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Abstract: Salts occur naturally within soil and water. When exceeding the thresholds, 

salinity becomes a severe threat, damaging agricultural productivity, water and soil quality, 

biodiversity, and infrastructures. Multispectral data retrieved from Sentinel-2 MSI sensor 

were used in this study to predict soil salinity in the Great Hungarian Plain. For this 

purpose, samples were collected from the upper layer of soil between mid-September and 

mid-October in the Hungarian Soil Monitoring System framework. The application of 

multiple linear regression analysis between salt content (g/kg) and remotely sensed data 

revealed a highly moderate correlation with a coefficient of determination R2 equals 0.52, a 

p-value equals 0.001198, and an RMSE equals 0.194 g/kg. The model can be employed to 

highlight soil salinity levels in the study area and understand the efficiency of land 

management strategies, considering its moderate predictive power. 
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1. INTRODUCTION 

 

 Salinization is a widespread land degradation form induced naturally by parent 

material weathering or artificially due to irrigation with saline water (Ondrasek and 

Rengel 2021). It occurs in dry regions where water balance is negative. Globally, 397 

million ha are affected by salinization (FAO 2000), with 3.8 million ha of saline soils 

in Europe (Stanners 1995). In Hungary, salt-affected soils cover 13% of the total area 

and exhibit the most natural continental salinization features (Tóth 2009). Using 

spaceborne and airborne products coupled with adequate methods for salinity 

prediction has become a valuable alternative to map salt behavior in the subsoil and 

maintain its levels under control. In this context, many scholars have explored the 

efficiency of multispectral, hyperspectral, and radar sensors in salinization 

monitoring (Weng et al. 2010, Bannari et al. 2018, Szatmári et al. 2020, Sahbeni 

2021a). This study aims to examine the importance of multispectral sensors, notably 

Sentinel-2 MSI, in predicting soil salinity with lower costs and acceptable accuracy.  
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2. STUDY AREA 

 

 The study area covers 6903.5 km2 (Figure 1), at an average elevation of 89m 

above sea level. It is characterized by a mean yearly temperature of 11°C (Tóth et 

al. 2014), a mean precipitation yearly rate of 560 mm, and a mean evaporation rate 

of 900 mm (Hungarian Meteorological Service 2018). 

 

 
Figure 1: Location of the study area and sampling sites. 

 

 

3. MATERIALS AND METHODS 

 

3.1. SOIL SAMPLES 
 

Eighty-one soil samples were collected in the Hungarian Soil Monitoring 

System (SIMS) framework. SIMS is a national soil monitoring program that 

collects soil data from around 1235 sites and generates Hungary’s most unified, 
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thematically detailed, and up-to-date soil database (Bakacsi et al. 2019). An 

average sample is taken from 9 drillings from the 0-30 soil layer in a 50 m diameter 

circle (Berényi-Üveges 2015). Salt content values are measured from the saturated 

paste extract according to the Hungarian Standard MSZ-08-0206/2-1978 (MSZ 1978). 

 

3.2. REMOTELY SENSED DATA 
 

 Once the Sentinel-2 MSI image was downloaded from the European Space 

Agency (ESA) Copernicus portal, atmospheric and radiometric calibrations were 

applied using Sentinel-2 Toolbox. Then, spectral indices (Table 1) were computed 

using ENVI IDL 5.3. Additionally, we acquired an SRTM digital elevation model 

provided by the OpenTopography facility to explore potential associations between 

salinity levels and elevation. The digital elevation model was reprojected to the 

Universal Transverse Mercator (UTM) coordinate system using WGS 1984 datum 

assigned to north UTM Zone 34. Corresponding values to field data were retrieved 

using ArcMap 10.3, and a database including remotely sensed data and salt content 

values was developed. 

 
Table 1: Spectral indices and their mathematical expressions. 

Index Expression 

NDVI (NIR − R) / (NIR + R) (Rouse et al. 1974) 

NDSI (R − NIR) / (R + NIR) (Khan et al. 2005) 

VSSI 2 * G – 5 * (R + NIR) (Dehni and Lounis. 2012) 

BI √(R2 +  NIR2) (Khan et al. 2005) 

SI (R * G) / B (Allbed et al. 2014) 

SI1 √(G ∗ R)  (Douaoui et al. 2006) 

SI2 √(R ∗ NIR)  (Dehni and Lounis 2012) 

SI3 √(G2 +  R2 +  NIR2)  (Douaoui et al. 2006) 

SI4 √(G2 +  R2)  (Yahiaoui et al. 2015) 

RVI R / NIR (Krtalic et al. 2019) 

DVI NIR − R (Tucker. 1979) 

Int1 (G + R) / 2 (Bouaziz et al. 2011) 

Int2 (G + R + NIR) / 2 (Bouaziz et al. 2011) 

SR (R − NIR) / (G + NIR) (Dehni and Lounis 2012) 

SAVI (1 + L) ∗ (NIR − R) / (NIR + R + L) (Huete 1988) 

SSSI1 SWIR1 − SWIR2 (Bannari et al. 2008) 

SSSI2 (𝑆𝑊𝐼𝑅1 ∗ 𝑆𝑊𝐼𝑅2 − 𝑆𝑊𝐼𝑅2 ∗ 𝑆𝑊𝐼𝑅2) / 𝑆𝑊𝐼𝑅1 (Bannari et al. 2008) 
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3.3. REGRESSION ANALYSIS 
 

 A multiple linear regression analysis was conducted via RStudio to define the 

statistical significance of independent variables in relationship with soil salinity 

variation. In this context, we employed the R squared model selection to extract 

only significant variables. R squared represents the proportion of variance for a 

dependent variable which independent variables can explain. Thus, a model with a 

larger R-squared (equation 1) value can explain a more significant percentage of 

data variance (Romero 2007). 

𝑅2 =  1 −
∑(𝑦𝑖 − ŷ𝐢)

𝟐

∑(𝑦𝑖 − ȳ)2
 (1) 

Where ŷi is the estimated value, yi is the actual value, and ȳ is the mean value.  

 

 

4. RESULTS 
 

 Data distribution is positively skewed, according to the descriptive analysis 

report. The mean equals 0.49 g/kg, whereas the median equals 0.3 g/kg. Besides, a 

spatial variability was found due to the discard between the minimum (= 0 g/kg) 

and the maximum (= 5.6 g/kg). Table 2 summarizes the main statistical parameters 

of field data.  

 
Table 2: Descriptive statistics of salt content samples. 

 Minimum 1st quantile Median Mean 3rd quantile Maximum 

Salt content 

(g/kg of soil) 
0 0.2 0.3 0.49 0.6 5.6 

 

The final model’s main characteristics are presented in Table 3. 

 
Table 3: Characteristics of the final model. 

R2 p-value RMSE Significant Variables 

0.52 0.001198 0.1942 
NDVI, SAVI, RVI, DVI, BI, VSSI, SI, SI1, SI2, 

Int1, B2, B11, and B12 
 

 

 Figure 2 shows the relationship between measured and estimated salinity values 

using the linear regression model. We split the dataset into two parts: a training set 

(70%) used to tune the model, and a test set (30%) used to check its statistical 

significance. Overall, the model yielded acceptable results with a coefficient of 

determination equal to 0.52, showing a highly moderate correlation and a p-value 

close to zero (< 5%), revealing a strong statistical significance. Nevertheless, a 

quite high prediction error was produced due to data redundancy. 
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Figure 2: Relationship between actual and predicted salt content values (g/kg);  

(a) Training set (70%) and (b) Test set (30%). 

  

 
Figure 3: Soil salinity prediction map using the final model. 
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 Around 4% of the total pixels were assigned negative values. This can be 

explained by the residual noise caused after atmospheric correction (Weng et al. 

2010), which will be investigated in future studies. Based on Figure 3, 80% of 

pixels are classified as non-saline soils and 18% as low saline. This distribution of 

classes was expected due to the dominance of non-saline samples in the database, 

followed by low saline ones.  

 

 

5. CONCLUSIONS 

 

 This study demonstrates the efficiency of Sentinel-2 MSI data in predicting soil 

salinity with acceptable accuracy. Hence, regression analysis offers a reliable 

approach for soil salinity assessment with affordable costs. The model explains 

52% of the data spatial variance, with an RMSE equals 0.1942 g/kg of soil. 

Overall, remote sensing depicts a valuable alternative for conventional methods 

when coupled with representative field data. Yet, further research will be 

conducted to reduce prediction errors and overcome the issue of data 

multicollinearity. 

An improved version of this research can be found in Sahbeni (2021b). 
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