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Abstract. This is a review of some of our recent work concerning Noncommutative (NC)
Field Theory based on SO(2, 3)? gauge invariance. An important feature of this theory is
that gravitational field, given in terms of a vierbein (frame field), becomes manifest only
after a suitable gauge fixing, and it is formally unified with other gauge fields of the the-
ory. Starting with a model of pure NC gravity, we extend it by introducing matter and
(non)Abelian gauge fields. Using the enveloping algebra approach and the Seiberg-Witten
map, we construct the corresponding NC deformed actions and expand them perturbatively
in powers of the canonical parameter of noncommutativity. The first non-vanishing NC
correctionturns out to be linear in the NC parameter and it encodes a particular coupling
of matter and gauge fields to gravity due to spacetime noncommutativity. This feature is
augmented by the fact that some of these corrections pertain even in flat spacetime where
they induce potentially observable NC effects. We discuss the obtained NC deformation of
electron’s dispersion relation in the presence of constant background magnetic field – NC
Landau levels.

1. INTRODUCTION

Noncommutative (NC) Field Theory, i.e. a theory of (relativistic) fields on a noncom-
mutative spacetime, is a candidate for an effective theory of the underlying (and yet
unknown) fundamental theory of quantum gravity. The construction of a NC field
theory relies on the method of deformation quantization via NC ?-product (a method
also used in phase space quantum mechanics), developed mainly by Flato, Stern-
heimer and Kontsevich Bayen et al. (1978), Sternheimer (1998), Kontsevich (2013).
In general, one speaks of a deformation of an object/structures whenever there is a
family of similar objects/structures and a deformation parameter that measures their
distortion from the original, undeformed one. In physics, this parameter appears as
some fundamental constant of nature that measures a deviation from the classical
(undeformed) theory. When it is zero, the classical theory is restored. To deform
a continuous structure of spacetime, an abstract algebra of NC coordinates is intro-
duced. These NC coordinates, denoted by x̂µ, satisfy some non-trivial commutation

1Talk given by Voja Radovanović.
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relations, and so, it is no longer the case that x̂µx̂ν = x̂ν x̂µ. Abandoning this basic
property results in various new physical effects that are not present in a field theory
developed on ordinary spacetime. The simplest case of noncommutativity is the so
called canonical noncommutativity, defined by

[x̂µ, x̂ν ] = iθµν , (1.1)

where θµν are components of a constant, antisymmetric matrix.

Instead of deforming the algebra of coordinates, one can take an alternative, but
equivalent approach in which noncommutativity appears in the form of NC ?-products
of functions (fields) of ordinary commutative coordinates. Specifically, to establish
canonical noncommutativity, we use the Moyal-Weyl ?-product

(f̂ ? ĝ)(x) = e
i
2 θ

µν ∂
∂xµ

∂
∂yν f(x)g(y)|y→x. (1.2)

The first term in the expansion is the ordinary point-wise multiplication of functions.
The quantities θµν are assumed to be small deformation parameters that have dimen-
sions of (length)2. They are fundamental constants, like the Planck length or the
speed of light.

The subject of NC gravity has received a lot of attention and various approaches
to this problem have been developed. In Chamseeddine (2001), Chamseeddine (2004),
Cardella and Zanon (2003) a deformation of pure Einstein gravity via Seiberg-Witten
map is proposed. Twist approach to NC gravity is explored in Aschieri et al. (2005,
2006), Ohl and Schenckel (2009), Aschieri and Castellani (2010). Some other vari-
ants are given in Yang (2009), Steinacker (2010), Burić and Madore (2008, 2014),
Tomassini and Viaggiu (2014), Faizal (2013), Kobakhidze et al. (2016), Klammer
and Steinacker (2009), Harikumar and Rivelles (2006), Dobrski (2017, 2011), Burić
et al. (2006b, 2008). The connection to Supergravity (SUGRA) is established in
Aschieri and Castellani (2009b), Castellani (2013). Finally, in Dimitrijević Ćirić et
al. (2017a), Dimitrijević Ćirić et al. (2017b), Dimitrijević et al. (2012), Dimitrijević
and Radovanović (2014) an approach based on canonically deformed Anti de Sitter
(AdS) symmetry group, i.e. SO(2, 3)? group, is developed. In this approach NC
gravity is treated as a (deformed) gauge theory, and gravity becomes manifest only
after a suitable symmetry breaking (gauge fixing). The action is constructed without
previously introducing the metric tensor (it is topological) and the second order NC
correction to the Einstein-Hilbert action can be found explicitly. Special attention is
devoted to the meaning of coordinates in the context of spacetime noncommutativ-
ity. Namely, the results suggest that coordinates in which one postulates canonical
noncommutativity are the Fermi inertial coordinates, i.e. coordinates of an inertial
observer along a geodesic. Commutator between arbitrary coordinates can in princi-
ple be derived from the canonical noncommutativity as demonstrated in Dimitrijević
Ćirić et al. (2017a).

The success of the pure gravity model led us to consider matter and gauge fields
in the SO(2, 3)? framework. Dirac spinor field and U(1) gauge field coupled to grav-
ity are introduced in Gočanin and Radovanović (2018) and Dimitrijević-Ćirić et al.
(2018), respectively, and physical consequences such as NC deformation of Landau
levels are analyzed. From a different perspective, the problem was also treated by
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Aschieri and Castellani Aschieri and Castellani (2009a, 2012, 2013), Aschieri (2014).
Here we will present the most important results concerning the SO(2, 3)? framework.

2. COMMUTATIVE MODEL AND ITS NC DEFORMATION

The first step in our analysis is to establish a well-defined commutative (undeformed)
model that will subsequently be deformed by substituting ordinary point-wise field
multiplication with NC Moyal-Weyl ?-product. We propose a commutative action
built out of commutative fields on 4-dimensional Minkowski space, endowed with
local SO(2, 3) symmetry, which can be extended to SO(2, 3) ⊗ SU(N) if we want
to include Yang-Mills fields. For electromagnetic field we use Abelian U(1) group.
Then, we demonstrate that, by choosing a suitable gauge (symmetry breaking), this
”symmetric-phase” topological action exactly reduces to the action for classical elec-
trodynamics in curved spacetime with the usual, undeformed SO(1, 3)⊗ U(1) gauge
symmetry.

2. 1. ADS ALGEBRA

Generators of SO(2, 3) group are denoted by MAB (with group indices A,B =
0, 1, 2, 3, 5) and they satisfy the AdS algebra,

[MAB ,MCD] = i(ηADMBC + ηBCMAD − ηACMBD − ηBDMAC), (2.3)

where ηAB is 5D flat metric with signature (+,−,−,−,+). A realization of this
algebra can be obtained from 5D gamma matrices ΓA that satisfy Clifford algebra
{ΓA,ΓB} = 2ηAB . The generators are given by MAB = i

4 [ΓA,ΓB ]. One choice of 5D
gamma matrices is ΓA = (iγaγ5, γ5), where γa are the usual 4D gamma matrices. The
local Lorentz indices, a, b, . . . , take values 0, 1, 2, 3. In this particular representation,
the SO(2, 3) generators are given by Mab = i

4 [γa, γb] = 1
2σab and M5a = 1

2γa. The
total gauge potential (master potential) Ωµ of the SO(2, 3)⊗U(1) gauge group consists
of two independent parts, Ωµ = ωµ+Aµ. The first part is the SO(2, 3) gauge potential
that can be naturally decomposed into spin-connection ω ab

µ and vierbein eaµ,

ωµ =
1

2
ω AB
µ MAB =

1

4
ω ab
µ σab −

1

2l
eaµγa, (2.4)

where l is a constant length scale (AdS radius). Note that in this framework the
vierbein field eaµ is treated as an additional gauge field, standing on equal footing
with the spin-connection (which is a gauge field for the Lorentz group SO(1, 3)). It
is related to the metric tensor by ηabe

a
µe
b
ν = gµν and e = det(eaµ) =

√
−g. The second

part, Aµ, is the electromagnetic field potential. The field strength associated with
the full gauge potential Ωµ is

Fµν = ∂µΩν − ∂νΩµ − i[Ωµ,Ων ], (2.5)

and it can be decomposed as Fµν = Fµν +Fµν , where the SO(2, 3) field strength Fµν
is given by

Fµν = ∂µων − ∂νωµ − i[ωµ, ων ] =
(
R ab
µν −

1

l2
(eaµe

b
ν − ebµeaν)

)σab
4
− 1

l
T a
µν

γa
2
, (2.6)
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where R ab
µν is the curvature tensor and T a

µν torsion. Finally, Fµν is the usual U(1)
field strength

Fµν = ∂µAν − ∂νAµ. (2.7)

A necessary step for obtaining electrodynamics in curved spacetime from SO(2, 3)⊗
U(1) model is gauge fixing, i.e. symmetry breaking from SO(2, 3) to SO(1, 3). For
that reason one usually introduces an auxiliary field φ = φAΓA as in Stelle and West
(1980), MacDowell and Mansouri (1977), Towsend (1977), Wilczek (1998). We break
the symmetry by fixing the value of the auxiliary field, in particular, by setting φa = 0
and φ5 = l. This field is a spacetime scalar and an internal-space vector and it satisfies
the constraint φAφA = l2. It transforms in the adjoint representation of SO(2, 3) and
its covariant derivative is given by

Dµφ = ∂µφ− i[Ωµ, φ] = ∂µφ− i[ωµ, φ]. (2.8)

We see that U(1) part of the master potential doesn’t contribute at the classical level.
This simplification is a peculiarity of the Abelian U(1) group and it does not hold
in a more general case of a non-Abelian Yang-Mills theory. After the gauge fixing,
the components of Dµφ become (Dµφ)a = eaµ and (Dµφ)5 = 0. This is how we get
gravity from the auxiliary field φ.

2. 2. PURE GRAVITY

In the papers of Stelle, West and Wilczek Stelle and West (1980), Wilczek (1998) a
commutative action for pure gravity with SO(2, 3) gauge symmetry was constructed.
Also, in the papers of Chamseddine and Mukhanov Chamseddine and Mukhanov
(2013, 2010), GR is formulated by gauging SO(1, 4) or, more suitable for SUGRA,
SO(2, 3) group. Proceeding within this general framework, we show that it can also
accommodate fermionic matter fields, specifically, the Dirac spinor field, and elec-
tromagnetic U(1) gauge field. We are going to do that by providing a model of
commutative action for the Dirac spinors and U(1) gauge field, invariant under ordi-
nary (undeformed) SO(2, 3)⊗U(1) gauge transformations, which exactly reproduces
classical electrodynamics in curved spacetime after the symmetry breaking.

In Dimitrijević Ćirić et al. (2017b) the SO(2, 3) model of pure gravity action and
its NC deformation are analyzed. The commutative action consists of three parts,

S1 =
ilc1

64πGN
Tr

∫
d4x εµνρσFµνFρσφ, (2.9)

S2 =
c2

128πGN l
Tr

∫
d4x εµνρσFµνDρφDσφφ+ h.c., (2.10)

S3 = − ic3
128πGN l

Tr

∫
d4x εµνρσDµφDνφDρφDσφφ. (2.11)

Gauge fixing yields

S =
−1

16πGN

∫
d4x

(
c1l

2

16
εµνρσεabcdR

ab
µν R cd

ρσ +
√
−g
(

(c1 + c2)R− 6

l2
(c1 + 2c2 + 2c3)

))
.

(2.12)
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For the sake of generality, three a priori undetermined dimensionless constants are
introduced. They can be fixed by some consistency condition. The first part of the
action is a topological Gauss-Bonnet term which has no effect on the equations of
motion, and so, we can set c1 = 0. The Einstein-Hilbert term requires c1 + c2 = 1,
while the absence of the cosmological constant is ensured by having c1+2c2+2c3 = 0.

After NC deformation and perturbative expansion in powers of θµν , it was con-
firmed that the first order NC correction to the commutative action vanishes. This
was an already known result, e.g. Aschieri et al. (2013). The first non-vanishing
correction is quadratic in the NC parameter. In the low energy limit, equations of
motion for the vierbein and the spin-connection are given by

δeaµ : R cd
αγ eγde

α
ae
µ
c −

1

2
eµaR+

3

l2
(1 + c2 + 2c3)eµa = τ µ

a = −8πGN
e

δS
(2)
NC

δeaµ
, (2.13)

δω ab
µ : T c

ac e
µ
b − T

c
bc e

µ
a − T

µ
ab = S µ

ab = −16πGN
e

δS
(2)
NC

δω ab
µ

. (2.14)

The effective energy-momentum tensor τ µ
a and the effective spin-tensor S µ

ab both
depend on θµν , and we can conclude that noncommutativity acts as a source of cur-
vature and torsion. From (2.13) it follows that the scalar curvature of NC Minkowski
space is R = 11

l6 θ
2. Thus, in SO(2, 3)? model, there exists an NC deformation of the

Minkowski space and the NC correction to the flat metric is given by

g00 = 1−R0m0nx
mxn,

g0i = −2

3
R0minx

mxn, gij = −δij −
1

3
Rimjnx

mxn. (2.15)

Its form suggests that the coordinates xµ we started with are actually the Fermi
normal coordinates. These are inertial coordinates of an observer moving along a
geodesic and they can be introduced in a small neighborhood along the geodesic (in-
side a small cylinder surrounding the geodesic) Manasse and Misner (1963), Chicone
and Mashoon (2006), Klein and Randles (2011). The apparent breaking of the dif-
feomorphism invariance due to canonical noncommutivity can be understood as a
consequence of working in a preferred reference system given by the Fermi normal
coordinates. A local observer moving along a geodesic measures θµν to be constant.
In any other reference frame this will not be the case.

2. 3. COMMUTATIVE ACTIONS FOR MATTER FIELDS

Now we turn to the construction of SO(2, 3)⊗ U(1) invariant theory for matter and
U(1) gauge field coupled to gravity. In Dimitrijević-Ćirić et al. (2018) we proposed
an action for the U(1) gauge field,

SA = c Tr

∫
d4x εµνρσ

{
fFµνDρφDσφφ+

i

3!
ffDµφDνφDρφDσφφ

}
+ h.c. (2.16)

It includes an additional auxiliary field f = 1
2f

ABMAB . Like φ, this field transforms
in the adjoint representation of SO(2, 3) and it is invariant under U(1) (i.e. not
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charged). Its role is to produce the canonical kinetic term for U(1) gauge field in
curved spacetime in the absence of the Hodge dual operation (this operation cannot
be defined without prior knowledge of the metric tensor, and we don’t have one at
our disposal). Note also that c is some yet undetermined constant of mass dimension
1.

After gauge fixing, the purely gravitational part of the action (2.16) vanishes and
we are left with

SA = −8cl

∫
d4x e fabeµae

ν
bFµν − 4cl

∫
d4x e

(
fabfab + 2fa5f 5

a

)
. (2.17)

Equations of motion for the components of the auxiliary field f are

fa5 = 0, fab = −eµaeνbFµν . (2.18)

We use these equations to eliminate the auxiliary field in the action (2.17) and this
leaves us with the action for pure U(1) gauge field in curved spacetime,

SA = 4cl

∫
d4x e FµνFµν . (2.19)

To obtain the canonical kinetic term we set c = − 1
16l .

The Dirac spinor field ψ transforms in the fundamental representation of SO(2, 3)⊗
U(1) gauge group. Its covariant derivative is given by (we assume q = −1)

Dµψ = ∂µψ − iΩµψ = ∇µψ +
i

2l
eaµγaψ − iAµψ = ∇̃µψ +

i

2l
eaµγaψ, (2.20)

where we introduced ∇̃µ = ∇µ − iAµ as a covariant derivative for SO(1, 3) ⊗ U(1)
gauge group.

In Gočanin and Radovanović (2018) we proposed the following fermionic action

Sψ,kin =
i

12

∫
d4x εµνρσ

[
ψ̄DµφDνφDρφDσψ −Dσψ̄DµφDνφDρφψ

]
. (2.21)

After the symmetry braking it becomes

Sψ,kin =
i

2

∫
d4x e

[
ψ̄γσ∇̃σψ − ∇̃σψ̄γσψ

]
− 2

l

∫
d4x e ψ̄ψ, (2.22)

which is exactly the Dirac action in curved spacetime for spinors with cosmological
mass term 2/l, interacting via U(1) gauge field. Note that ∇̃σψ = ∇σψ − iAσψ,
includes the U(1) gauge field.

To obtain fermions with arbitrary mass, we have to include the following additional
”mass terms” (terms of the type ψ̄ . . . ψ)

S
(1)
ψ,m =

ic1
2

(m
l
− 2

l2

)∫
d4x εµνρσ

[
ψ̄DµφDνφDρφDσφφψ + ψ̄φDµφDνφDρφDσφψ

]
,

S
(2)
ψ,m =

ic2
2

(m
l
− 2

l2

)∫
d4x εµνρσ

[
ψ̄DµφDνφDρφφDσφψ + ψ̄DµφφDνφDρφDσφψ

]
,

S
(3)
ψ,m = ic3

(m
l
− 2

l2

)∫
d4x εµνρσ ψ̄DµφDνφφDρφDσφψ. (2.23)
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If we demand that a priori undetermined dimensionless coefficients c1, c2, and c3
satisfy the constraint c2 − c1 − c3 = − 1

24 , after the symmetry breaking, the sum of
the three terms in (2.23) becomes

Sψ,m = −
(
m− 2

l

)∫
d4x e ψ̄ψ, (2.24)

and the total action, Sψ = Sψ,kin + Sψ,m, is exactly the Dirac action for spinors of
mass m in curved spacetime,

Sψ =
i

2

∫
d4x e

[
ψ̄γσ∇̃σψ − ∇̃σψ̄γσψ

]
−m

∫
d4x e ψ̄ψ. (2.25)

Thus, by starting with a theory with SO(2, 3)⊗ U(1) gauge symmetry, by a suitable
gauge fixing, we have obtained the standard action for electrodynamics in curved
spacetime.

2. 4. SEIBERG-WITTEN MAP

Now that we have established our commutative SO(2, 3) ⊗ U(1) model for matter
and U(1) gauge field coupled to gravity, we want to deform it via NC Moyal-Weyl
?-product. Due to noncommutativity of the ?-product NC fields do not belong to
the Lie algebra of the gauge group, since the deformed Lie algebra commutation
relations do not close in the Lie algebra itself. These fields actually belong to the
enveloping algebra. The closure condition for the algebra of gauge transformation
becomes a set of differential equations, which are solved by iteration, order-by-order
in the NC parameter θαβ . Seiberg-Witten (SW) map Jurčo et al. (2001), Seiberg
and Witten (1999) provides a solution to these equations. It also ensures that no
additional degrees of freedom (no new fields) are included through NC deformation.
NC quantities can be represented as perturbation series in powers of the parameter
of noncommutativity, with expansion coefficients built out of commutative fields. For
example, NC spinor and adjoint field are represented as

ψ̂ = ψ − 1

4
θαβωα(∂β +Dβ)ψ +O(θ2), (2.26)

φ̂ = φ− 1

4
θαβ{ωα, (∂β +Dβ)φ}+O(θ2), (2.27)

where ωα is the ordinary gauge potential. We see that at the zeroth order these NC
fields reduce to their undeformed counterparts. The obtained NC action possesses
deformed SO(2, 3)? ⊗ U(1)? symmetry. Assuming that deformation parameter is
small, we expend the NC action in powers of θµν using the general formula(
Â ? B̂

)(1)
= −1

4
θαβ{ωα, (∂β +Dβ)AB}+

i

2
θαβDαADβB + cov(Â(1))B (2.28)

+Acov(B̂(1)),

where cov(Â(1)) is the covariant part of A′s first order NC correction, and cov(B̂(1)),
the covariant part of B′s first order NC correction. SW ensures the SO(2, 3)⊗ U(1)
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invariance of the expansion, order by order in θαβ . It turns out that the leading term in
the expansion does not vanish after the symmetry breaking, and we thus obtain linear
NC correction to classical electrodynamics in curved spacetime. The calculation is
long and tedious and we will not present the details here. Schematically, the spinorial
piece is given by

Ŝ
(1)
ψ = θαβ

∫
d4x e ψ̄

(
A ρσ
αβ ∇̃ρ∇̃σ + B σ

αβ ∇̃σ + Cα∇̃β +Dαβ
)
ψ. (2.29)

Objects A,B, C,D are complicated functions of geometric and U(1) quantities, e.g.

we have interactions of the following type, ψ̄σ σ
α ∇̃β∇̃σψ, ψ̄R ρσ

αβ γρ∇̃σψ, ψ̄T σ
αβ ∇̃σψ,

ψ̄Fαµγµ∇̃βψ, ψ̄Fαβψ, ψ̄σαβψ etc. More importantly, we want to emphasize the fact
that this θ-linear NC correction pertains in the limit of flat spacetime. This enables
us to derive some tangible phenomenological consequences of our model that could
potentially be tested experimentally in a not to far future.

3. FLAT SPACETIME NC ELECTRODYNAMICS

The action for NC electrodynamics in flat spacetime, up to first order in θαβ , is given
by

Ŝflat =

∫
d4x

[
ψ̄(i/D −m)ψ − 1

4
FµνFµν

]
− θαβ

∫
d4x

[
1

8
FαβFµνFµν +

1

2
FαµFβνFµν

]

+ θαβ
∫
d4x ψ̄

[
− 1

2l
σ σ
α DβDσ +

7i

24l2
ε ρσ
αβ γργ5Dσ −

(
m

4l2
+

1

6l3

)
σαβ (3.30)

+
3i

4
Fαβ/D − i

2
FαµγµDβ −

(
3m

4
− 1

4l

)
Fαβ

]
ψ,

where we introduced flat spacetime covariant derivative Dµ = ∂µ − iAµ. We notice
immediately that this action is different than the actions for NC electrodynamics
already present in the literature Burić and Radovanović (2002), Wulkenhaar (2002),
Burić et al. (2006a). The new interaction terms between spinors and the U(1) field,
specific to the SO(2, 3)? model, appear as residuals from the gravitational interac-
tion, and they lead to some non-trivial consequences such as the modification of the
dispersion relation for electrons.

By varying the NC action (3.30) with respect to ψ̄ we obtain deformed Dirac
equation for electron coupled to some background electromagnetic field Aµ,(

i/∂ −m+ /A+ θαβMαβ

)
ψ = 0. (3.31)

To simplify the analysis, we assume that only two spatial dimensions are mutually
incompatible, e.g. [x1, x2] = iθ12. Thus, we have θ12 = −θ21 =: θ 6= 0 and all
other components of θαβ equal to zero. We will consider the case of an electron in
background magnetic field.
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3. 1. ELECTRON IN BACKGROUND MAGNETIC FIELD

Using the NC deformed Dirac equation (3.31), we can see how noncommutativity
modifies the energy levels of an electron in a constant background magnetic field
B = Bez. Classical (undeformed) energy levels for a relativistic electron are given by

E(0)
n,s =

√
p2z +m2 + (2n+ s+ 1)B. (3.32)

We are looking for a linear NC correction E
(1)
n,s ∼ θ of the energy levels (3.32). Working

perturbatively in θ, they can be calculated by the following formula,

E(1)
n,s = −

θαβ
∫
dy ψ̄

(0)
n,sMαβψ

(0)
n,s∫

dy ψ̄
(0)
n,sγ0ψ

(0)
n,s

. (3.33)

In particular, for θ12 = −θ21 = θ 6= 0 we obtain

E(1)
n,s =− θs

E
(0)
n,s

[
m2

12l2
− m

3l3

]
− θBs

E
(0)
n,s(E

(0)
n,s +m)

[
m

12l2
− 1

3l3

]
(2n+ s+ 1)

+
θB2

2E
(0)
n,s

(2n+ s+ 1). (3.34)

Non-relativistic limit of the NC energy levels is obtained by expanding undeformed

energy function E
(0)
n,s assuming p2z, B � m2,

E(0)
n,s =

√
p2z +m2 + (2n+ s+ 1)B

≈ m
[
1 +

p2z + (2n+ s+ 1)B

2m2
− (p2z + (2n+ s+ 1)B)2

8m4

]
. (3.35)

Expending (3.34) we obtain the NC correction to the energy levels of a non-relativistic
electron,

E(1)
n,s =

[
θs

3l3
− θsm

12l2

] [
1− p2z

2m2
+

3p4z
8m4

+
3p2z(2n+ s+ 1)B

8m4

]
+
θB2

2m
(2n+ s+ 1)

[
1− p2z + (2n+ s+ 1)B

2m2
+

3(pz + (2n+ s+ 1)B)2

8m4

]
. (3.36)

For an electron constrained to the NC x, y-plane we take pz = 0 and NC energy levels
reduce to

En,s =

[
m− sθ

(
m

12l2
− 1

3l3

)]
+

2n+ s+ 1

2m
Beff −

(2n+ s+ 1)2

8m3
B2
eff

+O(θ2), (3.37)

where we introduced Beff = (B + θB2) as an effective magnetic field. We see that
a spin-dependent shift of mass appears. If we compare this expression with the one

for undeformed energy levels E
(0)
n,s, we see that the only effect of noncommutaivity is

to modify the mass of an electron and the value of the background magnetic field.
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This interpretation of constant noncommutativity is in accord with string theory. In
the famous paper of Seiberg and Witten Seiberg and Witten (1999) it is argued, in
the context of string theory, that coordinate functions of the endpoints of an open
string constrained to a D-brane in the presence of a constant Neveu-Schwarz B-field
satisfy the constant noncommutativity algebra. This implies is that a relativistic field
theory on NC spacetime can be interpreted as a low energy limit of the theory of open
strings.

4. FURTHER DEVELOPMENT

This newly established theory of NC Electrodynamics, both in curved and flat space-
time, paves the way for a variety of further investigation. Here we point to some of
them:

(1) Experimental verification: The SO(2, 3)? ⊗U(1)? model of NC Electrodynamics
predicts a potentially observable modifications of some of the basic properties
of an electron. It is crucial that these corrections are linear in the noncommu-
tativity parameter. With our growing ability to probe high energies scales, this
could enable us to obtain an experimental verification.

(2) Renormalization: The so called minimal NC electrodynamics is not a renormalis-
abile theory because of the fermionic loop contributions Burić and Radovanović
(2002), Wulkenhaar (2002), Burić et al. (2006). It would be interesting to
analyze the renormalisability of the SO(2, 3)? model in order to theoretically
determine on which scale does noncommutativity operates.

(4) NC Standard Model : One could incorporate scalar fields in the SO(2, 3)? frame-
work in order to construct the full NC extension of the Standard Model of
elementary particles.

(6) NC Quantum Hall Effect : Quantum Hall Effect is one of the most interesting
phenomena in physics. Our results could be extended in a way that would allow
us to see how noncommutativity modifies the behavior of electrons in some
material medium. One line of investigation is to explore the Quantum Hall
Effect taking into account the NC deformation of Landau levels found in our
model.
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Burić, M., Grammatikopoulos, T., Madore, J., Zoupanos, G.: 2006b, Gravity and the Struc-
ture of Noncommutative Algebras, JHEP, 0604, 054, [hep-th/0603044].
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