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Abstract. Nearly circular orbits are characteristic for thin discs of spiral galaxies, the
subsystem and the type of galaxies to which the Sun and the Milky Way belong. Such
orbits are studied in a way different from the usual one (epicycles). Formulae wherein the
total energy and the conserved angular momentum component are expressed in terms of the
mean distance and eccentricity are derived. The classical results concerning the sinusoidal
dependence of distance on time and the ratio of the circular period to the anomalistic one for
the same mean distance are confirmed.However, it is shown that, whereas the dependence on
time even for a very low eccentricity begins to deviate from the sinusoidal form noticeably,
the period ratio remains practically unaffected for eccentricities almost as high as 0.5.

1. INTRODUCTION

Orbits of stars which belong to the thin discs of spiral galaxies are known to be almost
circular. This motion can be decomposed into the motions with respect to the axis
of symmetry and with respect to the midplane. The former one is then analogous
to the case of spherical symmetry (central motion) because of the conservation of
one component (along axis of symmetry) of the angular momentum. Due to the
assumption of low eccentricity it has been reduced to the linear harmonic oscillations
(epicyclic approximation). On this subject information can be found in many books
(e.g. Binney and Tremaine 2008, 3.2.3, p. 162).

More detailed studies of the motion of stars belonging to the thin disc in the solar
neighbourhood show that the semi-separability assumption (see next section) is more
realistic than the separability one, i.e. the maximum distance from the midplane is
affected by the distance to the axis of symmetry, as well as that the dependence of the
coordinates on time does not strictly follow simple sinusoidal forms (e.g. Stojanović
2015). In the same paper it is also inferred that, if eccentricity is low enough, assuming
a power law dependence of the circular speed on the distance realistic orbital elements
are obtained.

This is a short presentation only. The full account is to be published elsewhere.

2. BACKGROUND

The motion of a test particle is studied in an inertial reference frame. The coordinate
system Oxyz with origin at the centre of an axially symmetric stellar system (galaxy)
is right-handed. Besides, the potential governing the motion is stationary. Because
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of the axial symmetry it is convenient to replace the rectangular coordinates x and y
with the cylindrical ones R and θ (x = R cos θ, y = R sin θ). The motion of the test
particle is described by means of the Lagrange equations:

R̈− J2
z

R3
=
∂Π

∂R
; (1)

z̈ =
∂Π

∂z
.

In these two equations the potential is denoted as Π (Π ≥ 0) and Jz is the
designation for the component of the specific (per unit mass) angular momentum
which is conserved.

The next assumption is that for the test particle motion it is always valid z ≈ 0.
In such conditions the potential Π(R, |z|) is approximately equal to the correspond-
ing potential in the plane z = 0 (midplane), Π(R, 0) (semi-separability). Then the
potential in (1) will be Π(R, 0), which is independent of z. As a consequence, the
partial derivative may be replaced by the total one and since the state is steady, the
following quasi-integral of motion will be valid

Ep ≈ const, Ep =
1

2
V 2
p −Π(R, 0);

Vp =

√
Ṙ2 +

J2
z

R2
.

For convenience the two integrals of motion, Ep and Jz, will be here replaced
by the mean distance and eccentricity. Both will be defined via the pericentric and
apocentric distances, Rp and Ra, respectively. The mean distance is

Rm =
Ra +Rp

2
;

and eccentricity e

e =
Ra −Rp
Ra +Rp

.

In the case of the pure circular motion it will be: e = 0 and R = Rm =const.
A nearly circular motion ipso facto would be e ≈ 0 and R ≈ Rm. By introducing
variation of the distance δR, δR = R − Rm, and the effective potential (subtracting
square of tangential velocity component from potential), bearing in mind that the
variation is expected to be small equation (1) can be reduced to the form of harmonic
oscillations. However, the prerequisite is that in the binomial on e contained in J2

z the
linear term should be absent. This prerequisite has not been examined. Therefore,
in what follows the two integrals Ep and Jz will be expressed in terms of the mean
distance and eccentricity.

The energy is expressed in the following way

Ep =
1

2
fu2c(Rm)−Π(Rm) ,
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where f is dimensionless and uc is the circular speed. As for Jz, it is borne in mind
that at both R = Rp and R = Ra it is valid Ṙ = 0. The energy conservation is used
so that the potential at the extremal distances is expanded in series where the terms
higher than two are neglected. The quantity J2

z is represented twice, once as J2
z (Rp)

and once as J2
z (Ra). Since they must be equal to each other, one finds the following

solutions

f = 1 ; (2)

J2
z = R2

mu
2
c(Rm)[1− (3− γ2)e2] . (3)

The dimensionless quantity γ2, more precisely γ2(Rm), is defined via the second
derivative of the potential at R = Rm in this way

d2Π(R, 0)

dR2
(Rm) = γ2(Rm)

u2c(Rm)

R2
m

.

However, in addition to (2) and (3) there is another solution. It is based on the
fact that the effective potential has the same value at R = Rp and at R = Ra. Then
one finds that J2

z is proportional to [Rmuc(Rm)]2 multiplied by (1 − e2)2 ≈ 1 − 2e2.
The solutions are

f = 1 + [1− γ2(Rm)]e2 ;

J2
z = R2

mu
2
c(Rm)[1− 2e2] .

In order to understand the meaning of these solutions another approximation is
introduced, namely that in the surroundings of Rm the behaviour of the circular speed
obeys this law

uc(R) ∝ Rδ ;−1

2
≤ δ ≤ 1

Since this is a local approximation only, δ will be in fact δ(Rm). It is easy to
establish a relation between γ2(Rm) and δ(Rm). Thus one has

δ(Rm) ≤ 0, f = 1 , J2
z = R2

mu
2
c(Rm)[1− 2(1 + δ)e2] .

δ(Rm) ≥ 0, f = 1 + 2δe2 , J2
z = R2

mu
2
c(Rm)(1− 2e2) .

It is easy to see that the two solutions are congruent if δ(Rm) = 0. For convenience
(Rm) after δ is omitted in the formulae.

In order to obtain the dependence R(t), provided that e ≈ 0, the classical proce-
dure is used. In other words, since Ṙ ≡ dR/dt, one obtains an integral in R with a
function of R in the denominator, then the approximations following from the condi-
tion e ≈ 0 are taken into account and, finally, it is obtained

R = Rm

[
1 + e sin

(
2π

Pa
t− π

2

)]
. (4)
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Here Pa is the anomalistic period; for e ≈ 0 it is given as

Pa(Rm) = Pcirc(Rm) [2 (δ(Rm) + 1)]
− 1

2 , Pcirc(Rm) =
2πRm
uc(Rm)

. (5)

These results are well known, but when they are obtained following the procedure
applied here, then the term in the J2

z expression containing e2 must be taken into
account. If it is omitted, in the denominator of the integral we would have a square
root from a negative value. In addition, it is seen that in the binomial in e for J2

z

the linear term is zero, the prerequisite to obtain linear harmonic oscillations in the
Lagrange equation.

3. DISCUSSION AND CONCLUSIONS

The behaviour of (4) and (5) will be considered when the eccentricity value is varied.
For a test particle (star) satisfying the condition e ≈ 0 the motion in R is examined
numerically for a realistic potential. The general conclusion is that the period relation
(5) suffers only minor changes when eccentricity increases, even to as high values as
e = 0.5. On the other hand, time dependence (4) with increasing eccentricity rather
rapidly shows changes, in particular that R = Rm is attained, not after the quarter
of period as it follows from (5), but earlier. In other words, if it is assumed R = Rp
corresponds to t = 0, then the time tm when R = Rm is shorter than (1/2)Pa − tm.
The test particle stays at distances exceeding Rm longer than at those shorter than
Rm. As an improvement the following relation may be proposed

R

Rm
= 1 + e sin

(
2π

Pa
t− π

2

)
+

e2√
2(1 + δ)

cos2
(

2π

Pa
t− π

2

)
.

Of course, it is δ = δ(Rm). This relation is proven more realistic because it yields
the time interval between t = tm and t = (1/2)Pa longer than that between t = 0 and
t = tm and their ratio increases with increasing eccentricity.
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