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Abstract. Cosmological parameters are taken usually as functions of time. These de-
pendencies are transcendental in general and cannot be represented in the closed form by
elementary functions. We show that there are algebraic dependencies between the main cos-
mological parameters: the scale factor, Hubble parameter, redshift and density parameters
related to the cosmological constant, space curvature, radiation and baryonic matter. We
exhibit and discuss these dependencies and give several examples of their use in computing
certain events in the evolution of the universe.

1. INTRODUCTION

Accurate determination of cosmological parameters is an important task in the study
of ΛCDM model, as they enable computing of the main events in the past and pre-
diction of the future evolution of the universe.

Cosmological parameters are taken usually as functions of time t. These depen-
dencies are transcendental in general and cannot be represented in the closed form
by elementary functions due to the elliptic integrals which come out as the equivalent
solutions of Friedmann equations:

t =
1

Ht

∫ 1

0

s ds√
Ωrt + Ωmts+ Ωkts2 + ΩΛts4

, or (1)

t ≡ J (a) =
1

H0

∫ a

0

s ds√
Ωr0 + Ωm0s+ Ωk0s2 + ΩΛ0s4

. (2)

Parameters appearing in these integrals are the scale factor a (taken as an independent
variable in (2)), Hubble parameter Ht = H(t) and density parameters Ωit = Ωi(t)
at time t related to the cosmological constant Λ, space curvature κ, radiation r and
baryonic matter m. We take H0 = H(t0), the value of the Hubble parameter at the
time moment t0. The similar convention is applied to the other parameters.
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We remind that Friedmann equations, discovered by Alexander Friedmann in 1922,
are usually stated as a system consisting of the first and second order differential
equations: (

ȧ

a

)2

=
8πG

3
ρ− kc2

a2
+

Λc2

3
, Friedmann equation,

ä

a
= −4πG

3

(
ρ+

3p

c2

)
+

Λc2

3
, Acceleration equation,

ρ̇+ 3
ȧ

a

(
ρ+

p

c2

)
= 0, Fluid equation.

(3)

These equations represent the core of the ΛCDM model. The function a(t) is the
expansion scale factor and it describes the evolution of our universe. Other parameters
appearing in Friedmann equations are the pressure p(t) and the energy density ρ(t).
Both integrals (1) and (2) can be derived, for example, from the well-known identities

H2/H2
0 = ΩΛ0 + Ωk0a

−2 + Ωm0a
−3 + Ωr0a

−4, p =
1

3
c2ρr. (4)

We note that J (a) is the inverse function of the scale factor a(t), i.e. for any b > 0

J (b) = t if and only if a(t) = b.

Hence, (2) is a parametrization of the cosmic time t in respect to the scale factor a.

2. ALGEBRAIC DEPENDENCIES

We show that there are algebraic dependencies between the main cosmological pa-
rameters. Besides discussion of these dependencies, we also exhibit them including
those corresponding to the contemporary measurements. Our main motivation was
to apply these dependencies in the study of the evolution of the universe.

Two possible applications of found dependencies are presented. The first one
is the representation of cosmological parameters in respect to some chosen parame-
ter. The second one is the computation of values of all cosmological parameters at
particular points in the evolution of the universe, such as the transition point from
radiation dominated to matter dominated era, recombination, or the starting point
of the accelerated expansion of the universe.

In order to state precisely these dependencies, we first fix notation. In general
relativity first Friedmann equation is

H(t)2 ≡

(
Ṙ(t)

R(t)

)2

=
8πG

3
ρ(t)− kc2

R(t)2
+

Λc2

3
, (5)

where R = R(t) is the curvature radius at time t and k = 0, 1,−1 is the curvature
index in the FLRW metric. Also, ρ(t) is the mass density which includes rest mass
energy and other forms of energy (e.g., energy of photons). Furthermore

a(t) = R(t)/R(t0), H(t) = Ṙ(t)/R(t) = ȧ(t)/a(t), (6)

where t0 is the present time, H = H(t) is the Hubble parameter and a = a(t) is the
scale factor, the normalization of R(t).
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Let t0 and τ be two time moments. We take that t0 is a constant and may stand
for the present time. In fact t0 is a part of the boundary conditions for Friedmann
equations.

Let us write R0 = R(t0), Rτ = R(τ), H0 = H(t0), Hτ = H(τ), Ωiτ = Ωi(τ) and
Ωi0 = Ωi(t0). The redshift is denoted by z. Then we have the following algebraic
relations between the cosmological parameters.

aτ = 1/x, Rτ = R0/x, Hτ = H0/
√
y, z = x− 1,

ΩΛτ = ΩΛ0y, Ωkτ = Ωk0x
2y, Ωmτ = Ωm0x

3y, Ωrτ = Ωr0x
4y,

y =
1

ΩΛ0 + Ωk0x2 + Ωm0x3 + Ωr0x4
.

(7)

The algebraic dependencies (7) are determined using the standard formulas found
in the literature which relate cosmological parameters, for example the defining for-
mulas for density parameters:

ΩΛ(t) =
Λc2

3H(t)2
, cosmological constant density,

Ωk(t) = − kc2

R(t)2H(t)2
= − κ0c

2

a(t)2H(t)2
, curvature density,

Ω(t) =
8πG

3H(t)2
ρ(t), mass density,

Ωm(t) =
8πG

3H(t)2
ρm(t), rest mass density,

Ωr(t) =
8πG

3H(t)2
ρr(t), radiation density.

(8)

In (7) R0, H0,Ωi0 are constants and they form the boundary condition for Friedmann
equations. We may think of them as of the measured values at t0, while aτ , Rτ , Hτ ,Ωiτ
are unknowns and x, y are auxiliary variables.

The relations in (7) give an algebraic parameterizations of basic cosmological pa-
rameters in respect to x. Obviously, the parameter y is immediately eliminable from
this system replacing all appearances of y using the last formula in (7), so the depen-
dencies (7) consist of eight equations and nine unknowns, eight of them representing
cosmological parameters. Also, we see that instead of the parameter x we could take
the redshift z. But it is also obvious that after these substitutions we would loose
the simplicity and easy readability of the algebraic dependencies represented by (7).
In fact, instead of x we could take in this system as a free parameter any time-like
parameter, i.e. that one which is monotonous in time, either increasing, or decreasing,
for example the scale factor a. But all such modifications lead to more complicated
set of formulas than (7).

3. APPLICATIONS

The usual approach found in the literature in computing some events in the evolution
of the universe, is to locate the epoch at which the event most certainly appear and
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Ž. MIJAJLOVIĆ and D. BRANKOVIĆ

then to find an approximation valid for this epoch

τ = G(a,H,Ωi) (9)

of the solution (1), or its alternative (2). Then using equation (9), time t0 and the
related values of cosmological parameters of the event are computed.

An example of the standard approach is the derivation of Carroll-Press-Turner for-
mula (1992) for pressureless flat universe with cosmological constant. These assump-

tions correspond to a universe with the curvature κ = 0 for the period following radiation

era, i.e. approximately Ωr0 = 0 and Ωk0 = 0. Hence

I =

∫ 1

0

s√
Ωm0s+ ΩΛ0s4

ds

=
− ln(Ωm0ΩΛ0) + 2 ln(ΩΛ0 +

√
ΩΛ0

√
Ωm0 + ΩΛ0)

3
√

ΩΛ0

.

Taking Ωm0 = Ω0 and by ΣiΩi = 1, we have Ω0 + ΩΛ0 = 1, and after some simplifi-
cations we obtain the desired formula:

H0t0 =
2

3

1√
1− Ω0

ln

(
1 +
√

1− Ω0√
Ω0

)
.

Now we give some simple computational examples based on the algebraic depen-
dencies (7). The idea is to find an extra relation which connects the cosmological
parameters. With this supplement the system (7) will have nine equations with nine
unknowns, what would lead to a solution of the system. For t0 we take the present
time and for values of the parameters at t0 we take a set of mean currently measured
values (Particle Data Group, http://pdg.lbl.gov):

a0 = 1, H0 = 67.4 (km/s)/Mpc = 2.1843 · 10−18s−1,

ΩΛ0 = 0.685, Ωk0 = 0.0007, Ωm0 = 0.3164, Ωr0 = 0.0000538.

We also take Ωm = Ωb + Ωc + Ων , where Ωb, Ωc and Ων are densities respectively of
baryonic mass, cold dark matter and neutrinos.

Before we proceed to examples, we note that the presented method gives the-
oretically the most accurate calculations of cosmological events. The main part of
the method is the numerical computation of the elliptic integral which represents the
exact analytical solution (2) of Friedmann equations. No approximation of formulas
are assumed as it is usually done in the literature. Hence, the influence of even small
values of certain parameters are taken into account which are usually neglected in
computations for a chosen cosmological epoch. The other part of computation comes
from algebraic dependencies (7) which represent the usual physical laws. Hence, the
accuracy of the method, if ΛCDM model is assumed, depends only on the the numer-
ical methods for computing integrals which accuracies are arbitrary high today and
the accuracy of the measurements of the contemporary cosmological data which are
taken as the input values for the computation.

Age of universe. In this example we take τ = t0, i.e. we compute the age of the
universe. Hence x = 1 and we compute

t0 =
1

H0

∫ 1

0

s ds√
Ωr0 + Ωm0s+ Ωk0s2 + ΩΛ0s4

= 13.7815 Gyr. (10)
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Double expansion. In this example we compute time τ when the universe will double
its expansion, i.e. aτ = 2. Then x = 0.5, so using (7) we obtain

yτ = 1.3828, Hτ = 1.8575 · 10−18s−1,

ΩΛτ = 0.9452, Ωkτ = 0, Ωmτ = 0.05457, Ωrτ = 4.6397 · 10−6,
(11)

while the time for this event is computed as

τ =
1

Hτ

∫ 1

0

s ds√
Ωrτ + Ωmτs+ Ωkτs2 + ΩΛτs4

= 24.944 Gyr. (12)

Transition from radiation to matter dominated era. This is more sophisticated ex-
ample. Radiation dominated epoch covers the period when the expansion of the
universe was dominated by radiation. It is usually taken that it started after infla-
tion and lasted until the equalization of matter and radiation. This second event is
characterized by

Ωmτ = Ωrτ , τ is the equalization time moment. (13)

So we get the ninth equation that supplements the system (7).
In the radiation era, neutrinos were relativistic particles (see Supernova Cosmology

Project site), in fact until the recombination which happened far beyond τ . Hence we
have to relocate the summand Ωντ from Ωmτ to Ωrτ . Therefore, to compute matter
density at time τ , instead of

Ωm0 = Ωc0 + Ωb0 + Ων0,

we take Ω′m0 = Ωc0 + Ωb0 and Ω′mτ = Ω′m0x
3y in (7), where Ω′mτ = Ωcτ + Ωbτ . Also,

as neutrinos at time τ add to the radiation we take Ω′rτ = Ωγτ +Ωντ , where Ωγτ is the
photon density. Hence, instead of the equation (13) we take Ω′mτ = Ω′rτ . Density of
neutrinos Ωντ at time τ is computed by, see e.g. Gerbino and Lattanzi, Lesgourgues
and Pastor:

Ωντ = λΩγτ , where λ = Neff ·
7

8
·
(

4

11

) 4
3

. (14)

Here, Neff = 3.046 is a slightly greater than Nν = 3, the number of neutrino families.
Hence, Ω′rτ = (1 +λ)Ωγτ = (1 +λ)Ωγ0x

4y. Obviously, we took Ωr0 = Ωγ0, as present
neutrinos are non-relativistic, hence they do not add to the radiation. As Ω′mτ = Ω′rτ ,
we get Ω′m0x

3y = (1 + λ)Ωγ0x
4y, so

x =
1

1 + λ
· Ω′m0

Ωγ0
=

Ωc0 + Ωb0
(1 + λ)Ωγ0

=
Ωm0 − Ων0

(1 + λ)Ωγ0
. (15)

As the values of upper and lower bounds and the mean values of the constants Ωc0,
Ωb0, Ωγ0 and Ων0 are known, see the enclosed table, we can solve the system (7) for
both values H ′0 and H ′′0 (which reflect the Hubble tension). Using the integral (1), or
J (a), we can compute the corresponding times τ . We computed the value τ ≈ 50 000
Yrs which is approximately the same as in Ryden.

Initial data for our computation are displayed in the following table:
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Table 1: Values are generated using data from Particle Data Group.

Present values of cosmological parameters
H ′0 H ′′0 ΩΛ0 Ωk0 Ωm0 Ωr0 Ων0

min 66.9 72.0 0.678 -0.0012 0.3079 5.23 · 10−5 0.0012
mean 67.4 73.0 0.685 0.0007 0.3164 5.38 · 10−5 0.0021
max 67.9 74.0 0.692 0.0026 0.3249 5.53 · 10−5 0.0030

4. CONCLUSION

Algebraic dependencies among the main cosmological parameters are presented. These
dependencies can be useful in a uniform approach in computing certain events in the
evolution of the universe. We illustrate this usefulness by applying them in computing
the age of the universe, the time when the expansion of the universe should be double,
and transition moment from radiation to matter dominated era.
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