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Abstract. Single-electron capture cross sections in collisions between fast alpha particles
and helium atoms are investigated by means of the prior form of the three- and the prior and
post form of the four-body boundary-corrected first Born approximation (CB1-3B and CB1-
4B, respectively). The dielectronic interaction 1/r12 ≡ 1/|r1 − r2| explicitly appears in the

complete perturbation potential V + of the post four-body transition probability amplitude

T 4B+
nlm . An illustrative computation is performed involving state-selective and state-summed

total cross sections at intermediate and high impact energies. The obtained theoretical
state-summed total cross sections are in excellent agreement with the available experimental
data.

1. INTRODUCTION

Single-electron capture from one- and multielectron targets, as one of the charge-
exchange processes, is very important in a number of applications in astrophysics
(Heng et al. 2008), plasma physics (Thomas 2012), thermonuclear fusion research
(Marchuk 2014) and medical ion therapy of tumors (Belkić 2021a, Belkić 2021b).
Electron capture from He by ionized impurities in plasma gives a unique method for
measuring the concentration of impurity nuclei (Joachain et al. 1981).

The present work is a theoretical investigation of single-electron capture from
helium atoms in the ground state He(1s2) colliding with alpha particles He2+. We
studied this pure four-body problem by using three high energy first order theories, the
prior form of the three-body boundary-corrected first Born (CB1-3B) approximation
and the prior and the post form of the four-body boundary-corrected first Born (CB1-
4B) approximation. These methods preserve the correct boundary conditions in both
entrance and exit collisional channels according to the principles of quantum scattering
theory, where it is known that the boundary conditions (Dollard 1964, Belkić 2004,
Belkić 2009) are of essential importance for atomic collisions whenever the aggregates
are charged in the asymptotic channels. The CB1-3B method in both forms was first
developed in the work (Belkić et al. 1979), while the CB1-4B, also in both forms,
was formulated and applied in the works (Mančev et al. 2012, Mančev et al. 2013)
Atomic units will be used throughout unless otherwise stated.
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2. THEORY

We are considering the following symmetric collisions:

ZP + (ZT, e1, e2)1s2 → (ZP, e1)nlm + (ZT, e2)1s , (1)

ZP + (ZT, e1, e2)1s2 → (ZP, e1)Σ + (ZT, e2)1s, (2)

where ZP = 2 and ZT = 2 are the charges of the bare projectile P and target nucleus
T, nlm is the usual set of three quantum numbers of hydrogenlike atomic systems
while the symbol Σ denotes the capture into all final states of the projectile. The
parentheses symbolize the bound states. Let s⃗1 and s⃗2 (x⃗1 and x⃗2) be the position
vectors of the first and second electron (e1 and e2) relative to the nuclear charge of

the projectile ZP (target ZT), respectively. Further, let R⃗ be the position vector of
ZP with respect to ZT. The CB1-3B method, as a purely three-body theory, is not
instantly usable for the four-particle process (1). For this reason we used the frozen-
core approximation in which the non-captured, passive electron (e2) is assumed to
occupy the same orbital before and after capture of the active electron (e1). We also
applied independent particles model in which the passive electron e2 is turned on only
through a shielding the original nuclear charge ZT. Based on these assumptions we
can write Zeff

T = ZT − 5/16 instead ZT, where 5/16 is the Slater screening constant
charge. Now, in three-body formalism, the original processes (1) and (2) are reduced
to one-electron counterpart:

ZP + (Zeff
T , e)1s → (ZP, e)nlm + Zeff

T , ZP + (Zeff
T , e)1s → (ZP, e)Σ + Zeff

T . (3)

The prior and post form of the state-selective transition amplitude for process (1) in
the CB1-4B approximation read as (Mančev et al. 2012, Mančev et al. 2013):

T 4B±
nlm (η⃗ )=

∫∫∫
dx⃗1dx⃗2dR⃗φ

∗
nlm(s⃗1)φ

∗
100(x⃗2)V

±φi(x⃗1, x⃗2)e
−iα⃗·R⃗−iv⃗·x⃗1(vR+ v⃗ · R⃗)iξ , (4)

V −=ZP
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2

R
− 1
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− 1
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)
, V + = ZP

(
1

R
− 1

s2

)
+(ZT−1)

(
1

R
− 1

x1

)
+

1

r12
− 1

x1
. (5)

On the other hand, the prior form of the state-selective transition amplitude for
process (3) in the CB1-3B approximation can be written as (Belkić et al. 1987):

T 3B−
nlm (η⃗) = ZP

∫∫
ds⃗dR⃗φ∗

nlm(s⃗)

(
1

R
− 1

s

)
φ100(x⃗)e

iβ⃗·R⃗−iv⃗·s⃗(vR+ v⃗ · R⃗ )i
ZP−Zeff

T
v , (6)

where ξ=(ZP−ZT+1)/v and v is the velocity of the projectile along the z− axis. The
vector of the distance between the two electrons e1 and e2 is denoted by r⃗12=x⃗1− x⃗2=
s⃗1− s⃗2, and we have r12=|r⃗12|. Here the α⃗= η⃗ −(v/2− (Ei + Z2

P/[2n
2] + Z2

T/2)/v)
ˆ⃗v

and β⃗ = −η⃗ − (v/2 + (Z2
P/[2n

2]− (Zeff
T )2/2)/v)ˆ⃗v are the momentum transfers, while

transferse momentum transfer is given by η⃗ = (η cosϕη, η sinϕη, 0) with the property
η⃗ · v⃗ = 0. The position vectors of the electron relative to the Zeff

T and ZP are denoted
by x⃗ and s⃗, respectively. The functions φnlm(s⃗1), φ100(x⃗2), φnlm(s⃗) and φ100(x⃗) repre-
sent the bound state wave functions of the hydrogen-like atomic systems (ZP, e1)nlm,
(ZT, e2)1s, (ZP, e)nlm and (Zeff

T , e)1s, respectively. The superscripts − and + denote
the prior and the post form, respectively. We shall use the two-parameter wave func-
tion of Silverman et al. (Silverman et al. 1960) for the ground state of the He(1s2):
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φi(x⃗1, x⃗2) = N(e−α1x1−α2x2 + e−α2x1−α1x2), with α1 = 2.183171 and α2 = 1.18853
and Ei = −2.8756614, where N is the normalization constant.

The nine-dimensional integral for transition amplitude (4) can be analytically
reduced to a two- and four-dimensional integral over real variables in prior and post
form, respectively. In the three-body case, six-dimensional integral (6) is reduced to
a two dimensional over real variables. Finally, the state-selective total cross sections
in the CB1-4B and CB1-3B methods are given by:

Q4B±,3B−
nlm (πa20)=

1

2π2v2

∫ ∞

0

dηη|T 4B±,3B−
nlm (η⃗)|2, Q4B±,3B−

n =

n−1∑
l=0

+l∑
m=−l

Q4B±,3B−
nlm . (7)

Numerical calculations of the integral (7) are performed by means of the Gauss-
Legendre (GL) and Gauss-Mehler (GM) quadratures. The numbers NGL and NGM

of integration points were NGL ≤ 112 and NGM ≤ 20. State-summed total cross
sections for electron capture into all the final states are obtained by applying the
Oppenheimer (n−3) scaling law (Oppenheimer 1928) via:

Q4B−,3B−
Σ = Q4B−,3B−

1 +Q4B−,3B−
2 +Q4B−,3B−

3 + 2.561Q4B−,3B−
4 , (8)

Q4B+
Σ = Q4B+

1 +Q4B+
2 + 2.081Q4B+

3 . (9)

3. RESULTS AND DISCUSSION
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Figure 1: Panel a): State-summed total cross sections as a function of the laboratory
incident energy. Present results: the full curve - CB1-4B prior, the dashed curve - CB1-4B
post and the dotted curve - CB1-3B prior approximations. The dash-dotted curve represents
theoretical results in the CB1 model within the RHF model (Belkić 1989). Experimental
data: ◦ (Hvelplund et al. 1976), △ (Mergel et al. 1995), ⋄ (DuBois 1987), ◃ (Alessi et al.
2011), ▹ (Pivovar et al. 1962), ⋆ (Shah et al. 1985), • (de Castro Faria et al. 1988). Panel b):
State-selective total cross sections as a function of the laboratory incident energy. Present
results: the full curve - CB1-4B prior and the dashed curve - CB1-4B post approximations.
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Total cross sections for the 4He2+ +He(1s2) → 4He+ +He+(1s) reaction in the
energy range 20 to 3000 keV/amu are plotted in Figure 1. It can be seen from
panel a) that the all theoretical results (four curves) for capture into all the final
states systematically exhibit excellent agreement with experimental results and each
other, except that the theoretical curve (Belkić 1989) slightly underestimates pre-
sented curves, at all energies above 100 keV/amu. At energies below that value our
results overestimate experimental data, which is not unexpected because these are
high-energy approximations. Post-prior discrepancy is very small and only noticeable
at energies below 35 keV/amu, which can be seen in panel b), where the results of
the capture into n = 1 (Q1 ≡ Q4B±

1 ) , n = 2 (Q2 ≡ Q4B±
2 ) and n = 3 (Q3 ≡ Q4B±

3 )
states are shown.

4. CONCLUSIONS

We have investigated the process of single-electron capture in collisions of alpha par-
ticles with helium atoms by means the prior and the post form of the CB1-4B ap-
proximations as well as the prior form of the CB1-3B method. It is found that the
methods are in excellent agreement with the available measurements at energies above
100 keV/amu. The difference between the results for the prior and post cross sections
is very small. This is an excellent property of the CB1-4B approximation, since the
same physical assumptions are involved in the prior and post forms of this theory.
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451-03-68/2022-14/200124.
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Mančev I., Milojević N., Belkić Dž. : 2013, Phys. Rev. A 88, 052706.
Mergel, V., et al. : 1995, Phys. Rev. Lett. 74, 2200.
Oppenheimer, J. R. : 1928, Phys. Rev. 31, 349.
Pivovar, L. I., Tabuev, V. M., Novikov, M. T. : 1962, JETP 14, 20.
Silverman, J. N., Platas, O., Matsen, F. A. : 1960, J. Chem. Phys. 32, 1402.
Shah, M. B., Gilbody, H. B. : 1985, J. Phys. B 18, 899.
Thomas, D. M., : 2012, Phys. Plasmas 19, 056118.

44




