collision as well as postcollisional velocity of an
electron. Transport coefficients are calculated from polynomials of the components
of the position and velocity vectors of individual electrons, which are averaged over
the entire swarm. The details of our Monte Carlo code are given in previous papers
(see Dujko et al. 2010.). The bulk values of the third-order transport coefficients are
determined from

Q(b) =
1

3!

d

dt
〈r⋆r⋆r⋆〉, (1)

while the flux third-order transport coefficients are calculated as:

Q(f) =
1

3!

〈

d

dt

(

r⋆r⋆r⋆
)

〉

, (2)

where r⋆ = r−〈r〉, and the brackets 〈〉 represent ensamble averages. As these expres-
sions have pronounced statistical fluctuations, a large number of electrons (at least
107) are followed in our Monte Carlo simulations in order to determine the third-order
transport coefficients.

In the second method that is used in this work we employ numerical solutions of the
Boltzmann equation. The Boltzmann equation represents the equation of continuity
in the phase space, and it can be written as:

∂f(r, c, t)

∂t
+ c · ∂f(r, c, t)

∂r
+

q

m
E · ∂f(r, c, t)

∂c
= −J(f, f0), (3)

where q and m are electron charge and electron mass respectively, E is electric field
and J is collision operator. In the multi term method the phase space distribution
function is expanded in terms of the spherical harmonics and Sonine polynomials in
angular and radial parts of the velocity space, respectively. Under hydrodynamic con-
ditions, the dependence of the phase space distribution function on the coordinates
from the configuration space is expressed in terms of the density gradient series ex-
pansion. Then the Boltzmann equation is decomposed into a hierarchy of equations
in terms of the coefficients in this expansion (the moments of the distribution func-
tion). Transport coefficients are then expressed in terms of these moments and this
hierarchy of equations is truncated when the convergence of the transport coefficients
is reached. The details of the multi term method, which is employed in this work, are
given in previous papers (see Dujko et al. 2010.). Expressions for those components
of the flux third-order transport tensor, which are independent in the electric field
only configuration, are given by the following equations:

Q(f)
xxz =

1√
2α

[Im(F (011|221;α))− Im(F (01− 1|221;α))] , (4)
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α
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]

+ 1
α
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Q(f)
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√

2

3
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3
Im(F (010|200;α))

]

, (6)

where Im denotes imaginary parts of the moments of the phase space distribution
function, and the z-axis is directed along the electric field.

3. RESULTS AND DISCUSSIONS

In this section we show the calculated values of the third-order transport coefficients,
which are obtained by employing the methods described in the previous section. The
calculation of the third-order transport coefficients by employing these two methods
is described more thoroughly in our previous paper (see Simonović et al. 2022.).
The cross section set for electron scattering on C3F8 molecules, that is used in these
calculations, has been developed by Biagi (see Biagi).

In figure 1.a we show all three components of the skewness tensor for electrons
in C3F8 that are independent in the electric field only configuration. These results
are obtained by using the multi term method for solving the Boltzmann equation.
The n2

0Qzzz component has two local maximums and one local minimum, n2
0Qxxz

component has three local maximums and two local minimums, while the n2
0Qzxx

component has two local maximums and two local minimums.
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Figure 1: Independent components of the third-order transport tensor (a) and com-
parison of bulk and flux values of n2

0QL and n2
0QT (b) for electrons in C3F8.

In figure 1.b we show the comparison between bulk and flux values of n2
0QL and

n2
0QT . Bulk values are obtained by using Monte Carlo simulations, while flux values

are determined by employing Monte Carlo simulations and the multi term method
for solving the Boltzmann equation. Flux values that are obtained by using these
two independent methods are generally in a good agreement, which verifies the va-
lidity of these two methods. At high electric fields bulk values are higher than the
corresponding flux values, due to explicit effects of electron impact ionization.
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Figure 2: Concurrence between n2
0Q

(f)
L and n0D

(f)
L for electrons in C3F8.

In figure 2 we show the concurrence between n2
0Q

(f)
L and n0D

(f)
L . This concurrence

implies that n2
0Q

(f)
L is being reduced with increasing E/n0 when n0D

(f)
L is being

reduced, or when it increases as a concave function of E/n0 (see Simonović et al.
2022.). The observed concurrence can be attributed to the high sensitivity of the
third-order transport coefficients to the elementary scattering processes, which quench

diffusive motion. It can be seen in figure 2 that n2
0Q

(f)
L has a local maximum and

it starts to decrease at about 0.59 Td where n0D
(f)
L becomes a concave function of

E/n0. It can also be seen that n2
0Q

(f)
L has a local minimum at about 8 Td, and it

starts increasing at higher fields, although n0D
(f)
L continues to decrease up to about

27 Td. However, n2
0Q

(f)
L has negative values between approximately 5 Td, and 11

Td, and the concurrence with diffusion is violated in the vicinity of the field region

where n2
0Q

(f)
L is negative, as in the case of CF4 (see Simonović et al. 2022.). Between

approximately 70 Td and 170 Td, the rise of both functions slows down, while this
rise becomes rapid again at higher fields. In the field region between approximately

400 Td and 1000 Td n0D
(f)
L becomes a concave function of E/n0, while n2

0Q
(f)
L is

being reduced with increasing field.
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